Process

A thermodynamic process is a change in the state of the system. Different types of thermodynamic processes have different properties, such as constant temperature, zero heat, constant pressure, etc.

Adiabatic process

An adiabatic process has zero heat transfer ΔQ=0\Delta Q = 0. For such a process,  ⁣dU=p ⁣dV\d U = -p \d V. From the adiabatic equation we know pVγ=constantpV^\gamma = \text{constant}.

The work done is

ΔW=p ⁣dV=V0V1p0V0γVγ ⁣dV=p0V0γ11γ[V1γ]V0V1=p0V0γ1[V11γV01γ]=NkBTγ1[(V0V1)γ11],{<0if V0<V1,>0if V0>V1. \begin{align*} \Delta W &= \int -p \d V = \int_{V_0}^{V_1} \frac{p_0 V_0^\gamma}{V^\gamma} \d V \\ &= -p_0 V_0^\gamma \frac{1}{1-\gamma} \left[V^{1-\gamma}\right]_{V_0}^{V_1} \\ &= \frac{p_0V_0}{\gamma - 1}\left[ V_1^{1-\gamma} - V_0^{1-\gamma} \right] \\ &= \frac{N k_B T}{\gamma - 1} \left[ \left( \frac{V_0}{V_1} \right)^{\gamma - 1} - 1 \right], \quad\begin{cases} <0 & \text{if } V_0 < V_1, \\ >0 & \text{if } V_0 > V_1. \end{cases} \end{align*}

The adiabat pVγ=constantpV^\gamma = \text{constant} is steeper than the isotherm pV=constantpV = \text{constant} since γ>1\gamma > 1. Graphically, this means that the adiabatic work done is greater than the isothermal work, since the area in phase space is larger.

Isochoric/isometric process

For an isochoric process, ΔV=0\Delta V = 0, so ΔW=0\Delta W = 0 and  ⁣dUV= ⁣dˉQV\d U|_V = \db Q|_V. In this case

 ⁣dˉQ ⁣dT= ⁣dU ⁣dT=CVΔU=CV(T,V) ⁣dT. \begin{align*} \frac{\db Q}{\d T} &= \frac{\d U}{\d T} = C_V \\ \Delta U &= \int C_V(T,V) \d T. \end{align*}

For an ideal gas, the heat capacity CV=f2NkBC_V = \frac f2 N k_B. We conclude

ΔU=f2NkB(T1T0). \Delta U = \frac f2 N k_B (T_1 - T_0).

Isobaric process

For an isobaric process, Δp=0\Delta p = 0.