Exponential response formula

The exponential response formula lets us find a particular solution to a linear inhomogeneous differential equation.

Let p(r)p(r) be the characteristic polynomial, such that the ODE is p(D)x=Aektp(D)x = Ae^{kt} where kk is real or complex. Here D=ddtD=\frac{d}{dt} is the differential operator.

Note that p(D)eθx=p(θ)eθxp(D) e^{\theta x} = p(\theta) e^{\theta x} since for each derivative another θ\theta term appears (expand the polynomial and distribute if this isn’t clear). We can then write:

Ap(D)ekt=Ap(k)ektp(D)(Aektp(k))=AektAektp(k)=x. \begin{align*} Ap(D)e^{kt} &= Ap(k)e^{kt} \\ p(D)\left( \frac{Ae^{kt}}{p(k)} \right) &= Ae^{kt} \\ \frac{Ae^{kt}}{p(k)} &= x. \end{align*}

This is a solution if p(k)0p(k) \ne 0.

Generalized ERF

If pp is a polynomial and kk is a real such that p(k0)=p(k0)==p(m1)(k0)=0p(k_0)=p'(k_0)=\cdots= p^{(m-1)}(k_0)=0, then p(D)(tmek0t)=p(m)(k0)ek0tp(D)(t^m e^{k_0t}) = p^{(m)}(k_0) e^{k_0t}.

Proof

We want to solve p(D)y=ek0tp(D) y = e^{k_0t} for yy. We know that p(D)ek0t=p(r)ek0tp(D) e^{k_0t} = p(r) e^{k_0t}, but since p(k0)=0p(k_0)=0 we cannot divide by it. Instead we will consider what happens near k0k_0. We substitute kk for k0k_0 and differentiate with respect to kk.

p(D)ekt=p(k)ektkp(D)ekt=kP(k)ekt. \begin{align*} p(D) e^{kt} &= p(k) e^{kt} \\ \frac{\partial}{\partial k} p(D) e^{kt} &= \frac{\partial}{\partial k} P(k) e^{kt}. \end{align*}

Since D=ddtD=\frac{d}{dt} and pp is a polynomial (i.e. it is well behaved), by linearity we can say kp(D)=p(D)k\frac{\partial}{\partial k} p(D) = p(D) \frac{\partial}{\partial k}.

p(D)kekt=p(k)ekt+p(k)tekt. \begin{align*} p(D) \frac{\partial}{\partial k} e^{kt} = p'(k) e^{kt} + p(k) t e^{kt}. \end{align*}

k0k_0 is a root of pp with multiplicity mm. In other words, p(k0)=p(k0)==p(m1)(k0)=0p(k_0)=p'(k_0)=\cdots= p^{(m-1)}(k_0)=0. We differentiate the equation above mm times and evaluate at k=k0k=k_0 to find:

p(D)(tmekt)=(p(m)(k)+p(m1)(k)t++tmp(k))ektp(D)(tmekt)=p(m)(k0)ek0t. \begin{align*} p(D) (t^m e^{kt}) &= (p^{(m)}(k) + p^{(m-1)}(k) t + \cdots + t^m p(k)) e^{kt} \\ p(D) (t^m e^{kt}) &= p^{(m)}(k_0) e^{k_0t}. \end{align*}