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Theories of physics?

mimy

* Newton'’s Law: F = —
r

* Special Relativity: E = mc?

Special Relativity (Part I): Space Is (essentially) the same as time

Noether's theorem: every continuous symmetry leads to a conservation law

Landau Theory: Phase transitions are due to change of symmetries

Fluctuation-Dissipation Theorem: dissipation must balance with fluctuation
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Theories of physics?

* Theoretical physics involves creating simple concepts and connect them

Physics

* Continuous symmetry
* Discrete symmetry

* Phase transitions
* Latent heat <—)
* Entropy

* Conservation laws

* Topology

* Dissipation

* Classification of matters

* Universal classes

* Goldstone mode

* Uncertainty relations

* Skin effects
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Theories of Al?

* Weight decay iImproves generalization (Krogh & Hertz. 1991)
* Weight decay determines the effective learning rate (arxiv/2010.02916)
* Regularization 1s necessary for neural collapse (arxiv/2410.04887)

* Overparametrized models can memorize all data and still generalize
(arxiv/1611.03530)

* All local minima are global (arxiv/1605.07110)

* All global minima are connected In overparametrized networks
(arxiv/1901.07417)

* We also need to invent and connect concepts

2024/10/24



Physics of Al

* Link fundamental concepts of physics to those of Al

2024/10/24

Physics

Continuous symm

etry

Discrete symmetry

Phase transitions
Latent heat
Entropy
Conservation laws
Topology
Dissipation
Classification of m
Universal classes
Goldstone mode

atters ),

\

Uncertainty relations

Skin effects

Reasoning
Generalization
Optimization
Learning dynamics
Overparametrization
Scaling laws

Neural collapse
Neural feature ansatz
Neural tangent kernel
Feature learning
Mode connectivity
Emergence (of capabilities)



Fundamental Concepts of Physics?

‘It 1s only slightly overstating the case to say that physics Is the
study of symmetry. ” --Philip W. Anderson

* Noise Is perhaps the second most important concept
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Fundamental Concepts of Physics?

‘It 1s only slightly overstating the case to say that physics Is the
study of symmetry. ” --Philip W. Anderson

* Noise Is perhaps the second most important concept:

Continuous symmetry
Discrete symmetry
Phase transitions

Latent heat

Entropy

Conservation laws Noise
Topology

Dissipation
Classification of matters
Universal classes
Goldstone mode
Uncertainty relations
Skin effects

Symmetry
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Fundamental Concepts of deep learning?

* |f fully unconstrained, we have curse of dimensionality
* Overparametrized models often find good enough solutions
—There are simplicity biases in deep learning
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Fundamental Concepts of deep learning?

* |f fully unconstrained, we have curse of dimensionality
* Overparametrized models often find good enough solutions
—There are simplicity biases in deep learning

All solutions

I Simple

] .

I solutions
\

S Solutions found

Why’) Complex >~ by practical

models trained
with SGD

solutions
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Hypothesis

Symmetry + Noise + Regularization
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~ Simplicity Bias
(for Deep Learning)
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simplicity Triangle

Vapnik (1998)

Regularization

Norm reduction (learning theory)

Prevent overfitting (?7)
Generalization bounds

arxiv/i704.04289

arxiv/1§06.00900 002.03495

arxiv/2(012.04728
Conservation laws
Saddle points

Plateaus of training

Exploration
Uncertainty
Flatter minima (?)

Noise
(optimization,
thermodynamics)

Symmetry
(physics)
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Two Types of symmetries in Deep Learning

1. Data symmetry:
* Equivariant networks

2. Parameter symmetry

* Can be leveraged to understand the learning dynamics and loss
landscape of neural networks

Definition. Let G be a group. The loss function L(8) has a G-symmetry if
L(6) = L(g0)

forall @ and g € G.
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Landscape of models with symmetry

* Consider quadratic regression with L, regularization (weight
decay):

Lw) = (w?x — y)z + yw?

2 -1 o 1 2 2 -1 0 1 2 5 1 o0 1 2
w w w
Small y Intermediate y Large y
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Landscape of models with symmetry

* The symmetric solution becomes the global minimum at strong
regularization

* Can be generalized to high dimension
* Can be generalized to an arbitrary discrete group

* Setting:
L(8) = Lo(0) +v116]]

Theorem. (Informal) Let Ly(8) have the G-symmetry. Then, if ¥ is large
enough, all global minima 6" of the L(8) satisfy
go* =0"

forany g € 6°.

2024/10/24
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Abundance of Mirror symmetries

Symmetry Loss Symmetry Symmetric State
Projector

Rescaling £o(u,w) = £5(Au, 17 1w) 00T — (IW 0) u=0w=0
invariance 0 I
Rotation Lo(W) = £o,(RW) 00T = n'Ww =0
Invariance for arbitrary orthogonal R arbitrary for arbitrary n
projection
Permutation Lo(u,w) = £5(w,u) 00T — (0 Iu) wW=1u
invariance Iy 0
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* In words,
* Rescaling symmetry — sparsity
* Rotation symmetry — low rankness
* Permutation symmetry — identical neurons

* With L, regularization, every discrete symmetry leads to a
structured constraint of learning

2024/10/24
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Implication for the loss landscape

* When Z, symmetries exist, 1d projections of the loss landscape are
symmetric around the mirror surface (let OYw = sn, for a unit vector

n)
£(s) = cps? + c;s* + 0(s®)

* Sign of ¢y determines the local geometry

stronger
regularization

constrained
phase

L(s)
L(s)

stronger
signal

learning
phase

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
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Activation pattern of ResNetl8

Preactivation and
postactivation have a similar

rank

no weight decay with weight decay

0

2
a0
Preactivation ¢ $
100
120 -l
0
20 15
Postactivation _ « s
£ o £

Figure 5: Comparison for the correlation matrix of the neurons in the penultimate layer at zero weight
decay (left) and 0.001 weight decay (right). Upper: pre-activation correlation. Lower: post-activation
correlation. After training, the neurons are grouped into homogeneous blocks when weight decay is present.
The inset shows that such block structures are very rare when there is no weight decay. Also, the patterns
are similar for post-activation values, which further supports the claim that the block structures are due to
the symmetry, not because of linearity.
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Dimensional Collapse In Self-Supervised
_earning

* The SIMCLR loss has a rotation symmetry between the data point
pailrs

exp(sim(zi, z5)/7)

SN Dpposs) exp(sim(2;, 25) /7)

l;; = —log (1)

0.3 - :
—-== Theory

0.2 4

|
|
I
|
0149 | :
I
|

0.0 A

: , , : */ZIyin et al. What shapes the /oss
075 1.00 125 1.50 landscape of self-supervised learning?
o’ ICLR 2023
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Posterior collapse in Bayesian deep learning

* The ELBO loss Is Invariant to a simultaneous rotation of the
decoder input and incoder output

(d) B = 3.5, remaining modes: 2 (e) B =4, remaining modes: 1 (f) B =6, remaining modes: 0 *Wang et Z|y| n. Posterior CO//Q,OS@

Figure 3: MNIST generation under different 3. We see that the generated images lose diversity and variation /17 @ /atent variable moael.
as [ increases. The number of mode left is estimated by the theoretical prediction of thresholds of each

- *‘ : NeurlPS 2022

singular values.
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Removing symmetry also Removes the
Constraint

Resnet 18
1.0
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Vessage

* Discrete symmetries creates constraints over model parameters
and model capacity

* [n physics terms, collapses are transitions from symmetry-broken
states to symmetry states

* One can leverage symmetry to design training algorithms (ariv/2210.01212)

[1] Symmetry Induces Structure and Constraint of Learning.
ICML 2024
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An example

* Consider a simple example with rescaling symmetry:
L(u,w) = (uwx — 1)?

where x ~ N(0,1).
 Under gradient flow, u* — w# does not change in training

2.5 T raw 10! 1
=== minimum :
2.04| 7~ balance j ,///
q-- Sonservatlon 100
1.5 1 ~
2 =
S I
1.0 S 1077
| |=—— sGD
0.5 1 ] ;
10724 — Gaussian
y i — GD
0.0 ] T 1 T : : T :
00 05 10 15 20 25 0 5000 10000 15000 20000
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Lagrangian Formalism

* Training proceeds with continuous-time gradient descent,
6 = —VQL(H)

* The training loss Itself Is the Lagrangian of the system (Bregman
Lagrangian):
L=1L(0O)

Noether’s Theorem. (Exaggerated) Every continuous symmetry of the
loss (L(8) = L(g(8))) leads to a conserved quantity C

d
EC(H) =0

* Under GD, the learned solution I1s dependent on the initialization

27



Two common continuous symmetry

Hidden
Input Output

* Continuous Symmetries in deep learning
* Rescaling symmetry: Lo(u, w) = Lo(Au, A~ 1w)
* RelU activation, linear models
« The norm difference is conserved: |u|? — |w|?

* Double rotation symmetry: Lo(U, W) = Ly(UA™L, AW)
 Matrix factorization (f (x) = UWx), transformers
 The matrix product is conserved: UTU — wWWw?T

28



Breakdown of Noether’'s Theorem

* [n actual model training, the training process Is always stochastic

 Even if £(8) has a symmetry with probability 1, Noether's theorem
IS no longer applicable
symmetry # conserved charge

* Can we still say something universal?

29



General Theory

* Let £(0) have an exponential symmetry: with probability 1, for a
fixed symmetric matrix A and any 4 € R,
£(6) = £(e*0)

30



General Theory

* Noether Charge: C,(0) = 67 A8

. . d
* Under continuous-time GD: ECA =0

* Under SGD: %CA = Tr[2(0)A]

Theorem 4.3 (Fixed point theorem. Informal). For every A-exponential
symmetry, and every 8, there exists a unique and attractive 1* such
that,

d ,
ECA(M 49) =0

* Every exponential symmetry leads to a unique and attractive fixed

point (in the degenerate direction) for training.

31



Example of Scale Invariant Losses

* Consider a 2d problem with scale invariance: £(8) = €(16)
* The gradient V£ must be tangent to conservation laws

%4

Scale invariance —
A systematic flow towards infinity

Step t Stept+1
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Applications

* A deep linear network:

? = |WDWD—1 ...W2W1x _y|2
* Global minimum: WpyWy_1 .. W, W; =V~

* What is the fixed point of SGD?

* 1. Orthogonality: Wp_4, ..., W5 are all (scalar multiples of) orthogonal matrices
« 2. Alignment: Wp_4 ... W5 aligns with the left singular matrix 4/ Z:Wp and the right

singular matrix of W4/ Z,

* 3. Balance: all the following matrices have the same norm:

\/E_EWD' WD—ll Ll WZ! Wl\/z_x

81 —— input // —— input
output 44 output
] intermediate intermediate
A/
4 -
: 14 M

0 2000 4000 6000 0 2000 4000 6000
iteration iteration

Figure 8: Norms of weights of multilayer deep linear network during training on MNIST without weight
decay. We see that the intermediate layers converge to the same norm during training, whereas the input
and output layers are different because they are determined by the input and output noise. This effect is
robust against different initializations. This agrees with our analysis for deep linear nets (Theorem 5.4).
Left: initializing all layers with the same norm. Right: initializing all layers at randomly different norms.



SGD can drive the sharpness both up and
down (depending on X, and £, and init.)

2000
—— SGD Kaiming + warmup
1750 —— SGD Kaiming
1500 -=- SGD Xavier
1250 4 === GD Kaiming
T ]
A 1000
750
500 A
250 A

0 2000 4000 6000 8000 10000
t

Figure 3: Dynamics of the stability condi-
tion S during the training of a rank-1 ma-
trix factorization problem. The solid lines
show the training of SGD with Kaiming
init. When the learning rate (1 = 0.008) is
too large, SGD diverges (orange line). How-
ever, when one starts training at a small
learning rate (0.001) and increases n to
0.008 after 5000 iterations, the training re-
mains stable. This is because SGD train-
ing improves the stability condition during
training, which is in agreement with the
theory. In confrast, the stability condition
of GD and that of SGD with a Xavier init
increases only slightly. Also, note that both
Xavier and Kaiming init. under SGD con-
verges to the same stability condition be-
cause the equilibrium is unique.

Similar alignment in nonlinear nets

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
neuron index neuron index neuron index neuron index

Figure 4: The latent representations of a two-layer tanh net trained under SGD (left) are similar across
different layers, in agreement with the theory. However, the learned representations are dissimilar under GD
(right). Here, we plot the matrices WX, W (first and third plots) and UX .U (second and fourth plots).
Note that the quantity WX, W is equal to the covariance of the preactivation representation of the first layer.
This means that SGD and GD learn qualitatively different features after training. Also, see Appendix A.3
for other activations.
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Vessage

* Symmetry implies different things for deterministic dynamics and
stochastic dynamics
* Deterministic: conservation law
* Stochastic: unigue equilibrium

* Under GD, the learned solutions are determined by Initialization

* Under SGD, the learned solutions are determined by the gradient
noise, and independent of initialization

[2] Loss Symmetry and Noise Equilibrium of Stochastic
Gradient Descent. NeurlPS 2024
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[3] Formation of Representations in Neural Networks.

arxiv/2410.03006
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https://arxiv/2410.03006

Latent Representation of Neural Networks

* Neural Networks process information layer by layer:
xX—>hy—>hy, > :-->hp->Yy

* During training, the latent variables h becomes increasingly
structured

* Of particular interest to deep learning and neuroscience Is the

second moment of the latent variables
H := E[hh!]

* We will refer to H as the representation

2024/10/24
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Latent Representation

* After training, the representation becomes highly structured:

2024/10/24

cov(h, h) cov(h, h)
50 45 Tk
40 4
30

20 " o I..

10 -t g L

0 20 40 0 20 40
heuron index neuron index

Init. End
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Latent representation

* Consider any layer connected by a linear weight:
hy = Whq(x)

* The model is arbitrarily nonlinear:
f(x) = f(hb (X))
* We are also concerned with the gradient of the neurons
gp = Vp, 1t
Ya = Vhag
* £(0,x) Is the per-sample loss

2024/10/24
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How does latent representations form?

* Neural Collapse (NC) I1s found to happen In the penultimate layer
of overparametrized classifiers

* When NC happens, aoyan ot ol
E[h hl] <« WTW PNAS 2020

* Neural feature ansatz (NFA) states that during the training of fully
connected networks, |
Radhakrishnan et al.

WIw « E[Vhaf(vhaf)T] Science 2024

2024/10/24 40



Canonical Representation Hypothesis

* Together, this iImplies that the neuron gradient g, weight W, and
activations h are well aligned

* There exists six possible alignments between these quantities of the
same layer:
representation-gradient alignment (RGA): H. o« G,
representation-weight alignment (RWA): H,. o« Z,,
gradient-weight alignment (GWA): G, « Z.,

where c € {a, b}, H. = IE[hChZ], G, = IE[gCgZ], Z,=W'w,zZ, =wwTt
* That all six relations are satisfied Is referred to as the CRH

2024/10/24 41



Canonical Representation Hypothesis

* There exists six possible alignments between these quantities of the
same layer:

representation-gradient alignment (RGA): H. «< G,
representation-weight alignment (RWA): H. «< Z,
gradient-weight alignment (GWA): G, « Z.,

where ¢ € {a, b}, H, = E[h.hT], G, = E[g.gT], Z, = WTW,Z, = WWT

2024/10/24 42



1.0

0.8 -

0.6

0.4 4

0.2 4

0.0

Figure 1: Six alignment relations in the penultimate layer and output layer of a ResNet18 trained on CIFAR-
10 (resl). Left: forward CRH. Right: backward CRH. We see that all six relations hold significantly across
two fully connected layers. Also, we show that the matrix cov(g, h) is well aligned with WW" in the appendix
Section which is a strong piece of evidence supporting the key theoretical step that the cross terms will
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o

be aligned with the weights (and G, H).
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Canonical Representation Hypothesis

* Meaning:

1. Neuron variation is aligned with its importance

2. Representation is fully compact and robust to perturbations
3. The information processing becomes invertible

2024/10/24
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How to prove it?

* Consider an overdamped particle moving in a harmonic potential,
with random force VD& (t):
x = —ux + VDE(t)

o/ e

2024/10/24 45



How to prove it?

* Consider an overdamped particle moving in a harmonic potential,
with random force VD& (t):
x = —ux + VDE(t)

* At stationarity, the rate of dissipation must balance with the
fluctuation:
D = p(x?®)

* This I1s the Einstein Relation (1905)

o/ e

2024/10/24 46



Fluctuation-Dissipation Theorem

* In deep learning, the time evolution is iInduced by the learning
algorithm (SGD):
AG = —n(Vat(6,x) —y0O)

* 1 1S the learning rate \ \

(Stochastic) V;]/elght decay
loss function that ]Ergvents
minimization overtitting

2024/10/24
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Fluctuation-Dissipation Theorem

* For our purpose, we are Interested In the time evolution of the
representation:

A(hy(2)h] (1)) = n(|hal?goh; + [hal?hog; = 27Rohy) + 07 ha|*g6g; + O(7y + | A(Rhoh L) ).

* At stationarity,

y 2 :
0=2zE[gphy | + zE[hegy, | = 29E[hohy, ] + 123 E[gbg, ] (6)
lca;lrlping I'C-gtllzi;;zziti(}n n(:{sc \
Drift, Energy minimization Diffusion

2024/10/24 48



Fluctuation-Dissipation Theorem

Theorem 1. Under Assumptf()n when E[A(hoh))] =0, E[A(grgy )] = 0, E[A(WWT)] =0,
and E[A(W'W)] =0, there exist real-valued constants c¢1, ca, ¢3, ¢4 > 0 such that

WW' +c1Elgpg; | = coE[hph) ], W'W + c3E[hh,] = c4E€[gag. |- (7)
Additionally, if at a local minimum,

WW'" oc E[gpg, | o< E[hphy], W'W o< E[hoh,] < E[gag, ]- (8)

2024/10/24 49



Polynomial Alignment Hypothesis

* The spectra of H, G, Z are power-laws of each other when the
CRH i1s violated

2
> 0
2 -~
-2 ./"
-1

0

logAg

1

logAg

-2

£
-1

0

logAg

0 1
logAg

logAg

logAg

Figure 3: The power-law alignment between the eigenvalues A, and A, of H}, and (G, in a six-hidden layer
transformer (llm). Left to Right: first to the penultimate layers. The grey dashed lines show the power-law
relations A, o< Ay for o = 1, 2,3 respectively. We see that the first layer has an exponent of 3, the second
has an exponent of 2, and all the layers after it are observed to have an exponent of 1. Different colors show
different heads within the same layer. The range of the power exponents 1s in almost perfect agreement with
the predicted range in Table 1| Referring to the table, this implies that these layers are in phases 5, 8, and 6,

respectively. The setting 1s the same as the LLM experiment. Also, see Sect10n|C.8

for fully connected nets,



summary

* Fluctuation-Dissipation Theorem (FDT) 1s a main mechanism for
the formation of representation in neural networks

* FDT leads to the emergence of the canonical representation,
where weights, representation and gradients are all aligned

* Breaking of the CRH leads to reciprocal power-law relations

2024/10/24
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Takeaways

* Can we understand fundamental aspects of deep learning with
physics?

* Yes

* Are there universal laws (“alternative physics”) that exists uniquely
In deep learning?
* Yes (and we need to invent new mathematical tools to find them!)

* How can physics help understand deep learning?

2024/10/24 52



How can physics help understand deep
earning”

* Treat deep learning as an empirical science

* “This Analysis consists In making Experiments and Observations, and in
drawing general Conclusions from them by Induction” -- Newton

* Connect concepts from physics to concepts in deep learning
* E.g. symmetry = constraint

* Use physics mechanisms to explain deep learning phenomena
* E.g. Fluctuation Dissipation Theorem — Representation alignment

* Leverage these understanding to design novel algorithms
* E.g. engineer artificial symmetries to compress neural networks

2024/10/24
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Violation of CR

* CRH 1s more like to be violated than hold

* The following theorem characterizes what happens if the CRH 1Is

partially violated:

Theorem 2 (CRH Master Theorem). Let A, B, C' be a permutation of E[hh' |, E[gg" ]|, and Z, and
let D := PDP be a projected version of D for a projection matrix P. Then,

1. (Directional Redundancy) if any two forward (backward) alignments hold, all forward (back-
ward) alignments hold;

2. (Reciprocal Polynomial Alignments) if one of any forward alignments and one of any backward
alignments hold, there exists scalars o, B., and d. satisfying =1 < &, Be, 0. < 3 such that

e N Be e '
Ar: o< Bc o< CC ’ (9)

(as detailed in Table where ¢ € {a, b} denotes the backward and forward relations respectively,
and the corresponding projection P, € { Z? E[h.h[ ]’ E[g.9 1"}, e.g. such that A = P, AP,.

3. (Canonical Alignment 1) If (any) one more relation holds in addition to part 2, then all six align-
ments hold in the Z° subspace; in addition, at a local minimum, all six alignments hold;

4. (Canonical Alignment II) If all six alignments hold, E{hh' | < E|gg'| o< Z o< P, where P is an
orthogonal projection matrix.

2024/10/24 :
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Polynomial Alignment Hypothesis
Phase |Back. Alignment|Forw. Alignment|Back. Power Law | Forw. Power Law || NC NFA CU Illm
CRH Hyoc Zy o< Gy | Hy o< Zyy o< Gy, - : o/
back. CRH| H, o< Zy o< Go | - | - (H e<Z{ <Gy | v v
(Hp o< Zy)
forw. CRH| - | Hyoc Zyoc Gy | Hoooc Z0 o G| - VG
(Zczr, o< Ga)
| H, o< G, Hy, oc Gy, HY o< Zy oc GY | HY) o< Zy o< G v (3-6)
2 Hey o< Zy Hy, o< Z, Ha o Zg o< GO | Hy o< Zp < G v/
3 Gy o< 4, Gy, o< Ly, HSDCZQDC;Q ﬁgochOCG’b v
4 H, <G, Hy o< 7, gangm;@ ﬁbochocG‘gl
5 H, < Z, Hy, o< Gy, H2 oc 72 oc Gy | Hy o< Z2 oc Gy, v /(3-6)
6 H, «< Gy, Gy o< Ly, I:Iangm;@ gbngmég v (1)
7 G oc Zg Hy o< Gy, g;IMZ@M;a ]rfbDCZN-BOCéb v
8 H, o< Z, Gy o< Z H? oc Z2 < Gy | Hy o< Z} o< G v /()
9 Gy o< Zg Hy, o< Zy, H, oc Z2 oc G° | HY o< Z}) o< G v

Table 1: The reciprocal polynomial relations of the CRH Master Theorem. When one forward relation and one
backward relation hold simultaneously, all six matrices are polynomially aligned in a subspace (Theorem .
Each scaling relationship can be regarded as a possible phase for the layer during actual training. The right
panel shows how existing observations about neural networks fit into the phase diagram. A v denotes that
this phenomenon is compatible with the specified phase. NC refers to the neural collapse. NFA refers to the
neural feature ansatz. CU (correlated update) refers to the (idealization of the) common observation that h, is

S090/10/5 correlat?d with ﬂ a few steps after training (_Eve_rett et al., 2024). The llm column shows the compatibility of
the scaling relation for transformer observed in Figure

S7



Polynomial Alignment Hypothesis

* The spectra of H, G, Z are power-laws of each other when the
CRH i1s violated
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Figure 3: The power-law alignment between the eigenvalues A, and A, of H}, and (G, in a six-hidden layer
transformer (llm). Left to Right: first to the penultimate layers. The grey dashed lines show the power-law
relations A, o< Ay for o = 1, 2,3 respectively. We see that the first layer has an exponent of 3, the second
has an exponent of 2, and all the layers after it are observed to have an exponent of 1. Different colors show
different heads within the same layer. The range of the power exponents 1s in almost perfect agreement with
the predicted range in Table 1| Referring to the table, this implies that these layers are in phases 5, 8, and 6,

respectively. The setting 1s the same as the LLM experiment. Also, see Sect10n|C.8

for fully connected nets,
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