Hydrogen atom

The Hydrogen atom is the simplest real case of a spherically symmetric potential. We examine the behavior of a single electron in Hydrogen to understand the more general behavior of a particle in a spherical potential. Starting with the Schrödinger equation in spherical coordinates:

22m[2r2+2rrL^22r2]ψ(r)+V(r)ψ(r)=Eψ(r). \begin{align*} -\frac{\hbar^2}{2m} \left[ \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{\LL^2}{\hbar^2r^2} \right] \psi(\rr) + V(r) \psi(\rr) = E\psi(\rr). \end{align*}

We assume that our wave function factorizes into a radial part and an angular part ψ(r,θ,ϕ)=R(r)Y(θ,ϕ).\psi(r,\theta,\phi) = R(r) Y(\theta,\phi). This is the same assumption as we make when considering angular momentum. With this assumption, our Schrödinger equation becomes (using the fact L^2Ylm=2l(l+1)\LL^2 Y_l^m = \hbar^2 l(l+1))

[22m(2r2+2rr)+2l(l+1)2mr2+V(r)Veff]R(r)=ER(r). \begin{align*} \biggl[ -\frac{\hbar^2}{2m} \left( \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} \right) + \underbrace{\frac{\hbar^2 l(l+1)}{2mr^2} + V(r)}_{V_\text{eff}} \biggr] R(r) = ER(r). \end{align*}

VeffV_\text{eff} is the effective potential, where the first term is called the centrifugal barrier, and accounts for the centrifugal force. For Hydrogen, V(r)V(r) is the Coulomb potential, which gives us

Veff=2l(l+1)2mr2Ze24πϵ0r. \begin{align*} V_\eff = \frac{\hbar^2 l(l+1)}{2mr^2} - \frac{Z e^2}{4\pi\epsilon_0 r}. \end{align*}

Where ZeZe is the charge of the nucleus (Z=1Z=1 for H).

We see that our radial wave function will depend on the radial quantum number ll as well as another quantum number which we will call nn. The magnetic quantum number mm does not appear. We can write the SE in a simpler form if we introduce u(r)=rR(r)u(r) = rR(r):

22m2ur2+Veff(r)u(r)=Eu(r). \begin{align*} -\frac{\hbar^2}{2m} \frac{\partial^2 u}{\partial r^2} + V_\text{eff}(r) u(r) = Eu(r). \end{align*}

We introduce two dimensionless variables

ρ=8mE2,λ=Ze24πϵ0m2E. \begin{align*} \rho = \sqrt{\frac{8m|E|}{\hbar^2}}, \quad \lambda = \frac{Ze^2}{4\pi\epsilon_0 \hbar} \sqrt{\frac{m}{2|E|}}. \end{align*}

Which we use to write the Schrödinger equation as

u+(λρ14l(l+1)ρ2)u=0. \begin{align*} u'' + \left(\frac{\lambda}{\rho} - \frac14 - \frac{l(l+1)}{\rho^2} \right) u = 0. \end{align*}

We consider the asymptotic behavior of uu. For small ρ\rho we have

 ⁣d2 ⁣dρ2u=14uu(ρ)eρ/2. \begin{align*} \frac{\d^2}{\d \rho^2} u &= \frac14 u \\ u(\rho) &\propto e^{-\rho/2}. \end{align*}

For small ρ\rho we have

 ⁣d2 ⁣dρ2u=l(l+1)ρ2uu(ρ)ρl+1 \begin{align*} \frac{\d^2}{\d \rho^2} u &= \frac{l(l+1)}{\rho^2} u \\ u(\rho) &\propto \rho^{l+1} \end{align*}

Incorporating the asymptotic behavior, we write u(ρ)=s(ρ)ρl+1eρ/2u(\rho) = s(\rho) \rho^{l+1} e^{-\rho/2}. We can perform a Taylor series expansion of the differential equation to solve for ss. We find that

s(ρ)=akρk    from SEak+1ak=k+l+1λ(k+1)(k+2(l+1)). \begin{align*} s(\rho) = \sum a_k \rho^k \quad \underset{\text{from SE}}{\implies} \quad \frac{a_{k+1}}{a_k} = \frac{k+l+1-\lambda}{(k+1)(k+2(l+1))}. \end{align*}

The series must terminate to match the asymptotic behavior: the numerator of the ratio must be zero for some kk, so λ=k+l+1\lambda = k + l + 1. Let nrn_r be the integer such that nr=λl1n_r = \lambda - l - 1 (here the series terminates when k=nrk = n_r). We define the principle quantum number

n:=nr+l+1=λ. \begin{align*} n := n_r + l + 1 = \lambda. \end{align*}

From the definition of λ\lambda above, we see that

n=Ze24πϵ0m2En=Zαmc22EnEn=12mc2(Zαn)2=E1n2. \begin{align*} n &= \frac{Ze^2}{4\pi\epsilon_0\hbar} \sqrt{\frac{m}{2|E_n|}} \\ &= Z\alpha \sqrt{\frac{mc^2}{2|E_n|}} \\ E_n &= -\frac12 mc^2 \left(\frac{Z\alpha}{n}\right)^2 = \frac{E_1}{n^2}. \end{align*}

Where α\alpha is the fine structures constant. This is the same energy equation we get from the Bohr model! There are a few things to note about this result:

  1. The principle quantum number n=nr+l+1n = n_r + l + 1 is the sum of the radial and angular quantum numbers. Since all are non-negative, nl+1n \ge l + 1.

  2. From R(r)R(r) and Y(θ,ϕ)Y(\theta, \phi) we have a full spacial representation of the electron, which is more general than a classical (Bohr) orbit.

  3. This formula is not relativistic. The mc2mc^2 appears because of the fine structure constant α\alpha.

Back to the actual wavefunction: s(ρ)s(\rho) is the associated (generalized) Laguerre polynomial:

snl(ρ)=Lnl12l+1(ρ)Lnα(ρ)=m=0n(n+αnm)(ρ)mm! \begin{align*} s_{nl}(\rho) &= \mathcal L_{n-l-1}^{2l+1}(\rho) \\ \mathcal L_n^\alpha (\rho) &= \sum_{m=0}^n {{n+\alpha} \choose {n-m}} \frac{(-\rho)^m}{m!} \end{align*}

Putting everything together, we get the wave function

ψnlm(r,θ,ϕ)=Rnl(r)Ylm(θ,ϕ)=unl(r)rYlm(θ,ϕ)unl(ρ)=snl(ρ)ρl+1eρ/2. \begin{align*} \psi_{nlm}(r,\theta,\phi) &= R_{nl}(r) Y_l^m (\theta,\phi) = \frac{u_{nl}(r)}{r} Y_l^m(\theta,\phi) \\ u_{nl}(\rho) &= s_{nl}(\rho) \rho^{l+1} e^{-\rho/2}. \end{align*}

Degeneracy

For some nn, we know l[0,n1]l \in [0, n-1]. Similarly, for some ll, m[l,l]m \in [-l, l], so there are 2l+12l+1 states for each ll. Since nn fully determines the energy NlN_l, for each energy eigenvalue we have

1l=0+3l=1++2(n1)+1l=n1=n2 \begin{align*} \underset{l=0}{1} + \underset{l=1}{3} + \cdots + \underbrace{2(n-1)+ 1}_{l=n-1} = n^2 \end{align*}

linearly independent eigenvectors (degeneracies). There are also two spin states each, although these don’t have a spacial representation. The figure below shows the first few Hydrogen states and their degeneracies, including the orbital names.

The names correspond to the principle quantum number and the orbital quantum number

"sharp" | S | $l=0$ ||
"principle" | P | $l=1$ ||
"diffuse" | D | $l=2$ ||
| F | $l=3$ || 
| G | $l=4$

Wave functions

The first few Hydrogen wave functions are given below

ψ100=2a03/2er/a0Y00(θ,ϕ)ψ200=2(2a0)3/2(1r2a0)er/2a0Y00(θ,ϕ)(ψ211ψ210ψ211)=13(2a0)3/2ra0er/2a0(Y11(θ,ϕ)Y10(θ,ϕ)Y11(θ,ϕ)). \begin{align*} \psi_{100} &= \frac{2}{a_0^{3/2}} e^{-r/a_0} Y_0^0(\theta,\phi) \\ \psi_{200} &= \frac{2}{(2a_0)^{3/2}} \left(1-\frac{r}{2a_0} \right) e^{-r/2a_0} Y_0^0(\theta,\phi) \\ \mat{\psi_{211} \\ \psi_{210} \\ \psi_{21-1}} &= \frac{1}{\sqrt3 (2a_0)^{3/2}} \frac{r}{a_0} e^{-r/2a_0} \mat{Y_1^1(\theta,\phi) \\ Y_1^0(\theta,\phi) \\ Y_1^{-1}(\theta,\phi)}. \end{align*}

u(r)u(r) and the probability amplitude r2u(r)2r^2|u(r)|^2 are plotted for these first few states below. Notice that the number of nodes in the radial wave function equals nrn_r, the radial quantum mumber.