Text Box: Contents

Home

Notes

Readings

Acknowledgements

 

 

 

Ver.

XMCD/PDF

Readings

1.

Introduction

3-10

 

 

 

1.

Time-Independent Hamiltonian

 

 

1 (Ch. 2); 2 (Ch. 1); 4 (p. 405)

 

2.

Two-Level System

 

XMCD / PDF

8 (Ch. 2)

 

 

Visualize a two state coherence

 

XMCD / PDF

 

 

3.

Appendix: Properties of Operators

 

 

 

2.

Basics of A Time-Dependent Hamiltonian

4-10

 

 

 

1.

Time-Evolution Operator

 

 

9; 4 (p. 1340)

 

2.

Adiabatic Approximation  

 

 

 

 

3.

Transitions Induced by Time-Dependent Potential

 

XMCD / PDF

6 (Ch. 14); 9 (Ch. 2); 4 (p. 308)

 

 

& Resonant Driving of a Two-Level System

 

XMCD / PDF

 

 

4.

Schrödinger and Heisenberg Representations

 

 

9 (Ch. 2); 8; 2 (Ch. 4); 4 (p. 312)

 

5.

Interaction Picture

 

 

8; 2 (Ch. 4)

 

6.

Time-Dependent Perturbation Theory

 

 

9; 4 (p. 1285), 2 (Ch. 4)

 

7.

First-Order Perturbation Theory and Fermi's Golden Rule

 

 

5 (Ch. 4), 9; 4 (p. 1299)

3.

Irreversible Relaxation

4-10

XMCD / PDF

6 (p. 510); 1  (Ch. 9); 4 (p. 1344)

4.

Interaction of Light and Matter

4-10

 

 

 

1.

Electric Dipole Hamiltonian and Absorption Spectrum

 

 

2 (Ch. 5); 4; 5; 6; 9

 

2.

Supplement: Review of Free Electromagnetic Field

 

 

11

 

3.

Absorption Cross-Section

 

 

2 (Ch. 5); 4; 5; 6; 9

 

4.

Spontaneous Emission

5-05

 

 

 

5.

Quantized Radiation Field

4-03

 

3 (Ch. 13)

5.

Time-Correlation Functions

5-10

 

 1 (Ch. 6); 5; 7 (Ch. 21); 12-16

 

1.

Time-Correlation Functions

 

XMCD / PDF

 

 

2.

Quantum Time-Correlation Functions

 

 

 

 

3.

Transition Rates from Correlation Functions

 

 

 

6.

Time-Domain Description of Spectroscopy

5-10

 

 

 

0.

Classical Description of Spectroscopy

2-08

 

 

 

1.

Absorption Lineshape from Time-Correlation Functions 

5-10

 

5; 2; 7 (Ch. 21); 1 (Sec. 6.2)

 

2.

Examples: Vibrational, Rotational, Raman

5-10

 

 

 

3.

Spectroscopy: Ensemble Averaging and Line Broadening

3-09

 

 

 

4.

Displaced Harmonic Oscillator Model: Electronic

3-09

XMCD / PDF

8; 2 (Ch. 10); 1 (Sec. 12.5).

 

5.

DHO Model: Coupling to Bath and Temperature

3-09

XMCD / PDF

 

 

6.

Semiclassical Approximation to the Dipole Correlation Function

6-11

 

22

7.

Fluctuations in Spectroscopy

5-10

 

 

 

1.

Fluctuations and Randomness

 

 

1 (Ch. 7)

 

2.

Fluctuations in Spectroscopy

 

 

 

 

3.

Gaussian-Stochastic Model for Spectral Diffusion

Appendix: Cumulant Expansion

 

XMCD / PDF

8; 5; 15; 1 (Sec. 7.4-7.5)

 

4.

Quantum Fluctuations: Energy Gap Hamiltonian

 

 

8 (Ch. 7 and 8)

 

5.

Correspondence of Harmonic Bath and Stochastic Eqns.

3-09

 

1 (Sec. 6.5,8,12.2,12.5)

 

6.

Brownian Oscillator Model

3-09

XMCD / PDF

8 (Ch. 8); 1 (Sec. 12.3)

8.

Linear Response Theory

3-09

 

12-16, 18

 

1.

Classical Linear Response Theory

 

 

5; 8

 

2.

Quantum Response Functions

 

 

8 (Ch. 5)

 

3.

Response Function and Energy Absorption

 

 

7

 

4.

Relaxation of Prepared State and Fluctuation-Dissipation

 

 

 

9.

Density Matrix

3-09

 

17; 8

10.

Quantum Relaxation RATES

3-09

 

 

 

1.

Vibrational Relaxation

 

 

19; 18; 2 (Ch. 11)

 

2.

Relaxation and Density Matrix; Redfield Equations

 

 

17, 1 (Ch. 10)

11.

Nonlinear Spectroscopy 

4-09 

 

8

 

See the Nonlinear and 2D Spectroscopy Web Site

 

 

 

 

1.

Introduction

 

 

 

 

2.

Nonlinear Polarization

 

 

 

 

3.

Diagrammatic Perturbation Theory

 

 

 

 

4.

Third-Order Nonlinear Spectroscopy

 

 

 

 

5.

Characterizing Fluctuations with Nonlinear Spectroscopy

5-07 

 

 

 

6.

Two-Dimensional Correlation Spectroscopy

6-09 

 

 

12.

aPPLICATIONS

 

 

 

 

1.

Förster Theory of Energy Transfer

3-08

 

 

 

2.

Marcus Theory of Electron Transfer

3-08

 

20; 2 (Ch. 10)

 

3.

Absorption Spectra of Molecular Aggregates

3-05

 

21

13.

Math and Physics Reference Material

5-10