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Irreversibility

• Our world is dominated by irreversible processes
• Time only goes one way (Arrow of time)
• Entropy of the universe must increase (Second law of thermodynamics)



Irreversibility in the brain

• Critical period is a kind of irreversible process

• Visual deprivation experiments by Hubel and Wiesel (1963)
• Newborn cat with one eye covered does not develop vision for that eye
• Adult cat with one eye covered is not affected
• A critical periods of roughly two months after birth



Irreversibility in the brain

• Critical period is a kind of irreversible process

• Language acquisition (Lenneberg 1967)
• Natural efficiency can only be achieved when you learn language before 

certain age

Peroni and Abutalebi (2005)



Irreversibility in AI Training

• The learning dynamics of neural networks can be divided into at 
least two phases (Fort et al. 2020)
• The “chaos transient”: the initial few steps of training crucially determines 

the learning outcome; changes in the initial few steps affects the final 
performance the most



Irreversibility in AI Training

• Loss of plasticity (Dohare et al., 2023)
• More and more neurons “die” during training
• Reinforcement learning, continual learning



Irreversibility is at the core of learning.



Irreversibility in Nature

• Thermal systems in nature often evolve to minimize the Free 
energy:

𝐹 = 𝐸 − 𝑇𝑆

• This means that the system will minimize energy while maximizing 
entropy

• The dynamical tendency towards maximizing the entropy can be 
imagined as coming from a formal “entropic force”
• Leads to irreversibility

• Many phenomena in nature are due to entropic forces
• Such as phase transitions



Entropic Force

Macroscopic FlowMicroscopic Random Motion



Free Energy in Artificial Learning

• What role does entropic force play in artificial learning?

• Entropy production must be due to irreversible processes

• Identify microscopic irreversible components of the learning 
dynamics and use that to define “entropy force”
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Learning Dynamics

• In learning, we want to minimize a loss function 𝐿 𝜃  that is the 
expectation of a stochastic loss function over a large training set

𝐿 𝜃 = 𝔼𝑥 ℓ 𝑥, 𝜃

• A magical algorithm that works very well is gradient descent (GD)
Δ𝜃𝑡 = −𝜂∇𝜃𝐿

• 𝜂 is the learning rate
• It is unit of time
• Its sign is the arrow of time

• Because 𝐿 is what we will minimize, we will refer to 𝐿 as the 
“energy”



Gradient Flow

• GD: Δ𝜃𝑡 = −𝜂∇𝜃𝐿

• GF: 
𝑑

𝑑𝑡
𝜃 = −𝜂∇𝜃𝐿



Stability and Speed: A Naïve Picture

• Small 𝜂: learning is slow but stable

• Large 𝜂: fast but unstable



Stability and Speed: A Naïve Picture

• Small 𝜂: learning is slow but stable

• Large 𝜂: fast but unstable

Resnet 18

Learning rate decrease

grad. norm



Stochastic Learning Dynamics

• In learning, we want to minimize a loss function 𝐿 𝜃  that is the 
expectation of a stochastic loss function over a large training set

𝐿 𝜃 = 𝔼𝑥 ℓ 𝑥, 𝜃

• It is impossible in reality to compute 𝐿, and so we sample an 
independent 𝑥 at every 𝑡, and train on ℓ:

Δ𝜃𝑡 = −𝜂∇𝜃ℓ(𝑥, 𝜃)

• This is the SGD algorithm



Irreversibility of SGD Dynamics

• Consider running GD in a harmonic potential (𝐿 =
𝜃2

2
)

Δ𝜃𝑡 = −𝜂𝜃𝑡
• If the dynamics is reversible, then 𝜃 will return to its initial position 

if we reverse the arrow of time

• But this is not the case for SGD:
𝜃1 = 𝜃0 − 𝜂𝜃0 = 1 − 𝜂 𝜃0
𝜃2 = 𝜃1 + 𝜂𝜃1 = 1 − 𝜂2 𝜃0

• Reversing the time creates an error of order 𝜂2

• SGD is irreversible
• SGD can be reversible if we move very slowly (using an infinitesimal 𝜂)



Gradient flow dynamics is always reversible

• Find ෩𝐹𝜂(𝜃) such that (assuming GD) 

• If
Δ𝜃 = −𝜂∇𝐿
𝑑

𝑑𝑡
෨𝜃1 = −𝜂∇ ෨𝐹𝜂

• Then
𝜃 − ෨𝜃 ≈ 0



Effective Free Energy

• Because we already know that
𝐹0 = 𝐿

• We can expand 𝐹𝜂 in 𝜂:
𝐹𝜂 = 𝐿 + 𝜂𝜙1 + 𝑂(𝜂2)

• Plug into the dynamics (GD vs GF)

• We obtain a very simple form:

𝜙1 = ∇𝐿
2

Smith et al. (2021)
“Modified loss”



Alternative derivation Irreversibility

• Find 𝐹𝜂(𝜃) such that (assuming GD) 

• If
𝜃1 = 𝜃0 − 𝜂∇𝐿
𝜃2 = 𝜃1 + 𝜂∇𝐹𝜂

• Then
𝜃0 − 𝜃2 ≈ 0

෩𝐹𝜂 𝜃 = 𝐹𝜂(𝜃)



Irreversibility

• Making GD reversible ≈ Making GD continuous-time





Effective Free Energy

• Therefore, we have obtained an effective free energy:
𝐹 = 𝐿 + 𝜂𝑆

where

𝑆 = ∇𝐿
2

• Discrete-time training penalizes the gradient norm (!!!)



Stochastic Gradient Descent

𝑆GD = ∇L 2

𝑆SGD = 𝔼 ∇ℓ 2

Thus,
𝑆SGD = 𝑆GD + Tr[cov ∇ℓ, ∇ℓ ]

Entropy production 
due to discretization

Entropy production due 
to stochastic sampling



A closer look at the entropic term

For a fully connected layer:
𝑝 = 𝑊ℎ

𝑆 𝑊 = 𝔼 ∇𝑝ℓ
2
ℎ 2

Simpler gradient
Simpler representation



Implication

• The learning dynamics at a small learning rate is qualitatively 
different that at a large learning rate

• A large learning rate regularizes the entropy (gradient norm)

Resnet 18

Learning rate decrease
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Parameter Symmetries

• Deep learning is full of parameter symmetries

Definition. Let 𝐺 be a group. The loss function 𝐿(𝜃) has a 𝐺-symmetry if
𝐿 𝜃 = 𝐿 𝑔𝜃

for all 𝜃 and 𝑔 ∈ 𝐺.



arxiv/2502.05300



Some examples

• Scaling symmetry:

𝑓(𝑊) =
𝑊𝑥

𝑊
→ 𝑓 𝜆𝑊 = 𝑓 𝑊

• This is also an example of a non-compact Lie-group symmetry
• Rare in physics, but ubiquitous in deep learning



Parameter Symmetries

Theorem. 𝐹𝜂 does not have any non-compact Lie-Group symmetry.

Theorem. Any symmetry of 𝐹𝜂 must be norm-preserving.

• Only rotation symmetries (discrete or continuous) will remain in 
𝐹𝜂
• Spontaneous symmetry breaking remains possible



Scale Invariance: An Example
• Consider a 2d problem with scale invariance: ℓ 𝜃 = ℓ(𝜆𝜃)

• Conservation law under GF: 
𝑑

𝑑𝑡
𝜃 = 0

328/10/2025



Scale Invariance: An Example
• Consider a 2d problem with scale invariance: ℓ 𝜃 = ℓ(𝜆𝜃)

• Conservation law: 
𝑑

𝑑𝑡
𝜃 = 0

• The gradient ∇ℓ must be tangent to conservation laws

33

∇ℓ ∇ℓ

Step 𝑡 Step 𝑡 + 1

𝜃𝑡

𝜃𝑡+1

Scale invariance →
A systematic flow towards infinity

𝜃𝑡

8/10/2025



Breaking of Rescaling Symmetry

• Consider a loss ℓ 𝜃 with 𝜃 = (𝑢, 𝑣) 

• Rescaling Symmetry:
ℓ 𝜆𝑢, 𝜆−1𝑣 = ℓ(𝑢, 𝑣)

𝐹 = 𝐿 + 𝜂𝔼 ∇ℓ
2

• An “equipartition” theorem: 𝑆 = ∇uℓ
2
+ ∇𝑣ℓ

2

Invariant Variant

Theorem. All local minima of 𝐹 satisfies (neuron balance)

∇uℓ
2
= ∇𝑣ℓ

2



Example

• A ReLU network: 𝑓 𝑥 = σ𝑖 𝑢𝑖𝜎 𝑤𝑖
𝑇𝑥

• 𝜎 𝑧 = max(0, 𝑧)



Breaking of Generic Symmetry

• Exponential symmetry: for fixed symmetric matrix 𝐴, and any 𝜆 ∈
ℝ, ℓ 𝑥, 𝜃 = ℓ(𝑥, 𝑒𝜆𝐴𝜃) 

• Noise in different subspaces must balance!

Theorem. If 𝐹𝜂 has the 𝐴-exponential symmetry, all local minima of 𝐹𝜂
satisfy

𝔼[∇𝜃
𝑇ℓ𝐴∇𝜃ℓ] = 0.



Examples

• Matrix rescaling invariance, ℓ 𝑊𝑖+1,𝑊𝑖 = ℓ(𝑊𝑖+1𝐵, 𝐵
−1𝑊𝑖)

where 𝐾 = 𝑊𝑖+1𝑊𝑖

• e.g., 𝑓 𝑥 = 𝑈𝑊𝑥



Implication

• The stationary distribution of SGD cannot be Gibbs
• Not every state with the same energy (𝐿) has the same probability of 

being accessed: loss of ergodicity

• SGD is out-of-equilibrium
• Actually, SGD dynamics is almost everywhere absolutely irreversible

Murashita et al., PhysRevE.90.042110
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Platonic Representation Hypothesis
• Learned representations are universal (Platonic Representation 

Hypothesis)

8/10/2025

Huh et al., 2024

40



Perfect Platonic Representation Hypothesis

• We say that two layers ℎ𝐴, ℎ𝐵 from two models A and B are 
perfectly aligned if

ℎ𝐴
𝑇(𝑥1)ℎ𝐴 𝑥2 = ℎ𝐵

𝑇 𝑥1 ℎ𝐵(𝑥2)

8/10/2025

(NC is a special case)

𝒉𝑨 𝒉𝑩



Universal Representation Learning in EDLN

• Consider a Embedded Deep Linear Network (EDLN) model (with 
a lot of symmetries)

𝑓 𝑥 = 𝑀𝑂𝑊𝐷𝑊𝐷−1…𝑊1𝑀
𝐼𝑥

• 𝑊: learnable, 𝑀: frozen invertible matrices

• Trained on different views of the same data:
𝐷𝐴 = 𝑍𝐴𝑥𝑖 , 𝑦𝑖 𝑖

• 𝑍𝐴: frozen invertible matrix

• MSE loss:

ℓ 𝑥, 𝑦, 𝜃 = 𝑓 𝑥 − 𝑦
2

• 𝑦 = 𝑉∗𝑥 + 𝜖
8/10/2025 42



Theorem (informal). Train two different embedded deep linear net A, B 
that are wider than the target function. Give them different views of the 
same data, 𝐷𝐴, 𝐷𝐵 . If the training reaches the global minimum of 𝐹𝜂, then
1. All layers of A are perfectly aligned with all layers of A
2. All layers of B are perfectly aligned with all layers of B
3. All possible pairs of layers between A and B are perfectly aligned 



• Proof Sketch:



Deep linear networks Nonlinear networks



Universal Representation Learning

8/10/2025 46



Most solutions are not universal

• Let 𝜃 = 𝑊1, … ,𝑊𝐷  be a global minimum of 𝐿 and one of its 
layer ℎ𝐴 is aligned with ℎ𝐵 of another network:

ℎ𝐴
𝑇 𝑥1 ℎ𝐴 𝑥2 = ℎ𝐵

𝑇 𝑥1 ℎ𝐵(𝑥2)

• Then, we can transform the layer before ℎ𝐴 by 𝑅 and the layer 
after ℎ𝐴 by 𝑅−1, and so the l.h.s. becomes

ℎ𝐴
𝑇 𝑥1 𝑅𝑅𝑇ℎ𝐴 𝑥2

which cannot be perfectly aligned to the r.h.s.



Universal Representation Learning

• This is extraordinary
• There are infinitely many solutions (due to symmetry) that are not 

universal

• The mechanism is different from any of the previously conjectured 
ones (Huh et al., 2024):
• Simplicity bias
• Multitask training
• Large capacity

• Symmetry and entropy are the cause
• (Goldstone modes have a preferred orientation when there is non-

compact Lie-group symmetries in the loss function)

8/10/2025 48
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Progressive Sharpening (PS)

• A universal phenomenon

• The Hessian eigenvalues of the loss increases as the training 
proceeds
• The learning dynamics gradually loses stability
• Sharpness: the largest eigenvalue of the Hessian



Cohen et al., 
arxiv/2410.24206



PS and PRH have the same cause

A zeroth-order intuition:

• In EDLN, the sharpness depends on the data distribution

• The learned solution is independent of data distribution

• There must exist data distribution for which the model converges 
to an arbitrarily sharp solution



Prediction. Imbalance of label uncertainty leads to progressive 
sharpening. 

• Balance of label uncertainty leads to progressive flattening
• In language, the uncertainty of next words is highly imbalanced



Nonlinear models



Summary

• The learning dynamics of modern AI models is irreversible

• This irreversibility gives rise to an entropic force, which plays a 
crucial role in representation formation

• The entropic force shows that two universal phenomena in 
representation learning have the same cause
• PRH
• Progressive sharpening

• Can we have a “unification” of theories of deep learning ??? 



A slightly broader picture 

• A loss function generally takes the following form:
𝐿 = 𝐿0 + Regularization + Entropy

Simpler gradient
Simpler representation

Simpler weightsSymmetries:
Structures, 
Universality



A wild conjecture

8/10/2025 57

Symmetry + Noise + Regularization ≈ Deep Learning

?



Thanks
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• Proof sketch: Let 𝜃 → 𝑒𝜆𝐴𝜃. 𝐿 is invariant to this transformation, 
but ∇ℓ transforms by

𝑒−𝜆𝐴∇ℓ.

• So,
𝔼[∇𝜃

𝑇ℓ∇𝜃ℓ] → 𝔼[∇𝜃
𝑇ℓ𝑒−2𝜆𝐴∇𝜃ℓ].

• Decompose in two subspaces of 𝐴: 𝐴 = 𝐴+ + 𝐴−,
𝔼[∇𝜃

𝑇ℓ𝑒−2𝜆𝐴+∇𝜃ℓ] + 𝔼[∇𝜃
𝑇ℓ𝑒−2𝜆𝐴−∇𝜃ℓ].

• This term is minimized at a unique 𝜆∗ for every such 𝐴-symmetry.



Examples

• Scaling invariance: 𝐴 = 𝐼,
𝔼[∇𝜃

𝑇ℓ∇𝜃ℓ] = 0.

• Rescaling invariance: 𝐴 = (𝐼𝑢, −𝐼𝑣),
𝔼 ∇𝑢ℓ

2 − 𝔼 ∇𝑣ℓ
2 = 0



Two-layer linear network can be exactly 
solved

ℓ 𝜃, 𝑥 = |𝑊2𝑊1𝑥 − 𝑦|2

• 𝑦 = 𝑉∗𝑥 + 𝜖
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