|
Heisenberg dynamics
In Schrödinger’s formulation of time evolution we have a time evolution operator U(t,t0) that acts on a
state ∣ψ,t0⟩ to produce ∣ψ,t⟩. In Heisenberg’s
formulation, we absorb the time evolution into the observable operator
instead.
⟨ψ,t∣AS∣ψ,t⟩=⟨ψ∣U†(t)ASU(t)∣ψ⟩=⟨ψ∣AH(t)∣ψ⟩.Since time evolution U is unitary, this formulation is easy to work
with. Here are some nice properties that follow immediately.
CS=ASBS[AS,BC]=CS[HS(t1),HS(t2)]=0[AS,HS(t)]=0⟹CH=U†ASBSU=AHBH⟹[AH,BH]=U†[AS,BS]U=U†CSU=CH⟹HH(t)=HS(t)⟹AH(t)=ASTo derive the time evolution of a Heisenberg operator, start with
iℏ∂t∂U(t,t)iℏ∂t∂U†(t,t0)iℏdtdAH(t)=HS(t)U(t,t0)=−U†(t,t0)HS(t)=iℏ∂t∂(U†(t,t0)ASU(t,t0))=iℏ((∂tU†)ASU+U†(∂tAS)U+U†AS∂tU)=−U†HSASU+U†ASHSU+iℏU†(∂tAS)U=U†[AS,HS]U+iℏ(∂tAS)H(t)=[AH,HH]+iℏ(∂tAS)H(t)(1)(2)(from 1, 2)This is Heisenberg’s equation of motion.
|