"Just In Time" representations for mental simulation in intuitive physics

Abstract

Many models of intuitive physical reasoning posit some kind of mental simulation mechanism, yet everyday environments frequently contain far more objects than people could plausibly represent with their limited cognitive capacity. What determines which objects are actually included in our representations? We asked participants to predict how a ball will bounce through a complex field of obstacles, and probed working memory for objects in the scene that were more and less likely to be relevant to the ball’s trajectory. We evaluate different accounts of relevance and find that successful object memory is best predicted by how frequently a ball’s trajectory is expected to contact that object under a probabilistic simulation model. This suggests that people construct representations for mental simulation efficiently and dynamically, on the fly, by adding objects “just in time”: only when they are expected to become relevant for the next stage of simulation.

Publication
45th Annual Meeting of the Cognitive Science Society