Translation operator
The translation operator is
T ^ x 0 = e − i x p p ^ / ℏ .
\begin{align*}
\hat T_{x_0} = e^{-i x_p \hat p / \hbar}.
\end{align*}
T ^ x 0 = e − i x p p ^ /ℏ . This means that the momentum operator is the generator
of position translation, just as the Hamiltonian operator is the generator of time evolution .
Let’s see how the translation operator affects the expectation of
position. Consider a position eigenstate ∣ x 1 ⟩ \ket{x_1} ∣ x 1 ⟩ and a state ∣ ϕ ⟩ = T ^ x 0 ∣ x 1 ⟩ \ket
\phi = \hat T_{x_0} \ket{x_1} ∣ ϕ ⟩ = T ^ x 0 ∣ x 1 ⟩ . First consider in p p p space.
⟨ p ∣ T x 0 ∣ x 1 ⟩ = ⟨ p ∣ e − i x 0 p / ℏ ∣ x 1 ⟩ = e − i x 0 p / ℏ ⟨ p ∣ x ⟩ = e − i x 0 p / ℏ e − i x 1 p / ℏ 1 2 π ℏ = 1 2 π ℏ e − i ( x 1 + x 0 ) p / ℏ = ⟨ p ∣ x 0 + x 1 ⟩ .
\begin{align*}
\braket{p|T_{x_0}|x_1} &= \braket{p|e^{-ix_0p/\hbar}|x_1} =
e^{-ix_0p/\hbar} \braket{p|x} \\
&= e^{-ix_0p/\hbar} e^{-ix_1p/\hbar} \frac{1}{\sqrt{2\pi\hbar}} \\
&= \frac{1}{\sqrt{2\pi\hbar}} e^{-i(x_1+x_0)} p /\hbar = \braket{p|x_0+x_1}.
\end{align*}
⟨ p ∣ T x 0 ∣ x 1 ⟩ = ⟨ p ∣ e − i x 0 p /ℏ ∣ x 1 ⟩ = e − i x 0 p /ℏ ⟨ p ∣ x ⟩ = e − i x 0 p /ℏ e − i x 1 p /ℏ 2 π ℏ 1 = 2 π ℏ 1 e − i ( x 1 + x 0 ) p /ℏ = ⟨ p ∣ x 0 + x 1 ⟩ . By the completeness of p p p eigenstates and by linearity, conclude
T ^ x 0 ∣ x 1 ⟩ = ∣ x 1 − x 0 ⟩ \hat T_{x_0} \ket{x_1} = \ket{x_1 - x_0} T ^ x 0 ∣ x 1 ⟩ = ∣ x 1 − x 0 ⟩ .
It follows that T x 0 T_{x_0} T x 0 translates an arbitary state ∣ ψ ⟩ \ket \psi ∣ ψ ⟩ .
ψ ( x ) = ⟨ x ∣ ψ ⟩ ⟨ x ∣ T x 0 ∣ ψ ⟩ = ⟨ x − x 0 ∣ ψ ⟩ = ψ ( x − x 0 ) .
\begin{align*}
\psi(x) &= \braket{x|\psi} \\
\braket{x|T_{x_0}|\psi} &= \braket{x-x_0|\psi} = \psi(x-x_0).
\end{align*}
ψ ( x ) ⟨ x ∣ T x 0 ∣ ψ ⟩ = ⟨ x ∣ ψ ⟩ = ⟨ x − x 0 ∣ ψ ⟩ = ψ ( x − x 0 ) . We can show that
[ T x 0 , T x 1 ] = 0 ⟹ T x 0 + x 1 = T x 0 T x 1 .
\begin{align*}
[T_{x_0},T_{x_1}] = 0 \quad\implies\quad T_{x_0+x_1} = T_{x_0} T_{x_1}.
\end{align*}
[ T x 0 , T x 1 ] = 0 ⟹ T x 0 + x 1 = T x 0 T x 1 . So translation forms a commutative group. Translation is also
obviously unitary so T x 0 † = T x 0 − 1 T_{x_0}\adj = T_{x_0}\inv T x 0 † = T x 0 − 1 .
A generalization of the translation operator is the displacement , which allows a complex x 0 x_0 x 0 .