Translation operator

The translation operator is

T^x0=eixpp^/. \begin{align*} \hat T_{x_0} = e^{-i x_p \hat p / \hbar}. \end{align*}

This means that the momentum operator is the generator of position translation, just as the Hamiltonian operator is the generator of time evolution.

Let’s see how the translation operator affects the expectation of position. Consider a position eigenstate x1\ket{x_1} and a state ϕ=T^x0x1\ket \phi = \hat T_{x_0} \ket{x_1}. First consider in pp space.

pTx0x1=peix0p/x1=eix0p/px=eix0p/eix1p/12π=12πei(x1+x0)p/=px0+x1. \begin{align*} \braket{p|T_{x_0}|x_1} &= \braket{p|e^{-ix_0p/\hbar}|x_1} = e^{-ix_0p/\hbar} \braket{p|x} \\ &= e^{-ix_0p/\hbar} e^{-ix_1p/\hbar} \frac{1}{\sqrt{2\pi\hbar}} \\ &= \frac{1}{\sqrt{2\pi\hbar}} e^{-i(x_1+x_0)} p /\hbar = \braket{p|x_0+x_1}. \end{align*}

By the completeness of pp eigenstates and by linearity, conclude T^x0x1=x1x0\hat T_{x_0} \ket{x_1} = \ket{x_1 - x_0}. It follows that Tx0T_{x_0} translates an arbitary state ψ\ket \psi.

ψ(x)=xψxTx0ψ=xx0ψ=ψ(xx0). \begin{align*} \psi(x) &= \braket{x|\psi} \\ \braket{x|T_{x_0}|\psi} &= \braket{x-x_0|\psi} = \psi(x-x_0). \end{align*}

We can show that

[Tx0,Tx1]=0    Tx0+x1=Tx0Tx1. \begin{align*} [T_{x_0},T_{x_1}] = 0 \quad\implies\quad T_{x_0+x_1} = T_{x_0} T_{x_1}. \end{align*}

So translation forms a commutative group. Translation is also obviously unitary so Tx0=Tx01T_{x_0}\adj = T_{x_0}\inv.

A generalization of the translation operator is the displacement, which allows a complex x0x_0.