Spin ½

We saw that with angular momentum we got ll eigenstates that were either integers or ½-integers. Integer ll leads to orbital angular momentum, while l=½l=½ leads to spin.

Instead of L^2\LL^2 and L^z\LL_z as the simultaneous operators, we will write S2S^2 and SzS_z, with simultaneous eigenstates s=½,m=±½\ket{s=\half, m=\pm \half}.

S2s,m=2s(s+1)s,m=342s,mSzs,m=ms,m=±12s,m. \begin{align*} S^2\ket{s,m} &= \hbar^2 s(s+1) \ket{s,m} = \frac34 \hbar^2 \ket{s,m} \\ S_z\ket{s,m} &= m\hbar \ket{s,m} = \pm \frac12 \ket{s,m}. \end{align*}

We also write these eigenstates as vectors,

s=½,m=+½=:+z=(10)s=½,m=½=:z=(01). \begin{align*} \ket{s=\half,m=+\half} &=: \ket{+}_z = \vectwo{1}{0} \\ \ket{s=\half,m=-\half} &=: \ket{-}_z = \vectwo{0}{1}. \end{align*}

A spin state is a superposition of these two eigenvectors

ψ=c1+z+c2z=(c1c2). \begin{align*} \ket{\psi} = c_1 \ket{+}_z + c_2 \ket{-}_z = \vectwo{c_1}{c_2}. \end{align*}

Using this vector notation, we can represent SzS_z as a matrix. We require Sz(10)=2(10)S_z \vectwo{1}{0} = \frac\hbar2 \vectwo10 and Sz(01)=2(01)S_z \vectwo01 = -\frac\hbar2 \vectwo01, which gives us

Sz=2(1001)=:2σz \begin{align*} S_z &= \frac\hbar2 \mat{1 & 0 \\ 0 & -1} =: \frac\hbar2 \sigma_z \end{align*}

where σz\sigma_z is the zz Pauli matrix. The other pauli matrices σx\sigma_x and σy\sigma_y can be derived from the commutation relations between the operators (given here).

σx=(0110),σy=(0ii0),σz=(1001)Si=σi for i=x,y,z. \begin{align*} \sigma_x &= \mat{0 & 1 \\ 1 & 0}, \quad \sigma_y = \mat{0 & -i \\ i & 0}, \quad \sigma_z = \mat{1 & 0 \\ 0 & -1} \\ S_i &= \sigma_i \text{ for } i = x,y,z. \end{align*}

This also gives us the spin states in the perpendicular directions

±x=12(+z±z)±y=12(+z±iz). \begin{align*} \ket\pm_x &= \frac{1}{\sqrt{2}} \big(\ket+_z \pm \ket-_z\big) \\ \ket\pm_y &= \frac{1}{\sqrt{2}} \big(\ket+_z \pm i\ket-_z\big). \end{align*}

What about spin in some arbitrary direction? We can write

Sn=nS=nxSx+nySy+nzSz=2nσσ=(σxσyσz) is a vector of matrices (weird!)Sn=2(nznxinynx+inynz)=2(cosθsinθeiϕsinθeiϕcosθ). \begin{align*} S_n &= \vec n \cdot \vec S = n_x S_x + n_y S_y + n_z S_z = \frac\hbar2 \vec n \cdot \vec \sigma \\ \vec\sigma &= \mat{\sigma_x \\ \sigma_y \\ \sigma_z} \text{ is a vector of matrices (weird!)} \\ S_n &= \frac\hbar2 \mat{ n_z & n_x - in_y \\ n_x + in_y & -n_z } = \frac\hbar2 \mat{ \cos\theta & \sin\theta e^{-i\phi} \\ \sin\theta e^{i\phi} & -\cos\theta }. \end{align*}

We require that the eigenstates of SnS_n be

Sn(c1c2)=!2(c1c2)+n=(cosπ2eiϕsinθ2)n=(sinθ2eiϕcosθ2). \begin{align*} S_n \mat{c_1 \\ c_2} &\overset!= \frac\hbar2 \mat{c_1 \\ c_2} \\ \ket{+}_n &= \mat{\cos \frac\pi2 \\ e^{i\phi} \sin\frac{\theta}{2}} \\ \ket{-}_n &= \mat{\sin\frac\theta2 \\ -e^{i\phi} \cos\frac\theta2}. \end{align*}

Spin in a magnetic field

Consider a QQ charged particle with mass mm in a circular loop of radius RR. The current around the loop can be written as

I=chargetime=Q2πR/v=Qm12πR2mRv=Q2mLA. \begin{align*} I = \frac{\text{charge}}{\text{time}} = \frac{Q}{2\pi R/v} = \frac{Q}{m} \frac{1}{2\pi R^2} mRv = \frac{Q}{2m} \frac{L}{A}. \end{align*}

The magnetic moment is given by

μ=IAc=Q2mcL. \begin{align*} \vec\mu = \frac{I\vec A}{c} = \frac{Q}{2mc} \vec L. \end{align*}

For an electron, Q=eQ=-e. We define the Bohr magneton μB=e2mc\mu_B = \frac{e\hbar}{2mc}. We can then write the electron spin magnetic dipole moment as

μe=geμBS. \begin{align*} \vec \mu_{e} &= -g_e \mu_B \frac{\vec S}{\hbar}. \end{align*}

Now consider the energy of an electron in a magnetic field. We get a torque of a μ\vec \mu and B\vec B are not aligned, and the energy is minimized when they are aligned. We can write the Hamiltonian as

H^=μB. \begin{align*} \HH = -\vec \mu \cdot \vec B. \end{align*}

For an electron,

H^=geμbSB=geμBBzωLSz when B=Bzz. \begin{align*} \HH = g_e \frac{\mu_b}{\hbar} \vec S \cdot \vec B = \underbrace{g_e \frac{\mu_B}{\hbar} B_z}_{\omega_L} S_z \text{ when } \vec B = B_z \vec z. \end{align*}

In this case, since the Hamiltonian is proportional to the zz spin, energy eigentsates are proportional to zz spin eigenstates.

H^±z=H^½,±½z=±ωL2±z. \begin{align*} \HH \ket{\pm}_z = \HH \ket{\half, \pm \half}_z = \pm \omega_L \frac{\hbar}{2} \ket{\pm}_z. \end{align*}

We see that ±z\ket\pm_z are stationary states. Consider instead the time evolution of a perpendicular spin +x\ket+_x.

ψ(t=0)=+x=12(+z+z)ψ(t)=12(+zeiωLt/2+zeiωLt/2)=eiωLt/22(+z+zeiωLt)ψ(ωLt=π/2)=eiπ/42(+z+iz)=eiπ/4+yψ(ωLt=π)=i2(+zz)=ixψ(ωLt=3π/2)=ei3π/42(+ziz)=ei3π/4zψ(ωLt=2π)=12(+z+z)=+x. \begin{align*} \ket{\psi(t=0)} &= \ket+_x = \frac{1}{\sqrt2} \big( \ket+_z + \ket-_z \big) \\ \ket{\psi(t)} &= \frac{1}{\sqrt2} \left( \ket+_z e^{i\omega_L t/2} + \ket-_z e^{-i\omega_L t/2} \right) \\ &= \frac{e^{-i\omega_L t/2}}{\sqrt2} \left( \ket+_z + \ket-_z e^{i\omega_L t} \right) \\ \ket{\psi(\omega_L t=\pi/2)} &= \frac{e^{-i\pi/4}}{\sqrt 2}\left(\ket+_z + i\ket-_z\right) = e^{-i\pi/4} \ket+_y \\ \ket{\psi(\omega_L t=\pi)} &= \frac{-i}{\sqrt{2}} \left(\ket+_z - \ket-_z\right) = -i\ket-_x \\ \ket{\psi(\omega_L t = 3\pi/2)} &= \frac{e^{-i3\pi/4}}{\sqrt2} \left(\ket+_z - i\ket-_z\right) = e^{-i3\pi/4}\ket-_z \\ \ket{\psi(\omega_L t=2\pi)} &= \frac{-1}{\sqrt2} \left(\ket+_z + \ket-_z\right) = -\ket+_x. \end{align*}

We see that a spin misaligned with the external magnetic field processes around the B\vec B axis. Intuitively, we know that a misaligned dipole experiences a torque which aligns it with the external field. But being aligned with the external field is a lower energy state, and if there’s no way for the dipole to dissipate energy (as is the case here for an electron), the dipole can’t align itself.

In fact, consider the energy of an electron with spin perpendicular to the magnetic field +x=12(+z+z)\ket+_x = \frac{1}{\sqrt2} (\ket+_z + \ket-_z). The possible energy measurements are ±2\pm \frac\hbar2 with equal probability, so the expected energy E=0\braket E = 0. This is the case for any direction perpendicular to B\vec B, so energy is conserved during the dipole’s procession.