Adiabatic equation

For an adiabatic process,  ⁣dˉQ=0\db Q = 0 so  ⁣dU=p ⁣dV\d U = -p \d V.

For an ideal gas (PV=NkBTPV = N k_B T), the energy U=f2NkBTU = \frac f2 N k_B T where ff is the number of active degrees of freedom. Thus  ⁣dU=f2NkB ⁣dT\d U = \frac f2 N k_B \d T.

We differentiate the ideal gas law to find

NkB ⁣dT=p ⁣dV+V ⁣dpp ⁣dV=f2(V ⁣dP+p ⁣dV)0=(f2+1)p ⁣dV+f2V ⁣dp \begin{align*} N k_B \d T &= p \d V + V \d p \\ -p \d V &= \frac f2 \big(V \d P + p \d V\big)\\ 0 &= \left(\frac f2 + 1 \right) p\d V + \frac f2 V \d p \end{align*}

Now define γ=1+2f\gamma = 1 + \frac 2f. Since we are considering an ideal gas, γ=Cp/Cv\gamma = C_p / C_v is the heat capacity ratio. This gives us

γp ⁣dV+V ⁣dp=0. \gamma p \d V + V \d p = 0.

The solution is

 ⁣d(pVγ)=0pVγ=constant. \begin{align*} \d (pV^\gamma ) &= 0 \\ pV^\gamma &= \text{constant}. \end{align*}

This is the adiabatic equation. It only holds for adiabatic processes.