libbot_rrtstar_double_integrator.cpp

RRT* with a double integrator on the plane using the libbot interface for visualization. This file provides the code for running the RRT* algorithm for a double integrator model in two dimensions. This model involves a system with differential constraints with a 4-dimensional state space and under-actuation.

// Standard header files
#include<iostream>
using namespace std;


// SMP HEADER FILES ------
#include <smp/components/extenders/double_integrator.hpp>
#include <smp/components/samplers/uniform.hpp>
#include <smp/components/collision_checkers/standard.hpp>
#include <smp/components/distance_evaluators/kdtree.hpp>
#include <smp/components/multipurpose/minimum_time_reachability.hpp>

#include <smp/planners/rrtstar.hpp>

#include <smp/planner_utils/trajectory.hpp>

#include <smp/interfaces/libbot.hpp>


// SMP TYPE DEFINITIONS -------
using namespace smp;

// State, input, vertex_data, and edge_data definitions
typedef state_double_integrator<2> state_t;
typedef input_double_integrator<2> input_t;
typedef minimum_time_reachability_vertex_data vertex_data_t;
typedef minimum_time_reachability_edge_data edge_data_t;

// Create the typeparams structure
typedef struct _typeparams {
  typedef state_t state;
  typedef input_t input;
  typedef vertex_data_t vertex_data;
  typedef edge_data_t edge_data;
} typeparams; 

// Define the trajectory type
typedef trajectory<typeparams> trajectory_t;

// Define all planner component types
typedef sampler_uniform<typeparams,4> sampler_t;
typedef distance_evaluator_kdtree<typeparams,4> distance_evaluator_t;
typedef extender_double_integrator<typeparams,2> extender_t;
typedef collision_checker_standard<typeparams,4> collision_checker_t;
typedef minimum_time_reachability<typeparams,4> min_time_reachability_t;

// Define all algorithm types
typedef rrtstar<typeparams>  rrtstar_t;

// Define interface types
typedef interface_libbot<typeparams> interface_t;
typedef interface_libbot_environment environment_t;




int
main () {






  // 1. CREATE PLANNING OBJECTS
  
  // 1.a Create the components
  sampler_t sampler;
  distance_evaluator_t distance_evaluator;
  extender_t extender;
  collision_checker_t collision_checker;
  min_time_reachability_t min_time_reachability;

  // 1.b Create the planner algorithm -- Note that the min_time_reachability variable acts both
  //                                       as a model checker and a cost evaluator.
  rrtstar_t planner (sampler, distance_evaluator, extender, collision_checker, 
                     min_time_reachability, min_time_reachability);

  planner.parameters.set_phase (2);   // The phase parameter can be used to run the algorithm as an RRT, 
                                      // See the documentation of the RRT* algorithm for more information.

  planner.parameters.set_gamma (25.0);    // Set this parameter should be set at least to the side length of
                                          //   the (bounded) state space. E.g., if the state space is a box
                                          //   with side length L, then this parameter should be set to at 
                                          //   least L for rapid and efficient convergence in trajectory space.
  planner.parameters.set_dimension (4);       // Double integrator state space is four dimensional.
  planner.parameters.set_max_radius (20.0);   // This variable is basically set to a high engouh value. 

  // 1.c Create the visualization interface
  interface_t interface;






  // 2. INITALIZE PLANNING OBJECTS

  // 2.a Initialize the sampler
  region<4> sampler_support;
  for (int i = 0; i < 2; i++) {
    sampler_support.center[i] = 0.0;
    sampler_support.size[i] = 20.0;
  }
  for (int i = 2; i < 4; i++) {
    sampler_support.center[i] = 0.0;
    sampler_support.size[i] = 2.0;
  }
  sampler.set_support (sampler_support);

  
  // 2.b Initialize the distance evaluator
  //     Nothing to initialize. One could change the kdtree weights.


  // 2.c Initialize the extender

 
  // 2.d Initialize the collision checker
  region<4> obstacle_new;
  for (int i = 0; i < 2; i++) {
    obstacle_new.center[i] = 5.0;
    obstacle_new.size[i] = 5.0;
  }
  for (int i = 2; i < 4; i++) {
    obstacle_new.center[i] = 0.0;
    obstacle_new.size[i] = 20.0;
  }
  collision_checker.add_obstacle (obstacle_new);
  

  // 2.e Initialize the model checker
  region<4> region_goal;
  for (int i = 0; i < 2; i++) {
    region_goal.center[i] = 8.0;
    region_goal.size[i] = 2.0;
  }
  for (int i = 2; i < 4; i++) {
    region_goal.center[i] = 0.0;
    region_goal.size[i] = 20.0;
  }
  min_time_reachability.set_goal_region (region_goal);


  // 2.f Initialize the planner
  state_t *state_initial = new state_t;
  for (int i = 0; i < 4; i++) {
    state_initial->state_vars[i] = 0.0;
  }
  planner.initialize (state_initial);

  
  // 2.g Initialize the libbot interface.
  interface.set_planner (&planner);
  interface.visualize_2d();





  


  // 3. PUBLISH THE ENVIRONMENT AS A MESAGE THROUGH THE INTERFACE
  environment_t environment;
  region<3> goal;
  goal.center[0] = 8.0;
  goal.center[1] = 8.0;
  goal.center[2] = 0.5;
  goal.size[0] = 2.0;
  goal.size[1] = 2.0;
  goal.size[2] = 1.0;
  environment.set_goal_region (goal);
  
  region<3> operating;
  operating.center[0] = 0.0;
  operating.center[1] = 0.0;
  operating.center[2] = 5.0;
  operating.size[0] = 20.0;
  operating.size[1] = 20.0;
  operating.size[2] = 10.0;
  environment.set_operating_region (operating);
  
  region<3> obstacle;
  obstacle.center[0] = 5.0;
  obstacle.center[1] = 5.0;
  obstacle.center[2] = 1.0;
  obstacle.size[0] = 5.0;
  obstacle.size[1] = 5.0;
  obstacle.size[2] = 2.0;
  environment.add_obstacle (obstacle);
  
  interface.publish_environment (environment);


  




  // 4. RUN THE PLANNER 
  for (int i = 0; i < 1000; i++){

    planner.iteration ();
    
    if (i%10 == 0){
      cout << "Iteration : " << i << endl;
      interface.publish_data ();
    }
  }

  
  
  

  // 5. PUBLISH THE RESULTS THROUGH THE LIBBOT INTERFACE
  interface.publish_data ();
  trajectory_t trajectory_final;
  min_time_reachability.get_solution (trajectory_final);
  interface.publish_trajectory (trajectory_final);



  return 1;
  
}