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Irreversipility

* Our world 1s dominated by irreversible processes
* Time only goes one way (Arrow of time)
* Entropy of the universe must increase (Second law of thermodynamics)



[rreversibility in the brain

* Critical period is a kind of irreversible process

* Visual deprivation experiments by Hubel and Wiesel (1963)
* Newborn cat with one eye covered does not develop vision for that eye
* Adult cat with one eye covered Is not affected
* A critical periods of roughly two months after birth




[rreversibility in the brain

* Critical period is a kind of irreversible process

* Language acquisition (Lenneberg 1967)

* Natural efficiency can only be achieved when you learn language before
certain age

Late bilinguals, Late bilinguals,
High L2 proficiency Low L2 proficiency

Early bilinguals

Peroni and Abutalebi (2005)




Irreversibility in Al Training

* The learning dynamics of neural networks can be divided into at
least two phases (Fort et al. 2020)

* The “chaos transient”: the initial few steps of training crucially determines
the learning outcome; changes in the initial few steps affects the final
performance the most



Irreversibility in Al Training

* Loss of plasticity (Dohare et al., 2023)
* More and more neurons “die” during training
* Reinforcement learning, continual learning
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Irreversibility I1s at the core of learning.



[rreversibility in Nature

* Thermal systems In nature often evolve to minimize the Free

energy:
F=E-TS
* This means that the system will minimize energy while maximizing
entropy

* The dynamical tendency towards maximizing the entropy can be
Imagined as coming from a formal “entropic force”

* Leads to irreversibility

* Many phenomena in nature are due to entropic forces
* Such as phase transitions



Entropic Force
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Free Energy in Artificial Learning

* What role does entropic force play in artificial learning?
* Entropy production must be due to irreversible processes

* |dentify microscopic Irreversible components of the learning
dynamics and use that to define “entropy force”
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Learning Dynamics

* In learning, we want to minimize a loss function L(6) that is the

expectation of a stochastic loss function over a large training set
L(8) = Ex[£(x,0)]
* A magical algorithm that works very well is gradient descent (GD)

* 1 I1s the learning rate
* [t Is unit of time
* [ts sign Is the arrow of time

* Because L Is what we will minimize, we will refer to L as the
Henergy”



Gradient Flow

* GD Aet — _TIVQL
A _
* GF: dte = T]V@L



Stability and Speed: A Naive Picture

* Small n: learning Is slow but stable
* Large n: fast but unstable

o/ e



Stability and Speed: A Naive Picture

* Small n: learning Is slow but stable

* Large n: fast but unstable \\/ \‘ﬁ

Learning rate decrease
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Stochastic Learning Dynamics

* In learning, we want to minimize a loss function L(6) that is the

expectation of a stochastic loss function over a large training set
L(8) = Ex[£(x,0)]

* [t Is Impossible in reality to compute L, and so we sample an

independent x at every t, and train on ¢
A, = —nVyt(x,0)

* This I1s the SGD algorithm



Irreversibility of SGD Dynamics

2
* Consider running GD In a harmonic potential (L = 97)

AD, = —nb;

* |f the dynamics is reversible, then 8 will return to its initial position
If we reverse the arrow of time

e But this Is not the case for SGD:
0, =69 —1nby = (1—1)6,
0, =0, +n0, = (1 — 772)90

* Reversing the time creates an error of order n?
* SGD Is irreversible
* SGD can be reversible if we move very slowly (using an infinitesimal 1)



Gradient flow dynamics Is always reversible

* Find F;,(8) such that (assuming GD)
 |f

* Then



Fffective Free Energy

* Because we already know that
FO —_ L

* We can expand £, in n:
Fy =L+n¢; + 0(n?)
* Plug into the dynamics (GD vs GF)
* We obtain a very simple form:
$1 = |IVLI|°

Smith et al. (2021)
“Modified loss”



Alternative derivation lrreversibility

* Find E,(6) such that (assuming GD)

o |f
HIZHO_UVL
92291+77VF77
* Then
90—6’2%0

F;',(H) — Fn(H)




Irreversipility

* Making GD reversible = Making GD continuous-time



Learning at large and
small learning rate

\ 00r) O(n)
\ 0\ 0(?7)

—) AO = —nVL =—> A9’=—2VL — AB'=—%VFH == VF, — VL

2
Original dynamics Original dynamics Effective dynamics  Entropic Force



Fffective Free Energy

* Therefore, we have obtained an effective free energy:
F=L+nS

where
2
S = ||VL]|
* Discrete-time training penalizes the gradient norm (1)



Stochastic Gradient Descent

Thus,

Sgp = |VL|22
Ssgp = E[|VZ]“]

SSGD = SGD + TI'[COV(Vf, Vf)]

/ N

Entropy production Entropy production due
due to discretization to stochastic sampling



A closer look at the entropic term

For a fully connected layer:
p =Wh

SW) =E||v,¢| %]

N

. . Simpler representation
Simpler gradient



Implication

* The learning dynamics at a small learning rate 1s qualitatively
different that at a large learning rate

* A large learning rate regularizes the entropy (gradient norm)

Learning rate decrease
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Parameter Symmetries

* Deep learning is full of parameter symmetries

Definition. Let G be a group. The loss function L(8) has a G-symmetry if
L(8) = L(g0)

forall @ and g € G.




Symmetry Model condition Symmetric State Example
translation f(w) = f(w+ Az) for fixed z none softmax, low-rank inputs
scaling f(w) = f(Aw) none batchnorm, etc.
rescaling flu,w) = f(Au, A\ w) || = [Jw]| ReLU neuron
rotation f(W) = f(RW) for orthogonal R  low-rank solutions self-supervised learning
permutation flu,w) = f(w,u) identical neurons fully connected layers, ensembles
double rotation fIUW)=f(UAA'W) low-rank solutions self-attention, matrix factorization
sign flip f(w) = f(-w) w =0 tanh neuron

Table 1: Common parameter symmetries in deep learning. We divide 0 into three parts: 0 = (w,u,v), where w and u
are related to symmetry, while v is symmetry-irrelevant and is omitted. Note that these symmetries are not mutually
exclusive. For example, double rotation or rotation symmetry implies permutation symmetry and sign flip. Double
rotation also implies rescaling. Some continuous groups do not have a discrete subgroup, such as the scaling and
translation symmetry, which is also included for completeness. However, they still interact with regularizations in an
interesting way: If there is a weight decay, the global minima are achieved at zero, which is ill-behaved for scaling
symmetry but not for translation. Also, note that Zs subgroups are particularly common in these symmetries.

arxiv/2502.05300



Some examples

* Scaling symmetry:

* This I1s also an example of a non-compact Lie-group symmetry
* Rare In physics, but ubiguitous in deep learning



Parameter Symmetries

Theorem. £, does not have any non-compact Lie-Group symmetry.

Theorem. Any symmetry of F, must be norm-preserving.

* Only rotation symmetries (discrete or continuous) will remain in

by

* Spontaneous symmetry breaking remains possible



Scale Invariance: An Example

* Consider a 2d problem with scale invariance: £(8) = £(A8)

. d
* Conservation law under GF: — 16]| =0

8/10/2025
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Scale Invariance: An Example

* Consider a 2d problem with scale invariance: £(8) = £(A8)

. d
» Conservation law: —||6]] = 0

* The gradient V£ must be tangent to conservation laws

%4

Scale invariance —
A systematic flow towards infinity

Step t Stept+1

8/10/2025 33



Breaking ot Rescaling Symmetry

 Consider a loss £(08) with 8 = (u, v)

* Rescaling Symmetry:
£(Au, A7"1v) = £(u,v)

F =L +nE||ve||

N\

Invariant Variant

Theorem. All local minima of F satisfies (neuron balance)
2 2
[1IVul]” = |IV,2l]

o 2 2
» An “equipartition” theorem: S = ||V || + ||V, 2|



Example

* A ReLU network: f(x) = Y u;o(w/ x)

* 0(z) = max(0, z)

le—6
.0
Y 57 ® Y 51
5 5
g4 54
= €
57 5 37
o ?
25 25

entropy le-3



Breaking of Generic Symmetry

* Exponential symmetry: for fixed symmetric matrix A, and any 4 €
R, £(x,0) = £(x,e*46)

Theorem. If F, has the A-exponential symmetry, all local minima of £,
satisfy

E[V4£AVyf] = 0.

* Noise In different subspaces must balance!



Examples

* Matrix rescaling invariance, £(W; ., W;) = £(W; 1B, B~1W,)

where K = W;_W;
ceg., f(x) =UWx



Implication

* The stationary distribution of SGD cannot be Gibbs

* Not every state with the same energy (L) has the same probability of
being accessed: loss of ergodicity

* SGD i1s out-of-equilibrium
* Actually, SGD dynamics is almost everywhere absolutely irreversible
Murashita et al., PhysRevE.90.042110
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Platonic Representation Hypothesis

* Learned representations are universal (Platonic Representation
Hypothesis)

X A0 P
@o@b /\\\\%\ «00:50 & & :é\:\i@;%\'v S
& \O\OO\O\OO \O\oo NeX O&QOQGOQ@\ \\,b@ \\,Zg\“\\ S
The Platonic Representation Hypothesis S o6 ] :/:4’-
= 3
-~ P X
Neural networks, trained with different objectives Q ons
on different data and modalities, are converging to a =
. . . . . 0.12
shared statistical model of reality in their representa- & dino small
tion spaces. Soo dino base
= dino large
= dino giant
0.1 0.2 03 0.4 05
Huh et al., 2024 LANGUAGE performance

8/10/2025 40



Perfect Platonic Representation Hypothesis

(NC is a special case)

* We say that two layers hy, hg from two models A and B are
perfectly aligned It

h£ (x1)ha(xy) = hg (x1)hp(x;)

Multiple hiddenlayer ~ Output layer
Mdden e "t VUlplenddenfyer o TIPREN

uuuuuuuuuuu

8/10/2025



Universal Representation Learning in EDLN

* Consider a Embedded Deep Linear Network (EDLN) model (with
a lot of symmetries)
f(.X) = MOWDWD_l W]_Mlx

e W: learnable, M: frozen invertible matrices

* Trained on different views of the same data:
Dy = {(Zgxi,y:) }i
* Z4: frozen invertible matrix

* MSE loss: ]
£(x,y,0) = [If (x) — yl|
cy=V"x+e¢€

8/10/2025 42



Theorem (informal). Train two different embedded deep linear net A, B
that are wider than the target function. Give them different views of the
same data, Dy, Dp. If the training reaches the global minimum of E,, then
1. All layers of A are perfectly aligned with all layers of A

2. All layers of B are perfectly aligned with all layers of B

3. All possible pairs of layers between A and B are perfectly aligned




Theorem 1. (Perfect Platonic Representation Hypothesis) We train fa on Dy, and fg on Dy,. Let
the width of A and B be no smaller than the rank of V*. Let both networks be at the global minimum of

Eq. (11). Then, for any invertible ]\/fg,ﬂfijA,Mg,ﬁféjZB, for any possible pair of © and j, ,f4 and h;j’g
are perfectly aligned.

* Proof Sketch:

WEE[V i 0V i L]W, = Wi B[V g €V L]V

2417




alignment

Deep linear networks
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Universal Representation Learning

Net B mlp layer
|
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0
0
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Most solutions are not universal

e Llet 8 = (W4, ..., Wp) be a global minimum of L and one of its
layer hy is aligned with hg of another network:

hZ(xﬂhA(xz) = hg (x1)hp(xz)
* Then, we can transform the layer before hy by R and the layer

after hy by R™1, and so the I.h.s. becomes
hg(’ﬁ)RRThA(Xz)

which cannot be perfectly aligned to the r.h.s.



Universal Representation Learning

* This Is extraordinary
* There are infinitely many solutions (due to symmetry) that are not
universal

* The mechanism Is different from any of the previously conjectured
ones (Huh et al., 2024):

e Simplicity bias
* Multitask training
* Large capacity
* Symmetry and entropy are the cause

* (Goldstone modes have a preferred orientation when there is non-
compact Lie-group symmetries in the loss function)

8/10/2025 48
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Progressive Sharpening (PS)

* A universal phenomenon

* The Hesslan elgenvalues of the |oss increases as the training
proceeds
* The learning dynamics gradually loses stability
* Sharpness: the largest eigenvalue of the Hessian



Cohen et al.,,
arxiv/2410.24206
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PS and PRH have the same cause

A zeroth-order intuition:
* In EDLN, the sharpness depends on the data distribution
* The learned solution Is Independent of data distribution

* There must exist data distribution for which the model converges
to an arbitrarily sharp solution



* Balance of label uncertainty leads to progressive flattening
* In language, the uncertainty of next words is highly imbalanced
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Nonlinear models
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summary

* The learning dynamics of modern Al models Is irreversible

* This irreversibility gives rise to an entropic force, which plays a
cruclal role In representation formation

* The entropic force shows that two universal phenomena In
representation learning have the same cause

* PRH
* Progressive sharpening

* Can we have a “unification” of theories of deep learning ?7?



A slightly broader picture

* A loss function generally takes the following form:
L = Ly + Regularization + Entropy

Simpler gradient
Simpler representation

Symmetries: Simpler weights
Structures,
Universality



A wild conjecture

Symmetry + Noise + Regularization = Deep Learning

?

8/10/2025
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* Proof sketch: Let 8 —» e?0. L is invariant to this transformation,
but V£ transforms by
e My,

* SO,
E[Vg€Vgef] - E[VyLe 244V,

* Decompose In two subspaces of A: A=A, + A_,
E[Vgyfe 244+V ] + E[V,yLe 244~V 1].

* This term is minimized at a unique A* for every such A-symmetry.



Examples

* Scaling invariance: A = 1,
E[Vy£Vyt] = 0.

* Rescaling invariance: A = (I, —1,,),
E|V,¢|? — E|V,£]? =0



Two-layer linear network can be exactly
solved

£(0,x) = |[W,Wx — y|?
cy=V*x+¢€
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