Complex gain

The complex gain GG of a system represents how strongly it responds to inputs and with what phase shift.

G(ω)=complexified system responsecomplexified system input. G(\omega) = \frac{\text{complexified system response}}{\text{complexified system input}}.

The gain g(ω)=G(ω)g(\omega) = \lvert G(\omega) \rvert and phase lag ϕ=argG(ω)\phi = - \arg G(\omega).

In the case of a linear ODE with characteristic polynomial p(λ)p(\lambda) driven by an exponential driving force, we can apply the exponential response formula to find the gain.

P(D)x=Q(D)eiωtx=Q(iω)P(iω)eiωtG(ω)=Q(iω)P(iω),P(iω)0. \begin{align*} P(D) x &= Q(D)e^{i\omega t} \\ x &= \frac{Q(i\omega)}{P(i\omega)} e^{i\omega t} \\ G(\omega) &= \frac{Q(i\omega)}{P(i\omega)}, \quad P(i\omega) \ne 0. \end{align*}