
MIT 6.S890 — Topics in Multiagent Learning Tue, Oct 3th 2024
Lecture 9
Foundations of extensive-form games
Instructor: Prof. Gabriele Farina ( gfarina@mit.edu)
Imperfect-information extensive-form games¹ model tree-form strategic interactions in which not all
actions might be observed by all players. They represent an ample majority of strategic interactions
encountered in the real world, ranging from recreational games such as poker, to negotiation, and
auctions.
1 Game trees and information sets
The standard representation of an imperfect-information extensive-form game is through its game
tree, which formalizes the interaction of the players as a directed tree. In the game tree, each non-
terminal node belongs to exactly one player, who acts at the node by picking one of the outgoing
edges (each labeled with an action name). Imperfect information is captured in this representation
by partitioning the nodes of each player into sets (called information sets) of nodes that are
indistinguishable to that player given his or her observations.
Example 1.1. As a running example, we will illustrate the representation by analyzing the game
tree of a simplified two-player variant of poker (perhaps the archetype of imperfect-information
extensive-form games), known as Kuhn poker [Kuh50]. As noted by Kuhn himself, even the
previous small game already captures central aspects of deceptive behavior such as bluffing and
underbidding.
A B C
P Q R S T U
D E F
JKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJK QKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQK QJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJ KJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJ KQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ JQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQ
chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet
chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchk betbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall chkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkchkbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbetbet foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall
foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall foldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfoldfold callcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcallcall
−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2
−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 +2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2+2 −1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1−1 −2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2−2
The rules of Kuhn poker In the game tree of Kuhn poker, the root history of the tree (the first
move in the game) belongs to the nature player 𝑐. It models a dealer that privately deals one card
to each player from a shuffled deck containing cards {Jack, Queen, King}. The actions of the nature
player correspond to the six possible assignments of two cards from the deck, which are annotated
on the edges; for example, the leftmost edge JK corresponds to the case in which Player 1 is dealt
a Jack and Player 2 is dealt a King. Since the deck is shuffled, each of the six actions are selected
with probability 1/6 by the nature player. No matter the action selected by the dealer, the game
transitions to a history of Player 1, which marks the beginning of what in poker is called a “betting
round”. First, Player 1 decides to either check (continue without betting any money) or bet $1. Then,
• If Player 1 checks, Player 2 can either check, or bet $1.
If Player 2 checks, the game terminates with a showdown: the player with the higher card
receives from the other player whatever amount the other player bet, plus an ante amount
of $1.
If, instead, Player 2 bets the additional $1, then Player 1 can either fold his hand or call,
that is, raise his bet by $1.
– If Player 1 folds, he has to give Player 2 only the $1 ante;
– if Player 1 calls, a showdown with the same dynamics as before.
• If Player 1 bets the $1, Player 2 can either fold her hand or call.
If Player 2 folds her hand, Player 2 gives Player 1 the $1 ante.
If, instead, Player 2 calls the bet, she increases her bet by $1 and a showdown occurs,
with the same dynamics as before.
1.1 Histories, actions, and payoffs
The game tree represents the strategic interaction of players as a finite directed tree. The nodes of
the game tree are called histories. Each history that is not a leaf of the game tree is associated with
a unique acting player. In an 𝑛-player game, the set of valid players is the set [𝑛] ∪ {𝑐} = {1, ..., 𝑛, 𝑐},
where 𝑐 denotes the chance (or nature) player—a fictitious player that selects actions according to
a known fixed probability distribution and models exogenous stochasticity of the environment (for
example, a roll of the dice, or drawing a card from a deck). The player is free to pick any one of the
actions available at the history, which correspond to the outgoing edges at the histories. The players
keep acting until a leaf of the game tree—called a terminal history—is reached. Terminal histories
are not associated with any acting player; the set of terminal histories is denoted 𝑍. When the game
transitions to a terminal node 𝑧 ∈ 𝑍, each player 𝑖 ∈ [𝑛] receives a payoff according to the payoff
function 𝑢𝑖 : 𝑍 → ℝ.
1.2 Imperfect information and information sets
To model imperfect information, the histories of each player 𝑖 ∈ [𝑛] are partitioned into a collection
𝑖 of so-called information sets. Each information set 𝐼 ∈ ℐ𝑖 groups together histories that Player i
cannot distinguish between when he or she acts there. In the limit case in which all information sets
are singleton, the player never has any uncertainty about which history they are acting at, and the
game is said to have perfect information. Since a player always knows what actions are available at
a decision node, any two histories ℎ, ℎ belonging to the same information set 𝐼 must have the same
set of available actions. Correspondingly, we can write AI to denote the set of actions available at
any node that belongs to information set 𝐼.
Example 1.2. In Kuhn poker, each player observes their own private card and the actions
of the opponent, but not the opponent’s private card. The twelve information sets, six for
Player 1 denoted A through F, and six for Player 2 denoted P through U, reflect this partial
information. For example, Player 1s histories following actions QK and QJ of the nature player
(the dealer) are part of the same information set B, in that Player 1 cannot distinguish between
the two histories, having observed only their private Queen card. As another example, Player
2s information set P captures the uncertainty the player has on the underlying history after
having observed a private King card, and a check from Player 1.
Example 1.3. To illustrate how information sets capture private information, in this example
we speculate on how different rules for Kuhn poker would translate into different information
set structures.
First variation
Player 1 is informed
of the private card of
Player 2 by the dealer.
JKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJK QKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQK QJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJ KJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJ KQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ JQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQ
Second variation
Player 2 does not get
to observe her private
card.
JKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJK QKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQK QJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJ KJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJ KQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ JQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQ
Third variation
Player 1 is allowed to
look at his private card
only if he decides to
check.
JKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJK QKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQK QJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJ KJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJKJ KQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQKQ JQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQJQ
1.3 Perfect recall
A standard assumption in extensive-form games is that no player forgets about their actions, and
about information once acquired. Without this assumption, called perfect recall, solving extensive-
form games can be intractable. The perfect recall condition can be formalized as follows.
Definition 1.1 (Perfect recall). A player 𝑖 ∈ [𝑛] is said to have perfect recall if, for any information
set 𝐼 ∈ ℐ𝑖, for any two histories ℎ, ℎ ∈ 𝐼 the sequence of Player 𝑖‘s actions encountered along
the path from the root to and from the root to must coincide (or otherwise Player 𝑖 would
be able to distinguish among the histories, since the player remembers all of the actions they
played in the past). The game is perfect recall if all players have perfect recall.
2 The player’s perspective: Tree-form decision processes
The game tree representation introduced above provides a description of the global dynamics of the
game, without taking the side of any player in particular. But what is the strategy space from the
point of view of one decision maker (player) in the game? In a normal-form game, the strategy space
of a player is a set of probability distributions over the set of actions available to that player. In an
extensive-form game, the strategy space of a player is a tree-form decision process (TFDP).
Example 2.1 (Player 1s decision process in Kuhn poker). As an example, consider Player 1 in
Kuhn poker Example 1.1. From the player’s point of view, playing the game could be summarized
as follows:
• As soon as the game starts, the player observes a private card that has been dealt to them;
the set of possible signals is {Jack, Queen, King}.
• No matter the card observed, the player now needs to select one action from the set
{check, bet}.
If the player bets, the player does not have a chance to act further
Otherwise, if the player checks, the player will then observe whether the opponent
checks (at which point the interaction terminates) or bets. In the latter case, a new
decision needs to be made, between folding the hand, or calling the bet. In either case,
after the action has been selected, the interaction terminates.
By arranging the structure of decisions and observations along a tree as follows, we obtain the
tree-form decision process for Player 1.
Figure 2: Tree-form decision process faced by Player 1 in the game of Kuhn poker.
The tree-form decision process lays out the player’s opportunities to act. Unlike the game tree, in
which each node belongs to one of many players, the tree-form decision process is a directed tree
made of only two types of nodes: decision nodes, at which the player must act by picking an action
from a set of legal actions, and observation nodes, at which the player does not act but rather
observes a signal drawn from a set of possible signals. Furthermore, the information structure of
the player, previously defined indirectly through information sets, is captured directly in the TFDP
representation.
2.1 Extracting a tree-form decision process from the game tree
In some cases, like in Figure 2, it is straightforward to compile the tree-form decision process faced
by a player starting from our intuitive understanding of the game. In this subsection we discuss how
the TFDP for the player can be constructed programmatically starting from the game tree when
such an understanding is missing. We assume that an 𝑛-player imperfect-information extensive-form
game with perfect recall and a player 𝑖 ∈ [𝑛] of interest, have been fixed.
The set of decision nodes 𝒥𝑖 of the player’s TFDP coincides with the set of his or her information
sets, that is, 𝒥𝑖 = ℐ𝑖. This is consistent with the fact that the player cannot condition their behavior
on anything other than their information set, given that they cannot distinguish between histories
in the same information set. Furthermore, the set of actions available at any decision node 𝑗 = 𝐼 ∈
𝑖 coincides with the set of actions 𝐴𝐼 available at any history in information set 𝐼.
Example 2.2. Consider Kuhn poker from the point of view of Player 1 (Figure 2).
• The trace of any history in A is the sequence (A).
• The trace of any history in E is the sequence (B, check, E).
From the point of view of Player 2, the trace of any history in R is the sequence (R).
Example 2.3. Consider the following small game tree.
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
Taking the side of Player 1, the trace of the only history in B is the sequence (A, 1, B), the trace
of any history in D is (A, 2, D), and the trace of the only history in A is (A). Taking the side of
Player 2, the trace of the only history in P is (P), and the trace of the only history in Q is (Q).
Traces implicitly encode a notion of partial chronological ordering between information sets, of
which the player has recall—see Definition 1.1. Hence, for the TFDP of Player 𝑖 to be an accurate
representation of the decision process the player faces while playing the game, it is necessary that
traces of the information sets are the same in the game tree and in the TFDP. In other words,
we require that decision points in the TFDP be structured so as to satisfy that the trace of any
information set 𝐼 matches the sequence of information sets and actions encountered from the root
of the TFDP to decision node 𝐼.
Definition 2.1 (Tree-form decision process). Fix the game tree of an 𝑛-player imperfect infor-
mation game, and a player 𝑖 ∈ [𝑛]. A tree-form decision process (TFDP) for Player 𝑖 is a directed
rooted tree made of decision, observation, and terminal nodes, satisfying the following properties.
• The set of decision nodes 𝒥𝑖 of the TFDP is equal to the set 𝑖 of information sets.
• The set of actions available at each decision node 𝑗 = 𝐼 ∈ ℐ𝑖 (i.e., the set of outgoing edges
from the decision node) is equal to the set of actions 𝐴𝐼 available at any history ℎ ∈ 𝐼 in
the game tree.
• Given any decision node 𝑗 = 𝐼 ∈ ℐ𝑖, the sequence of decision nodes and actions encountered
from the root of the TFDP to 𝑗 is equal to the trace of any history ℎ ∈ 𝐼.
As a remark, Definition 2.1 leaves the labeling and structure of observation nodes unspecified. In fact,
a player might have multiple TFDPs that satisfy the definition, and differ in how the observation
nodes are placed. We illustrate this in the next example.
Example 2.4. The following are both valid TFDPs capturing Player 1s decision process when
playing Kuhn poker (Figure 2).
Example 2.5. A valid TFDP representing the decision process of Player 1 in the small game of
Example 2.3 is shown below.
2.2 Some notation
Decision and observation nodes, transition function:
• We denote the set of decision nodes in the TFDP as 𝒥 , and the set of observation nodes as 𝒦.
At each decision node 𝑗 ∈ 𝒥 , the player selects an action from the set 𝐴𝑗 of available actions.
At each observation node 𝑘 ∈ 𝒦, the player observes a signal 𝑠 from the environment out of a
set of possible signals 𝑆𝑘.
• We denote 𝜌 the transition function of the process. Picking action 𝑎 ∈ 𝐴𝑗 at decision node 𝑗 ∈
𝒥 results in the process transitioning to 𝜌(𝑗, 𝑎) ∈ 𝒥 ∪ 𝒦 ∪ {⊥}, where denotes the end of the
decision process. Similarly, the process transitions to 𝜌(𝑘, 𝑠) ∈ 𝒥 ∪ 𝒦 ∪ {⊥} after the player
observes signal 𝑠 ∈ 𝑆𝑘 at observation node 𝑘 ∈ 𝒦.
Sequences:
• A pair (𝑗, 𝑎) where 𝑗 ∈ 𝒥 and 𝑎 ∈ 𝐴𝑗 is called a non-empty sequence. The set of all non-
empty sequences is denoted as Σ ≔ {(𝑗, 𝑎) : 𝑗 ∈ 𝒥, 𝑎 ∈ 𝐴𝑗}. For notational convenience, we
will often denote an element (𝑗, 𝑎) in Σ as 𝑗𝑎 without using parentheses, especially when used
as a subscript.
• The symbol denotes a special sequence called the empty sequence. The set of all sequences,
including the empty one, is denoted Σ.
• Given a decision node 𝑗 ∈ 𝒥, we denote by 𝑝𝑗 its parent sequence, defined as the last sequence
(that is, decision point-action pair) encountered on the path from the root of the decision
process to 𝑗. If the player does not act before 𝑗 (that is, 𝑗 is the root of the process or only
observation nodes are encountered on the path from the root to 𝑗), we let 𝑝𝑗 = ⌀.
• Given a sequence 𝜎 ∈ Σ, we denote with 𝐶𝜎 the set of decision nodes j whose parent sequence
is 𝜎: 𝐶𝜎 ≔ {𝑗 ∈ 𝒥 : 𝑝𝑗 = 𝜎}.
3 Strategy representations in extensive-form games
3.1 Strategic form: Extensive-form games as normal-form games
What does it mean to have a mixed strategy for an extensive-form game? One classical answer is
the following. Consider a player, and imagine enumerating all their deterministic strategies for the
tree. A mixed strategy is then a probability distribution over these deterministic strategies.
Example 3.1. In the small game of Example 2.3, a mixed strategy for Player 1 is a probability
distribution over the following 7 strategies 𝜋1, ..., 𝜋7.
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋1 ( 1 2 3 4 5 6 7 8 9
1 0 1 0 1 0 0 0 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋2 ( 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋3 ( 1 2 3 4 5 6 7 8 9
1 0 0 1 1 0 0 0 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋4 ( 1 2 3 4 5 6 7 8 9
1 0 0 1 0 1 0 0 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋5 ( 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 1 0 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋6 ( 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 1 0 )
A
P Q
B C D
1 2
3 4 5 6 7 98 7 98
𝜋7 ( 1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 0 1 )
These strategies are called the reduced² normal-form plans of the player.
By considering the normal-form game in which each player’s strategy space is the set of all deter-
ministic strategies in the tree, we have converted the extensive-form game into its normal-form
equivalent.
Cons. Of course, the most glaring issue with this representation is that the number of strategies in
the normal-form game is exponential in the size of the game tree. For this reason, it was long believed
that operating with this normal-form representation was computationally infeasible. Historically,
this led to the development of specialized algorithms for extensive-form games, such as CFR and its
variants. This belief was actually unfounded. In fact, it is possible to simulate the OMWU dynamics
in the normal-form equivalent of an extensive-form game exactly in polynomial time. We will talk
more about this in the future.
Pros. By virtue of this conversion, the machinery and concepts of normal-form games can be
applied to extensive-form games, such as Nash equilibria, correlated equilibria, and so on.
3.2 Behavioral form
A different conceptualization of a strategy for a player is as a choice of (independent) distributions
over the set of actions 𝐴𝑗 at each decision node 𝑗 ∈ 𝒥. This is called a behavioral strategy. We can
represent it accordingly as a vector 𝑥 ∈ ℝΣ
≥0 indexed over sequences. Each entry 𝑥𝑗𝑎 assigns to action
𝑎 at decision node 𝑗 the probability of picking that action at that decision node. The set of all
possible behavioral strategies is clearly convex, as it is the Cartesian product of probability simplexes
—one per each decision node.
Cons. However, this representation has a major drawback: the probability of reaching a particular
terminal state in the decision process is the product of all actions on the path from the root to the
terminal state. This makes many expressions of interest that depend on the probability of reaching
terminal states (including crucially the expected utility in the game) non-convex.
Example 3.2. Consider the game of Kuhn poker, and let 𝑥, 𝑦 be behavioral strategies for both
players. The expected utility function for Player 1 is given by
𝑢1(𝑥, 𝑦) ≔ (−1) ⋅ 𝑥A,chk ⋅ 𝑦P,chk + (−1) ⋅ 𝑥A,chk ⋅ 𝑦P,bet ⋅ 𝑥D,fold + (−2) ⋅ 𝑥A,chk ⋅ 𝑦P,bet ⋅ 𝑥D,call + ⋯.
This is not a convex function of 𝑥, as it contains products of entries of 𝑥.
Pros. One might wonder whether behavioral strategies have the same representational power as
normal-form strategies. After all, a normal-form strategy is an object in a much larger space, so it
is conceivable that “more might be possible” in the strategic form. A positive answer equating the
powers of normal-form and behavioral strategies is given by Kuhn’s theorem, which requires that
the game is perfect recall.
Theorem 3.1 (Kuhn’s theorem). In a perfect recall extensive-form game, any distribution over
terminal nodes that can be induced via normal-form strategies can be induced via behavioral
strategies, and vice versa.
3.3 Sequence form
The sequence-form representation [KMv96; Rom62; von96] soundly resolves the issue of non-
convexity. Like behavioral strategies, in the sequence-form representation a strategy is a vector 𝑥 ∈
Σ
≥0 whose entries are indexed by Σ. However, the generic entry 𝑥𝑗𝑎 contains the product of the
probabilities of all actions at all decision nodes on the path from the root of the process to action
𝑎 at decision node 𝑗. In order to be a valid sequence-form strategy, the entries in 𝑥 must therefore
satisfy the following probability-flow-conservation constraints:
Definition 3.1. The polytope of sequence-form strategies of a TFDP is the convex polytope
𝒬 ≔
{{{
{{
𝑥 ∈ ℝΣ
≥0 : 𝑥 = 1,
𝑎∈𝐴𝑗
𝑥𝑗𝑎 = 𝑥𝑝𝑗 ∀𝑗 ∈ 𝒥
}}}
}}
.
Conversely, it is easy to see that any 𝑥 that satisfies the above constraints is the sequence-form
representation of at least one behavioral strategy.
Example 3.3. Consider the tree-form decision process faced by Player 1 in the small game of
Example 2.3. The decision process has four decision nodes 𝒥 = {A, B, C, D} and nine sequences
including the empty sequence . For decision node D, the parent sequence is 𝑝D = A2; for B
and C it is 𝑝B = 𝑝C = A1; for A it is the empty sequence 𝑝A = ⌀. The constraints that define
the sequence-form polytope Definition 3.1, besides nonnegativity, are
{
{
{
{
{
{
{ 𝑥 = 1
𝑥A1 + 𝑥A2 = 𝑥
𝑥B3 + 𝑥B4 = 𝑥A1
𝑥C5 + 𝑥C6 = 𝑥A1
𝑥D7 + 𝑥D8 + 𝑥D9 = 𝑥A2
Pros. This representation of extensive-form games is convex. Hence, we can use all the convex
optimization tools we have seen so far.
Bibliography
[Kuh50] H. W. Kuhn, “A Simplified Two-Person Poker,” Contributions to the Theory of Games,
vol. 1. in Annals of Mathematics Studies, 24, vol. 1. Princeton University Press, Princeton,
New Jersey, pp. 97–103, 1950.
[Rom62] I. Romanovskii, “Reduction of a Game with Complete Memory to a Matrix Game,” Soviet
Mathematics, vol. 3, 1962.
[KMv96] D. Koller, N. Megiddo, and B. von Stengel, “Efficient Computation of Equilibria for
Extensive Two-Person Games,” Games and Economic Behavior, vol. 14, no. 2, 1996.
[von96] B. von Stengel, “Efficient Computation of Behavior Strategies,” Games and Economic
Behavior, vol. 14, no. 2, pp. 220–246, 1996.
These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any
reports of typos.
¹The term extensive-form is a standard term in the game theory literature, meaning tree-form.
²The term “reduced” refers to the fact that no actions are specified for parts of the games not reached due to
decisions of the player in higher parts of the game tree.

Content

PDF File

Typo or question?

Get in touch!
gfarina AT mit.edu

Metadata

Course: MIT 6.S890
Term: Fall 2024
Date: 2024-10-03