Driven oscillator

A driven oscillator has some forcing (external force dependent only on tt) applied.

x¨+Γx˙+ω02x=f0cos(ωdt).\ddot x + \Gamma \dot x + \omega_0^2 x = f_0 \cos(\omega_d t).

Here the force has amplitude f0f_0 and driving frequency ωd\omega_d.

We solve this by guessing x=Re[z]x=\mathrm{Re}[z] where z=Aei(ωdtδ)z=Ae^{i (\omega_d t - \delta)}. We also rewrite the forcing term as f0cos(ωdt)=Re[f0eiωdt]f_0 \cos(\omega_d t) = \mathrm{Re}\left[ f_0 e^{i \omega_d t} \right].

(ωd2+iωdΓ+ω02)Aei(ωdtδ)=f0eiωdt(ωd2+iωdΓ+ω02)A=f0eiδ. \begin{align*} \left( -\omega_d^2 + i \omega_d \Gamma + \omega_0^2 \right) A e^{i (\omega_d t - \delta)} &= f_0 e^{i \omega_d t} \\ \left( -\omega_d^2 + i \omega_d \Gamma + \omega_0^2 \right) A &= f_0 e^{i \delta}. \end{align*}

Let us take the real and imaginary parts of the equation.

Re:(ωd2+ω02)A=f0cosδIm:ωdΓA=f0sinδ. \begin{align*} \mathrm{Re}: &&\left(-\omega_d^2 + \omega_0^2\right) A &= f_0 \cos \delta \\ \mathrm{Im}: && \omega_d \Gamma A &= f_0 \sin \delta. \end{align*}

We solve for δ\delta by dividing ImRe\frac{\mathrm{Im} }{\mathrm{Re} }.

tanδ=ωdΓω02ωd2.\tan \delta = \frac{\omega_d \Gamma}{\omega_0^2 - \omega_d^2}.

We solve for AA by squaring and adding Im2+Re2\mathrm{Im}^2 + \mathrm{Re}^2.

A=f0(ω02ωd2)2+ωd2Γ2.A = \frac{f_0}{\sqrt{ \left( \omega_0^2 - \omega_d^2 \right)^2 + \omega_d^2 \Gamma^2} }.

Substituting these values we find a solution to our differential equation.

x(t)=Acos(ωdtδ). x(t) = A \cos(\omega_d t - \delta).

Notice however that there are no free parameters. We expect the general solution to have two free parameters defined by the initial conditions, and indeed, this is not the general solution. What we have is called the “steady-state” solution, or the inhomogenous part of the general solution.

We find the general solution is a superposition of the “transient” (homogenous) solution and the “steady-state” solution.

x(t)=BeΓt/2cos(ωtϕ)+Acos(ωdtδ). x(t) = B e^{-\Gamma t/2}\cos(\omega t - \phi) + A \cos(\omega_d t - \delta).

Where ω=ω02Γ2/4\omega = \sqrt{\omega_0^2 - \Gamma^2/4}.

The transient solution just represents a underdamped undriven oscillator while the steady-state solution represents the body moving at the same frequency as the driving force, with some phase shift.