Harmonic oscillator (QM)

The harmonic oscillator potential V(x)=12mω2x2=12Cx2V(x) = \frac12 m\omega^2 x^2 = \frac 12 Cx^2 appears everywhere in physics. We will solve for the wave functions ψ\psi that satisfy the Schrodinger equation for this potential.

Recall the solutions to a finite square well potential. Outside the well, ψ\psi decays exponentially like eαxe^{-\alpha x} where

α=2m(VE). \alpha = \frac{\sqrt{2m(V - E)}}{\hbar}.

In our harmonic oscillator, the potential VV is no longer constant, but instead a function of xx. If we consider the behavior of α\alpha with an xx-dependent potential at large xx, we see

α=2m(12Cx2E)mCx2constantx. \begin{align*} \alpha = \frac{\sqrt{2m(\frac12 C x^2-E)}}{\hbar} \to \frac{\sqrt{mCx^2}}{\hbar} \to \text{constant} \cdot x. \end{align*}

Thus for large xx, we expect

ψ(x)eαxeconstantx2, \psi(x) \sim e^{-\alpha x} \sim e^{-\text{constant} \cdot x^2},

so ψ\psi behaves like a Gaussian. We generally write Gaussians as ex2/2a2e^{-x^2/2a^2} where aa is a length scale.

From the time-independent Schrodinger equation, we get

22m2ψx212Cx2ψ   for large x. \begin{align*} -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \approx \frac12 Cx^2\psi ~~\text{ for large } x. \end{align*}

TO DO: Finish, from French 164

Operator method

We can avoid the Taylor series method above by doing some clever operator algebra. First notice that our Hamiltonian for the HO is

H^=ω(p^22mω+mω2x^2). \HH=\hbar\omega \left( \frac{\hat p^2}{2m\hbar\omega} + \frac{m\omega}{2\hbar}\hat x^2\right).

We will try to factor H^\HH. Classically a2+b2=(a+ib)(aib)a^2 + b^2 = (a+ib)(a-ib). Since we’re dealing with operators, this isn’t strictly true, but we will try it. Define p0=2mωp_0 = \sqrt{2m\hbar\omega} and x0=2/mωx_0 = \sqrt{2\hbar/m\omega}, and write

H^=ω[(p^/p0)2+(x^/x0)2] \begin{align*} \HH &= \hbar \omega [(\hat p/p_0)^2 + (\hat x/x_0)^2] \end{align*}

Then

(x^x0+ip^p0)(x^x0ip^p0)=(x^x0)2+(p^p0)2+ix0p0[x^,p^]. \begin{align*} \left(\frac{\xx}{x_0} + i\frac{\pp}{p_0}\right)\left(\frac{\xx}{x_0} - i\frac{\pp}{p_0}\right) &= \left(\frac{\xx}{x_0}\right)^2 + \left(\frac{\pp}{p_0}\right)^2 + \frac{i}{x_0p_0} [\xx,\pp]. \end{align*}

We know [x^,p^]=i[\xx,\pp] = i\hbar and 1x0p0=12\frac{1}{x_0p_0} = \frac{1}{2\hbar}. We define

a^:=x^x0+ip^p0,a^=x^x0ip^p0 \begin{align*} \aa := \frac{\xx}{x_0} + i\frac{\pp}{p_0}, \quad\quad \aa\adj = \frac{\xx}{x_0} -i\frac{\pp}{p_0} \end{align*}

Which lets us write the Hamiltonian as

H^=ω(a^a^+12)=ω(a^a^12). \begin{align*} \HH = \hbar \omega \left(\aa\adj\aa + \frac{1}{2}\right) = \hbar\omega \left(\aa\aa\adj - \frac{1}{2}\right). \end{align*}

We can calculate [a^,a^]=1[\aa,\aa\adj]=1, [H^,a^]=ωa^[\HH,\aa] = -\hbar\omega\aa, and [H^,a^]=ωa^[\HH,\aa\adj] = \hbar\omega\aa\adj (omitted).

Now consider what these operators do to an energy eigenstate. Let ψ=a^E\ket \psi = \aa \ket E.

H^ψ=H^a^E=([H^,a^]+a^H^)E=(ωa^+a^E)E=(Eω)a^E=(Eω)ψ. \begin{align*} \HH \ket \psi &= \HH \aa \ket E \\ &= ([\HH,\aa] + \aa\HH) \ket E \\ &= (-\hbar \omega \aa + \aa E)\ket E \\ &= (E - \hbar \omega) \aa \ket E \\ &= (E - \hbar \omega) \ket \psi. \end{align*}

We see that applying a^\aa lowers the energy by ω\hbar \omega. We can similarly show that a^\aa\adj raises the energy by the same amount. We can apply a^\aa any number of times we want, and it will lower the energy each time. As we know, the expected energy H^\braket \HH cannot be less than the minimum of the potential, so there must not be a state with negative energy.

Let 0\ket 0 be the lowest energy state. It must be that a^0=0\aa \ket 0 = 0. Applying a^\aa again will just result in 00 each time. The energy of 0\ket 0 is

H^0=ω(a^a^+12)0=12ω0. \begin{align*} \HH \ket0 = \hbar\omega \left(\aa\adj\aa + \frac12\right) \ket0 = \frac12 \hbar\omega\ket0. \end{align*}

So the ground state has eigenenergy ½ω0\half \hbar\omega_0. This is remarkable: even in a vacuum the harmonic oscillator has some finite energy.

We can find other eigenstates from this ground state using the a^\aa and a^\aa\adj operators we found. Consider what happens when a^\aa\adj is applied:

1~=a^0H^1~=H^a^0=([H^,a^]+a^H^)0=(ωa^+a^12ω0)0=32ωa^0=32ω1~. \begin{align*} \ket{\tilde 1} &= \aa\adj\ket0 \tag{the tilde means not normalized}\\ \HH\ket{\tilde 1} &= \HH \aa\adj \ket 0 \\ &= \left([\HH, \aa\adj] + \aa\adj\HH\right) \ket 0\\ &= \left(\hbar\omega\aa\adj + \aa\adj\frac12\hbar\omega_0\right) \ket0 \\ &= \frac32 \hbar\omega\aa\adj\ket0 \\ &= \frac32 \hbar\omega\ket{\tilde1}. \end{align*}

It follows from this that the energy of the nn-th eigenstate En=(n+½)ωE_n = (n + \half) \hbar\omega. a^\aa and a^\aa\adj act as “ladder operators” and move one step up/down the eigenstate “ladder”:

The ladder operators give us non-normalized eigenstates n~=(a^)n0~\ket{\tilde n} = \big(\aa\adj\big)^n \tilde 0. Assume we have some normalized eigenstate n\ket n. We wish to find the magnitude of n+1~|\ket{\widetilde{n+1}}|. We can write n+1~2=a^na^n=a^a^nn|\ket{\widetilde{n+1}}|^2 = \braket{\aa\adj n | \aa\adj n} = \braket{\aa\aa\adj n | n}. From the Hamiltonian, we know H^=ω(a^a^½)=(n+½)ω\HH = \hbar\omega(\aa\aa\adj - \half) = (n+\half)\hbar\omega, so we know that a^a^=n+1\aa\aa\adj = n+1. Thus we conclude that n+1~2=(n+1)n2|\ket{\widetilde{n+1}}|^2 = (n+1)|\ket{n}|^2.

By induction, assuming 0\ket 0 is normalized, the normalized nn-th eigenstate is

n=1n!(a^)n0. \begin{align*} \ket n = \frac{1}{\sqrt{n!}} \big(\aa\adj\big)^n \ket 0. \end{align*}

We have found the general eigenstates in terms of the ground state. Let’s now consider the actual spacial representation of 0\ket 0 , which we will call u0u_0.

a^=x^x0+ip^p0=mω2x^+i2mωp^a^u0(x)=(mω2x+i2mωix)u0(x)=00=(mωx+x)u0(x)u0(x)=(mωπ)1/4emωx2/2. \begin{align*} \aa &= \frac{\xx}{x_0} + i\frac{\pp}{p_0} = \sqrt{\frac{m\omega}{2\hbar}} \xx + \frac{i}{\sqrt{2\hbar m\omega}} \pp \\ \aa u_0(x) &= \left( \sqrt{\frac{m\omega}{2\hbar}} x + \frac{i}{\sqrt{2\hbar m\omega}} \frac{\hbar}{i} \frac{\partial}{\partial x} \right) u_0(x) = 0 \\ 0 &= \left( m\omega x + \hbar \frac{\partial}{\partial x} \right) u_0(x) \\ u_0(x) &= \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-m\omega x^2 / 2\hbar}. \end{align*}