Coherent state
A coherent state is a translated base state of the
harmonic oscillator . Coherent states are
interesting because they behave classically in some ways.
∣ α ˉ ⟩ = T α ∣ 0 ⟩ = e − i α p ^ / ℏ ∣ 0 ⟩ .
\begin{align*}
\ket{\bar \alpha} = T_{\alpha} \ket{0} = e^{-i \alpha \hat p /\hbar}
\ket 0.
\end{align*}
∣ α ˉ ⟩ = T α ∣ 0 ⟩ = e − i α p ^ /ℏ ∣ 0 ⟩ . Consider the expectation values.
⟨ α ˉ ∣ x ∣ α ˉ ⟩ = α ⟨ α ˉ ∣ p ∣ α ˉ ⟩ = ⟨ 0 ∣ T α † p T α ∣ 0 ⟩ = ⟨ 0 ∣ p T α † T α ∣ 0 ⟩ = ⟨ 0 ∣ p ∣ 0 ⟩ = 0 ⟨ α ˉ ∣ H ∣ α ˉ ⟩ = ⟨ 0 ∣ T α † ( 1 2 m p 2 + 1 2 m ω 2 x 2 ) T α ∣ 0 ⟩ = ⟨ 0 ∣ 1 2 m p 2 + m ω 2 2 ( T α † x T α T α † x T α ) ∣ 0 ⟩ = ⟨ 0 ∣ 1 2 m p 2 + m ω 2 2 ( x + α ) 2 ∣ 0 ⟩ = ⟨ 0 ∣ H ∣ 0 ⟩ + m ω 2 α ⟨ 0 ∣ x ∣ 0 ⟩ + m ω 2 2 x 0 2 ⟨ 0 ∣ 0 ⟩ = 1 2 ℏ ω + 1 2 m ω 2 α 2 .
\begin{align*}
\braket{\bar\alpha | x | \bar\alpha} &= \alpha \\
\braket{\bar\alpha | p | \bar\alpha} &= \braket{0 | T_\alpha\adj p
T_\alpha |0} = \braket{0 | p T_\alpha\adj T_\alpha |0} =
\braket{0|p|0} = 0 \\
\braket{\bar\alpha | H | \bar\alpha} &= \braket{0 | T_\alpha\adj
\left(
\frac{1}{2m} p^2 + \frac{1}{2} m\omega^2 x^2
\right) T_\alpha |0} \\
&= \braket{0| \frac{1}{2m} p^2 + \frac{m\omega^2}{2} \left(
T_\alpha\adj x T_\alpha T_\alpha\adj x T_\alpha \right) | 0}\\
&= \braket{0 | \frac{1}{2m} p^2 + \frac{m\omega^2}{2} (x + \alpha)^2
|0} \\
&= \braket{0|H|0} + m \omega^2 \alpha \braket{0 | x | 0} +
\frac{m\omega^2}{2} x_0^2 \braket{0|0} \\
&= \frac{1}{2} \hbar\omega + \frac{1}{2} m\omega^2 \alpha^2.
\end{align*}
⟨ α ˉ ∣ x ∣ α ˉ ⟩ ⟨ α ˉ ∣ p ∣ α ˉ ⟩ ⟨ α ˉ ∣ H ∣ α ˉ ⟩ = α = ⟨ 0∣ T α † p T α ∣0 ⟩ = ⟨ 0∣ p T α † T α ∣0 ⟩ = ⟨ 0∣ p ∣0 ⟩ = 0 = ⟨ 0∣ T α † ( 2 m 1 p 2 + 2 1 m ω 2 x 2 ) T α ∣0 ⟩ = ⟨ 0∣ 2 m 1 p 2 + 2 m ω 2 ( T α † x T α T α † x T α ) ∣0 ⟩ = ⟨ 0∣ 2 m 1 p 2 + 2 m ω 2 ( x + α ) 2 ∣0 ⟩ = ⟨ 0∣ H ∣0 ⟩ + m ω 2 α ⟨ 0∣ x ∣0 ⟩ + 2 m ω 2 x 0 2 ⟨ 0∣0 ⟩ = 2 1 ℏ ω + 2 1 m ω 2 α 2 . This looks like the classical result, with the addition of the
zero-point energy term! We also get an interesting result from the
Heisenberg time evolution .
⟨ α ˉ ∣ x H ∣ α ˉ ⟩ = ⟨ α ˉ + x S cos ω t + 1 m ω p S sin ω t ∣ α ˉ ⟩ = α cos ω t ⟨ α ˉ ∣ p H ∣ α ˉ ⟩ = ⟨ α ˉ ∣ p S cos ω t − m ω x S sin ω t ∣ α ˉ ⟩ = − m ω α sin ω t .
\begin{align*}
\braket{\bar\alpha | x_H | \bar\alpha} &= \braket{\bar\alpha + x_S
\cos \omega t + \frac{1}{m\omega} p_S \sin\omega t|\bar\alpha} \\
&= \alpha \cos\omega t \\
\braket{\bar\alpha | p_H | \bar\alpha} &= \braket{\bar\alpha | p_S
\cos\omega t - m\omega x_S \sin\omega t | \bar\alpha} \\
&= -m\omega \alpha \sin\omega t.
\end{align*}
⟨ α ˉ ∣ x H ∣ α ˉ ⟩ ⟨ α ˉ ∣ p H ∣ α ˉ ⟩ = ⟨ α ˉ + x S cos ω t + mω 1 p S sin ω t ∣ α ˉ ⟩ = α cos ω t = ⟨ α ˉ ∣ p S cos ω t − mω x S sin ω t ∣ α ˉ ⟩ = − mω α sin ω t . We see the expectation values oscillate and ⟨ p H ⟩ = d d t ⟨ x H ⟩ \braket{p_H} = \frac{d
}{d t} \braket{x_H} ⟨ p H ⟩ = d t d ⟨ x H ⟩ . Now consider the uncertainties
⟨ α ˉ ∣ x 2 ∣ α ˉ ⟩ = ⟨ 0 ∣ ( x + α ) 2 ∣ 0 ⟩ = ⟨ 0 ∣ x 2 ∣ 0 ⟩ + α 2 ⟨ 0 ∣ 0 ⟩ = ℏ 2 m ω + α 2 ⟨ α ˉ ∣ p 2 ∣ α ˉ ⟩ = ⟨ 0 ∣ p 2 ∣ 0 ⟩ = m ℏ ω 2 Δ x Δ p = ℏ 2 .
\begin{align*}
\braket{\bar \alpha | x^2 |\bar\alpha} &= \braket{0 | (x + \alpha)^2 |
0} \\
&= \braket{0 | x^2 | 0} + \alpha^2 \braket{0|0} \\
&= \frac{\hbar}{2m\omega} + \alpha^2 \\
\braket{\bar \alpha | p^2 | \bar \alpha} &= \braket{0 | p^2 | 0} =
\frac{m\hbar\omega}{2} \\
\Delta x \Delta p &= \frac{\hbar}{2}.
\end{align*}
⟨ α ˉ ∣ x 2 ∣ α ˉ ⟩ ⟨ α ˉ ∣ p 2 ∣ α ˉ ⟩ Δ x Δ p = ⟨ 0∣ ( x + α ) 2 ∣0 ⟩ = ⟨ 0∣ x 2 ∣0 ⟩ + α 2 ⟨ 0∣0 ⟩ = 2 mω ℏ + α 2 = ⟨ 0∣ p 2 ∣0 ⟩ = 2 m ℏ ω = 2 ℏ . We can repeat the exercise for x H x_H x H and p H p_H p H and see that the
uncertainty bound is saturated for all time. This is interesting, it
means that the wavepacket remains coherent as it oscillates over
time. Again, this looks classical.
We can write a coherent state in terms of the energy eigenstates it’s
composed of. First write T α T_\alpha T α in terms of the raising and
lowering operators. We apply the Baker-Campbell-Hausdorff formula and use the fact that [ a † , a ] [a\adj,a] [ a † , a ] is a constant.
T α = e − i α p / ℏ = e α ( a † − a ) / 2 d where d = ℏ m ω = e α a † / 2 d e − α a / 2 d e − α 2 / 4 d 2 .
\begin{align*}
T_\alpha &= e^{-i \alpha p/\hbar} = e^{\alpha (a\adj - a) / \sqrt 2 d}
\text{ where } d = \sqrt{\frac{\hbar}{m\omega}} \\
&= e^{\alpha a\adj/\sqrt 2 d} e^{-\alpha a / \sqrt 2 d} e^{-\alpha^2 /
4d^2}.
\end{align*}
T α = e − i α p /ℏ = e α ( a † − a ) / 2 d where d = mω ℏ = e α a † / 2 d e − α a / 2 d e − α 2 /4 d 2 . Then expand a coherent state in terms of this operator.
Looking at the last exponential, we notice that a ∣ 0 ⟩ = 0 a \ket 0 = 0 a ∣ 0 ⟩ = 0 , so all
but the first term of the Taylor expansion will be annihilated.
∣ α ˉ ⟩ = e − α 2 / 4 d 2 e α a † / 2 d e − α a / 2 d ∣ 0 ⟩ = e − α 2 / 4 d 2 ∑ n 1 n ! ( α 2 d ) n ( a † ) n ∣ 0 ⟩ = e − α 2 / 4 d 2 ∑ n 1 n ! ( α 2 d ) n ∣ n ⟩ = ∑ n c n ∣ n ⟩ .
\begin{align*}
\ket{\bar \alpha} &= e^{-\alpha^2 / 4d^2} e^{\alpha a\adj / \sqrt 2d}
e^{-\alpha a / \sqrt 2d} \ket 0 \\
&= e^{-\alpha^2/4d^2} \sum_n \frac{1}{n!} \left( \frac{\alpha}{\sqrt
2d} \right) ^n \left( a\adj \right)^n \ket 0 \\
&= e^{-\alpha^2 / 4d^2} \sum_n \frac{1}{\sqrt{n!}} \left(
\frac{\alpha}{\sqrt 2d} \right) ^n \ket n \\
&= \sum_n c_n \ket n.
\end{align*}
∣ α ˉ ⟩ = e − α 2 /4 d 2 e α a † / 2 d e − α a / 2 d ∣ 0 ⟩ = e − α 2 /4 d 2 n ∑ n ! 1 ( 2 d α ) n ( a † ) n ∣ 0 ⟩ = e − α 2 /4 d 2 n ∑ n ! 1 ( 2 d α ) n ∣ n ⟩ = n ∑ c n ∣ n ⟩ . The terms ∣ c n ∣ 2 |c_n|^2 ∣ c n ∣ 2 form a Poisson distribution with mean λ = α 2 / 2 d 2 \lambda = \alpha^2 / 2d^2 λ = α 2 /2 d 2 . Immediately we
see ⟨ N ⟩ = λ \braket{N} = \lambda ⟨ N ⟩ = λ and Δ N = λ \Delta N = \sqrt \lambda Δ N = λ . Since H = ( N + 1 2 ) ℏ ω H =
(N + \frac 12) \hbar\omega H = ( N + 2 1 ) ℏ ω , we know Δ H = ℏ ω λ \Delta H = \hbar \omega \sqrt
\lambda Δ H = ℏ ω λ .
So far in this derivation we have set α ∈ R \alpha \in \mathbb R α ∈ R and used
the translation operator . We can generate a
coherent state to allow α ∈ C \alpha \in \mathbb C α ∈ C using the
displacement operator to define
∣ α ˉ ⟩ = D ( α ) ∣ 0 ⟩ = e α a † − α ∗ a ∣ 0 ⟩ .
\begin{align*}
\coh \alpha = D(\alpha) \ket 0 = e^{\alpha a\adj - \alpha\conj a} \ket 0.
\end{align*}
∣ α ˉ ⟩ = D ( α ) ∣ 0 ⟩ = e α a † − α ∗ a ∣ 0 ⟩ . Another way to define coherent states is as eigenstates of the
lowering operator
a ∣ α ˉ ⟩ = a e α a † − α ∗ a ∣ 0 ⟩ = [ a , e α a † − α ∗ a ] ∣ 0 ⟩ , since a ∣ 0 ⟩ = 0 = [ a , α a † − α ∗ a ] e α a † − α ∗ a ∣ 0 ⟩ , since [ a , a † ] constant = e α a † − α ∗ a ∣ 0 ⟩ a ∣ α ˉ ⟩ = α ∣ α ˉ ⟩ .
\begin{align*}
a\coh\alpha &= a e^{\alpha a\adj - \alpha\conj a} \ket 0 \\
&= [a,e^{\alpha a\adj - \alpha\conj a}] \ket 0, && \text{since } a \ket 0
= 0 \\
&= [a, \alpha a\adj - \alpha\conj a] e^{\alpha a\adj - \alpha\conj a}
\ket 0, && \text{since } [a,a\adj] \text{ constant} \\
&= e^{\alpha a\adj - \alpha\conj a} \ket 0 \\
a\coh \alpha &= \alpha \coh \alpha.
\end{align*}
a ∣ α ˉ ⟩ a ∣ α ˉ ⟩ = a e α a † − α ∗ a ∣ 0 ⟩ = [ a , e α a † − α ∗ a ] ∣ 0 ⟩ , = [ a , α a † − α ∗ a ] e α a † − α ∗ a ∣ 0 ⟩ , = e α a † − α ∗ a ∣ 0 ⟩ = α ∣ α ˉ ⟩ . since a ∣ 0 ⟩ = 0 since [ a , a † ] constant We see complex α \alpha α is allowed since a a a is not hermitian. We can
interpret the real and imaginary parts physically by considering the
position and momentum of a generalized coherent state.
⟨ α ˉ ∣ x ∣ α ˉ ⟩ = d 2 ⟨ α ˉ ∣ a † + a ∣ α ˉ ⟩ = d 2 ( α ∗ + α ) ⟨ α ˉ ∣ α ˉ ⟩ = 2 d ℜ [ α ] , ⟨ α ˉ ∣ p ∣ α ˉ ⟩ = i ℏ 2 d ⟨ α ˉ ∣ a † − a ∣ α ˉ ⟩ = 2 ℏ d ℑ [ α ] .
\begin{align*}
\braket{\bar\alpha | x | \bar\alpha} &= \frac{d}{\sqrt 2} \braket{\bar
\alpha | a\adj + a | \bar\alpha} \\
&= \frac{d}{\sqrt 2} (\alpha\conj + \alpha) \braket{\bar \alpha |
\bar\alpha} \\
&= \sqrt 2 d\, \Re[\alpha], \\
\braket{\bar\alpha | p | \bar\alpha} &= \frac{i\hbar}{\sqrt 2d}
\braket{\bar\alpha|a\adj-a|\bar\alpha} = \sqrt 2\frac{\hbar}{d} \Im[\alpha].
\end{align*}
⟨ α ˉ ∣ x ∣ α ˉ ⟩ ⟨ α ˉ ∣ p ∣ α ˉ ⟩ = 2 d ⟨ α ˉ ∣ a † + a ∣ α ˉ ⟩ = 2 d ( α ∗ + α ) ⟨ α ˉ ∣ α ˉ ⟩ = 2 d ℜ [ α ] , = 2 d i ℏ ⟨ α ˉ ∣ a † − a ∣ α ˉ ⟩ = 2 d ℏ ℑ [ α ] . The real component of α \alpha α corresponds to a translation in x x x ,
and the complex component to a translation in p p p . In position space,
we see (where d = h / m ω d = \sqrt{h/m\omega} d = h / mω )
α a † − α ∗ a = ( x 0 2 d + i p 0 d 2 ℏ ) 1 2 d ( x − i p m ω ) − ( x 0 2 d − i p 0 d 2 ℏ ) 1 2 d ( x + i p m ω ) = i d ℏ ( p 0 d x − x 0 p d m ω ) = i ℏ ( x 0 p − p 0 x ) .
\begin{align*}
\alpha a\adj - \alpha\conj a &= \left( \frac{x_0}{\sqrt 2d} + i
\frac{p_0d}{\sqrt 2\hbar} \right) \frac{1}{\sqrt 2d} \left( x-i
\frac{p}{m\omega} \right) - \left( \frac{x_0}{\sqrt 2d} - i
\frac{p_0d}{\sqrt 2\hbar} \right) \frac{1}{\sqrt 2d} \left( x + i
\frac{p}{m\omega} \right) \\
&= \frac{i}{d\hbar} \left( p_0 d x - \frac{x_0 p}{dm\omega} \right) \\
&= \frac{i}{\hbar} (x_0 p - p_0 x).
\end{align*}
α a † − α ∗ a = ( 2 d x 0 + i 2 ℏ p 0 d ) 2 d 1 ( x − i mω p ) − ( 2 d x 0 − i 2 ℏ p 0 d ) 2 d 1 ( x + i mω p ) = d ℏ i ( p 0 d x − d mω x 0 p ) = ℏ i ( x 0 p − p 0 x ) . Now consider the Heisenberg time evolution.
D H ( α , − t ) = e − i H t / ℏ D S ( α ) e i H t / ℏ = e α a H † ( − t ) − α ∗ a H ( − t ) = exp ( α e − i ω t a S † − α ∗ e i ω t a S ) = D S ( α e − i ω t ) .
\begin{align*}
D_H(\alpha,-t) &= e^{-i Ht/\hbar} D_S(\alpha) e^{iHt/\hbar} \\
&= e^{\alpha a_H\adj(-t) - \alpha\conj a_H(-t)} \\
&= \exp \left( \alpha e^{-i\omega t} a_S\adj - \alpha\conj
e^{i\omega_t} a_S \right) \\
&= D_S(\alpha e^{-i\omega t}).
\end{align*}
D H ( α , − t ) = e − i H t /ℏ D S ( α ) e i H t /ℏ = e α a H † ( − t ) − α ∗ a H ( − t ) = exp ( α e − iω t a S † − α ∗ e i ω t a S ) = D S ( α e − iω t ) . Then apply this to the Schrödinger time
evolution of the coherent state
∣ α ˉ , t ⟩ = e − i H t / ℏ D S ( α ) ∣ 0 ⟩ = e − i H t / ℏ D S ( α ) e i H t / ℏ e − i H t / ℏ ∣ 0 ⟩ = D H ( α , − t ) e − i ω t / 2 ∣ 0 ⟩ = e − i ω t / 2 D S ( α e − i ω t ) ∣ 0 ⟩ = e − i ω t / 2 ∣ α e − i ω t ‾ ⟩ .
\begin{align*}
\ket{\bar\alpha,t} &= e^{-iHt/\hbar} D_S(\alpha) \ket 0 \\
&= e^{-iHt/\hbar} D_S(\alpha) e^{iHt/\hbar} e^{-iHt/\hbar} \ket 0 \\
&= D_H(\alpha,-t) e^{-i\omega t/2} \ket 0\\
&= e^{-i\omega t/2} D_S(\alpha e^{-i\omega t}) \ket 0 \\
&= e^{-i\omega t/2} \ket{\overline{\alpha e^{-i \omega t}}}.
\end{align*}
∣ α ˉ , t ⟩ = e − i H t /ℏ D S ( α ) ∣ 0 ⟩ = e − i H t /ℏ D S ( α ) e i H t /ℏ e − i H t /ℏ ∣ 0 ⟩ = D H ( α , − t ) e − iω t /2 ∣ 0 ⟩ = e − iω t /2 D S ( α e − iω t ) ∣ 0 ⟩ = e − iω t /2 ∣ α e − iω t ⟩ . We can also show that coherent states form an (overcomplete)
basis. Each coherent state is a linear combination of every other
other coherent state – no two states are orthogonal. This makes sense
intuitively, every gaussian contains some component of every other
gaussian. We can thus write a number state in terms of coherent
states.
The overcompleteness is interesting. Whereas there are countably
infinite number states, there are uncountable coherent states. This is
a possible consequence of coherent states being eigenstates of a
non-hermitian operator.