Poisson distribution

A Poisson distribution counts independent events with an average of λ\lambda events occurring per time TT.

To derive the PDF, imagine breaking up the time period into NN pieces (where NN is large).

The probability of an event occurring in one of these time ranges is λT/N\lambda T/N, where NN is large enough that this probability is 1\ll 1.

The probability of no event occurring is

p(0)=limN(1λTN)N=eλT. p(0) = \lim_{N \to \infty} \left(1 - \frac{\lambda T}{N}\right)^{N} = e^{-\lambda T}.

The probability of one event occurring is

p(1)=limNN(1λTN)N1λTN=eλTλT. p(1) = \lim_{N \to \infty} N \left(1 - \frac{\lambda T}{N}\right)^{N-1} \frac{\lambda T}{N} = e^{-\lambda T} \lambda T.

Since there are NN ways to choose which period the event will occur in, and there are N1N-1 events that don’t occur.

It follows that the probability of nn events occurring is

p(n)=limN(Nn)(1λTN)Nn(λTN)n=(λT)nn!eλT. p(n) = \lim_{N \to \infty} {N \choose n} \left(1 - \frac{\lambda T}{N}\right)^{N-n} \left(\frac{\lambda T}{N}\right)^n = \frac{(\lambda T)^n}{n!} e^{-\lambda T}.

The mean of a Poisson distribution is μ=λT\mu = \lambda T. An interesting property is that the variance equals the mean: Var=μ=λT\Var = \mu = \lambda T.

For large z=λTz = \lambda T, the Poisson distribution approaches a normal distribution with mean and variance zz

pz(n)=znn!ezlnpz(n)=nlnzlnn!apply Stirling approx.z=nlnznlnn+nzln2πnnlnpz(n)=lnzlnn12n2n2lnpz(n)1nlnpz(n)12ln2πz+(nz)22(1z)pz(n)12πzexp((nz)22z). \begin{align*} p_z(n) &= \frac{z^n}{n!} e^{-z} \\ \ln p_z(n) &= n \ln z - \underbrace{\ln n!}_\text{apply Stirling approx.} - z \\ &= n \ln z - n \ln n + n - z - \ln \sqrt{2\pi n} \\ \frac{\partial}{\partial n} \ln p_z(n) &= \ln z - \ln n -\frac{1}{2n} \\ \frac{\partial^2}{\partial n^2} \ln p_z(n) &\approx -\frac 1n \\ \ln p_z(n) &\approx - \frac12 \ln \sqrt{2\pi z} + \frac{(n-z)^2}{2} \left(\frac{-1}{z}\right) \\ p_z(n) &\approx \frac{1}{\sqrt{2\pi z}} \exp\left(\frac{(n-z)^2}{2z}\right). \end{align*}