Angular momentum (QM)

Consider a spherical potential in 3D. We see that the Schrödinger equation in 3D is in terms of the Laplacian. In spherical coordinates it takes the form

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ(2ϕ2)=2r2+2rr+1r2(2θ2+cotθθ+1sin2θ2ϕ2). \begin{align*} \nabla^2 &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}\left(\sin\theta \frac{\partial}{\partial \theta}\right) + \frac{1}{r^2 \sin^2\theta} \left(\frac{\partial^2}{\partial \phi^2}\right) \\ &= \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2}{\partial \theta^2} + \cot\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right). \end{align*}

We define an operator L^\LL which will be associated with angular momentum

L^2=2(2θ2+cotθθ+1sin2θ2ϕ2)2=2r2+2rrL^22r2. \begin{align*} \LL^2 &= -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right) \\ \nabla^2 &= \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{\LL^2}{\hbar^2r^2}. \end{align*}

This gives us the Schrödinger equation

22m[2r2+2rrL^22r2]ψ(r)+V(r)ψ(r)=Eψ(r). -\frac{\hbar^2}{2m} \left[ \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} - \frac{\LL^2}{\hbar^2r^2} \right] \psi(\rr) + V(r) \psi(\rr) = E\psi(\rr).

Since we assume the potential is spherical, we guess that there exists a separable solution ψ(r,θ,ϕ)=R(r)Y(θ,ϕ)\psi(r,\theta,\phi) = R(r) Y(\theta,\phi). This gives us

[22m(r2+2rr)+V(r)]R(r)Y(θ,ϕ)+L22mr2R(r)Y(θ,ϕ)=ER(r)Y(θ,ϕ) \begin{align*} \left[ -\frac{\hbar^2}{2m} \left(\frac{\partial}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + V(r)\right] R(r)Y(\theta,\phi) + \frac{L^2}{2mr^2}R(r)Y(\theta,\phi) = ER(r)Y(\theta,\phi) \end{align*}

Divide by R(r)Y(θ,ϕ)R(r)Y(\theta,\phi), we see that since the two terms depend on different variables, they can only equal a constnat EE if they are both constants.

1R(r)[22m(r2+2rr)+V(r)]R(r)+ ⁣constant ⁣2mr2=E. \begin{align*} \frac{1}{R(r)} \left[-\frac{\hbar^2}{2m}\left(\frac{\partial}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + V(r)\right] R(r) + \frac{\constant}{2mr^2} = E. \end{align*} L^22mr2Y(θ,ϕ)= ⁣constant ⁣2mr2Y(θ,ϕ)=:EL(r)Y(θ,ϕ)L^2Y(θ,ϕ)=2mr2EL(r)Y(θ,ϕ). \begin{align*} \frac{\LL^2}{2mr^2}Y(\theta,\phi) &= \frac{\constant}{2mr^2}Y(\theta,\phi) =: E_L(r) Y(\theta,\phi) \\ \LL^2 Y(\theta,\phi) &= 2mr^2E_L(r)Y(\theta,\phi). \end{align*}

We see YY is an eigenvector of L^2\LL^2 and 2mr2EL(r)2mr^2E_L(r) is its eigenvalue.

The angular momentum operator L^=x^×p^\LL = \xx \times \pp (TODO: proof). The components are L^x=ypzzpy\LL_x = yp_z - zp_y, etc.

Before we continue, consider the commutators of the relevant operators.

[L^x,L^y]=[ypzzpy,zpxxpz]=y[pz,z]px+x[z,py]py=iypx+ixpy=i(xpyypx)=iL^z[L^y,L^z]=iL^x[L^z,L^x]=iL^y. \begin{align*} [\LL_x,\LL_y] &= [yp_z-zp_y,zp_x-xp_z] = y[p_z,z]p_x + x[z,p_y]p_y \\ &= \frac{\hbar}{i}yp_x + i\hbar xp_y=i\hbar(xp_y-yp_x) \\ &= i\hbar \LL_z \\ [\LL_y,\LL_z] &= i\hbar \LL_x \\ [\LL_z,\LL_x] &= i\hbar \LL_y. \end{align*}

We see that two angular momentum components commute only if the third is zero, so it may seem like we can measure two components exactly (i.e. that L^x,L^y\LL_x,\LL_y have some simultaneous eigenstates). However, in order for that to be possible all components need to commute, and for any two to commute the third must be zero. We see that exactly measuring any two components is only possible if all three are zero.

[L^z,L^2]=[L^z,L^x2]+[L^z,L^y2]=L^x[L^z,L^x]+[L^z,L^x]L^x+L^y[L^z,L^y]+[L^z,L^y]L^y=iL^xL^y+iL^yL^xiL^yL^xiL^xL^y=0. \begin{align*} [\LL_z,\LL^2] &= [\LL_z,\LL_x^2] + [\LL_z,\LL_y^2] = \LL_x[\LL_z,\LL_x] + [\LL_z,\LL_x]\LL_x + \LL_y[\LL_z,\LL_y] + [\LL_z,\LL_y]\LL_y \\ &= i\hbar \LL_x\LL_y + i\hbar \LL_y\LL_x - i\hbar\LL_y\LL_x - i\hbar\LL_x\LL_y = 0. \end{align*}

We can, however, have simultaneous eigenstates of L^2\LL^2 and L^z\LL_z. We denote an eigenstate l,m\ket{l,m} such that

L^zl,m=ml,mL^2l,m=2l(l+1)l,m. \begin{align*} \LL_z\ket{l,m} &= m\hbar\ket{l,m} \\ \LL^2\ket{l,m} &= \hbar^2l(l+1)\ket{l,m}. \end{align*}

Here mm is called the azimuth or magnetic quantum number, and ll is called the quantum number of total momentum. By convention we consider L^z\LL_z instead of one of the other components.

We define raising and lowering operators L^±=L^x±iL^y\LL_\pm = \LL_x\pm i\LL_y. Since they are Hermitian, L^+=L^\LL_+\adj = \LL_- and vice-versa. The commutator relationships are

[L^2,L^±]=0[L^±,L^z]=L^±. \begin{align*} [\LL^2,\LL_\pm] &= 0 \\ [\LL_\pm,\LL_z] &= \mp \hbar \LL_\pm. \end{align*}

What does L^±\LL_\pm do to l,m\ket{l,m}?

[L^2,L^±]=0    L^±l,m has L^2 eigenvalue lL^z(L^+l,m)=(L^+L^z+L^+)l,m=L^+(m+1)l,mL^+l,ml,m+1similarly L^l,ml,m1. \begin{align*} [\LL^2,\LL_\pm] &= 0 \implies \LL_\pm\ket{l,m} \text{ has } \LL^2 \text{ eigenvalue } l \\ \LL_z ( \LL_+ \ket{l,m} ) &= (\LL_+\LL_z + \hbar \LL_+)\ket{l,m} \\ &= \LL_+(m+1)\hbar \ket{l,m} \\ \LL_+\ket{l,m} &\propto \ket{l,m+1} \\ \text{similarly } \LL_-\ket{l,m} &\propto \ket{l,m-1}. \end{align*}

Now define l,m+1~:=L^+l,m\ket{l,\widetilde{m+1} } := \LL_+\ket{l,m} and consider the norm

l,m+1~2=l,m+1~l,m+1~=L^+(l,m)L^+(l,m)=l,mL^+L^+l,m=l,mL^L^+l,mL^L^+=(L^xiL^y)(L^x+iL^y)=L^x2L^y2+i(L^xL^yL^yL^x)=L^x2+L^y2L^z=L^2L^z2L^zl,mL^L^+l,m=[l(l+1)m(m+1)]2 \begin{align*} |\ket{l,\widetilde{m+1} }|^2 &= \braket{l,\widetilde{m+1}|l,\widetilde{m+1} } = \braket{\LL_+(l,m) | \LL_+(l,m)} \\ &= \braket{l,m|\LL_+\adj \LL_+ | l,m} = \braket{l,m|\LL_-\LL_+|l,m} \\ \LL_-\LL_+ &= (\LL_x-i\LL_y)(\LL_x+i\LL_y) \\ &= \LL_x^2 \LL_y^2 + i(\LL_x\LL_y - \LL_y\LL_x) \\ &= \LL_x^2 + \LL_y^2 - \hbar\LL_z \tag{from the commutator} \\ &= \LL^2 - \LL_z^2 - \hbar\LL_z \\ \braket{l,m | \LL_-\LL_+ | l,m} &= \big[l(l+1) - m(m+1)\big] \hbar^2 \end{align*}

Since l,mL^L^+l,m\braket{l,m | \LL_-\LL_+ | l,m} is a squared magnitude, [l(l+1)m(m+1)]20\big[l(l+1) - m(m+1)\big] \hbar^2 \ge 0. This means mlm \le l. We can do the same for L^\LL_- to find mlm \ge -l. This is an important conclusion:

lml. \begin{align*} -l \le m \le l. \end{align*}

Since L^+\LL_+ transforms a l-l eigenstate to an ll eigenstate in integer steps, ll must be an integer or a ½-integer. We will see that integer eigenstates correspond to orbital angular momentum, while ½ eigenstates correspond to spin.

Spherical harmonics

We call Ylm(θ,ϕ)Y_l^m(\theta,\phi) the spacial wavefunction for l,m\ket{l,m}. From the properties of the operators we showed above, we see

L^zYlm(θ,ϕ)=mYlm(θ,ϕ)=i ⁣d ⁣dϕYlm(θ,ϕ)Ylm(θ,ϕ)=eimϕPlm(θ)L^+Yll(θ,ϕ)=0=eiϕ( ⁣d ⁣dϕ+icotθ ⁣d ⁣dϕ)eilϕPll(θ)=( ⁣d ⁣dθlcotθ)ei(l+1)ϕPll(θ)Pll(θ)=CllsinlθYll(θ,ϕ)=Cllsinlθeilϕ. \begin{align*} \LL_z Y_l^m(\theta,\phi) &= m\hbar Y_l^m(\theta,\phi) = \frac{\hbar}{i}\frac{\d}{\d\phi} Y_l^m(\theta,\phi) \\ Y_l^m(\theta,\phi) &= e^{im\phi} P_{lm}(\theta) \\ \LL_+Y_l^l(\theta,\phi) &= 0 \\ &= \hbar e^{i\phi} \left(\frac{\d}{\d\phi} + i\cot\theta\frac{\d}{\d\phi}\right) e^{il\phi} P_l^l(\theta) \\ &= \left(\frac{\d}{\d\theta} - l\cot\theta\right) e^{i(l+1)\phi} P_l^l(\theta) \\ P_l^l(\theta) &= C_l^l \sin^l\theta \\ Y_l^l(\theta,\phi) &= C_l^l \sin^l\theta e^{il\phi}. \end{align*}

Since we have YllY_l^l we can reach any other YlmY_l^m by using the raising and lowering operators we found above. The family of functions YlmY_l^m are called the spherical harmonics.

Some rules of thumb for spherical harmonics:

  1. The ϕ\phi dependence is always eimϕe^{im\phi}.

  2. The θ\theta dependence is a polynomial of cos\cos and sin\sin of degree ll.

Geometric interpretation

l,lL^2l,l=2l(l+1)l,lL^z2l,l=2l2. \begin{align*} \braket{l,l|\LL^2|l,l} &= \hbar^2l(l+1) \\ \braket{l,l|\LL_z^2|l,l} &= \hbar^2 l^2. \end{align*}

We see that L^2>L^z2\LL^2 > \LL_z^2 even in the maximum mm state, which tells us that angular momentum can never be fully lined up in one axis. Meanwhile, we see that

L^x2=14l,l(L^+L^)2l,l=14l,lL^+2L^+L^L^L^++L^2l,l=12l,lL^2L^z2l,l=12(2l(l+1)2l2)L^x2=L^y2=l22 for l,l. \begin{align*} \braket{\LL_x^2} &= \frac14 \braket{l,l|(\LL_+-\LL_-)^2|l,l} = \frac14 \braket{l,l | \LL_+^2 - \LL_+\LL_- - \LL_-\LL_+ + \LL_-^2 | l,l} \\ &= \frac12 \braket{l,l | \LL^2 - \LL_z^2 | l,l} = \frac12 \big(\hbar^2 l(l+1) - \hbar^2 l^2\big) \\ \braket{\LL_x^2} = \braket{\LL_y^2} &= \frac l2 \hbar^2 \text{ for } \ket{l,l}. \end{align*}

This makes sense by the uncertainty principle.

Electron angular magnetic dipole moment

The magnetic dipole moment of an electron resulting from its angular momentum can be written as

μe=glμBL \begin{align*} \vec\mu_e = -g_l \mu_B \frac{\vec L}{\hbar} \end{align*}

where gl=1g_l = 1. A similar formula can be used to find the spin dipole moment of an electron.