Damped oscillator

A damped oscillator has some velocity-dependent friction force F=Γx˙F = -\Gamma \dot x. In general, its equation of motion is:

x¨+Γx˙+ω02x=0.\ddot x + \Gamma \dot x + \omega_0^2 x = 0.

We solve this by guessing x=Re[z]x=\mathrm{Re}[z] where z=Aeiαtz = A e^{i \alpha t}.

Then

(α2+iαΓ+ω02)Aeiαt=0α2iαΓω02=0. \begin{align*} (-\alpha^2 + i \alpha \Gamma + \omega_0^2) A e^{i \alpha t} &= 0 \\ \alpha^2 - i \alpha \Gamma - \omega_0^2 &= 0. \end{align*}

Then solve for α\alpha using the quadratic formula.

α=iΓ2±Γ24+ω02.\alpha = \frac{i \Gamma}{2} \pm \sqrt{-\frac{\Gamma^2}{4} + \omega_0^2}.

Define ω=Γ24+ω02\omega = -\frac{\Gamma^2}{4} + \omega_0^2. Then the solution for zz is:

z(t)=AeΓ2te±iωt.z(t) = Ae^{-\frac{\Gamma}{2} t} e^{\pm i \omega t}.

The solution for xx will depend on the specific damping regime.

Damping regimes

There are three damping regimes depending on the sign of ω\omega. In other words, if the roots of α\alpha are real or complex.

Underdamped

When ω02>Γ2/4\omega_0^2 > \Gamma^2/4, the oscillations are stronger than the damping. In this case the discriminant is positive and α\alpha has real roots. An underdamped oscillator may oscillate for some time before damping out.

The solution for an underdamped oscillator is:

x(t)=Re[z(t)]=eΓ2t(Acos(ωt)+Bsin(ωt)). x(t) = \mathrm{Re}[z(t)] = e^{-\frac{\Gamma}{2} t} (A \cos(\omega t) + B \sin(\omega t)).

Or alternatively:

x(t)=AeΓ2tcos(ωt+ϕ). x(t) = A e^{-\frac{\Gamma}{2} t} \cos(\omega t + \phi).

Overdamped

When ω02<Γ2/4\omega_0^2 < \Gamma^2/4, the damping is stronger than the oscillations. In this case the discriminant is negative and α\alpha has complex roots.

We rewrite α=i(Γ2±Γ24ω02)\alpha = i\left(\frac{\Gamma}{2} \pm \sqrt{\frac{\Gamma^2}{4} - \omega_0^2}\right). Define Γ±=Γ2±Γ24ω02\Gamma_\pm = \frac{\Gamma}{2} \pm \sqrt{\frac{\Gamma^2}{4} - \omega_0^2}.

Then our solution is:

x(t)=Re[AeiiΓ++eiiΓ]=AeΓ++BeΓ.x(t) = \mathrm{Re}\left[ A e^{i \cdot i \Gamma_+} + e^{i \cdot i \Gamma_-} \right] = Ae^{-\Gamma_+} + Be^{-\Gamma_-}.

Note that there is no oscillation.

Critically damped

Critically damped means ω02=Γ2/4\omega_0^2 = \Gamma^2/4. In this case the descriminant is 00, so x(t)=AeΓ2tx(t) = Ae^{-\frac{\Gamma}{2}t}. However, since this has only one free variable it cannot be the full solution to the second-order equation. The full solution is:

x(t)=(A+Bt)eΓ2t.x(t) = (A+Bt)e^{-\frac{\Gamma}{2}t}.

A critically damped oscillator will return to equilibrium the fastest.