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Theories of physics?

• Newton’s Law: 𝐹 =
𝑚1𝑚2

𝑟2

• Special Relativity: 𝐸 = 𝑚𝑐2

• Special Relativity (Part II): Space is (essentially) the same as time

• Noether’s theorem: every continuous symmetry leads to a conservation law

• Landau Theory: Phase transitions are due to change of symmetries

• Fluctuation-Dissipation Theorem: dissipation must balance with fluctuation

• … 
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Theories of physics?

• Theoretical physics involves creating simple concepts and connect them
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Physics
• Continuous symmetry
• Discrete symmetry
• Phase transitions
• Latent heat
• Entropy
• Conservation laws
• Topology
• Dissipation
• Classification of matters
• Universal classes
• Goldstone mode
• Uncertainty relations
• Skin effects
• …



Theories of AI?

• Weight decay improves generalization (Krogh & Hertz. 1991)

• Weight decay determines the effective learning rate (arxiv/2010.02916)

• Regularization is necessary for neural collapse (arxiv/2410.04887)

• Overparametrized models can memorize all data and still generalize 
(arxiv/1611.03530)

• All local minima are global (arxiv/1605.07110)

• All global minima are connected in overparametrized networks
(arxiv/1901.07417)

• …

• We also need to invent and connect concepts
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Physics of AI?

• Link fundamental concepts of physics to those of AI
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Physics
• Continuous symmetry
• Discrete symmetry
• Phase transitions
• Latent heat
• Entropy
• Conservation laws
• Topology
• Dissipation
• Classification of matters
• Universal classes
• Goldstone mode
• Uncertainty relations
• Skin effects
• …

AI
• Reasoning
• Generalization
• Optimization
• Learning dynamics
• Overparametrization
• Scaling laws
• Neural collapse
• Neural feature ansatz
• Neural tangent kernel
• Feature learning
• Mode connectivity
• Emergence (of capabilities)
• …

?



Fundamental Concepts of Physics?

“It is only slightly overstating the case to say that physics is the 
study of symmetry. ”                                        --Philip W. Anderson

• Noise is perhaps the second most important concept
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Fundamental Concepts of Physics?

“It is only slightly overstating the case to say that physics is the 
study of symmetry. ”                                        --Philip W. Anderson

• Noise is perhaps the second most important concept:
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• Continuous symmetry
• Discrete symmetry
• Phase transitions
• Latent heat
• Entropy
• Conservation laws
• Topology
• Dissipation
• Classification of matters
• Universal classes
• Goldstone mode
• Uncertainty relations
• Skin effects

Symmetry Noise



Fundamental Concepts of deep learning?

• If fully unconstrained, we have curse of dimensionality

• Overparametrized models often find good enough solutions

→There are simplicity biases in deep learning
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Fundamental Concepts of deep learning?

• If fully unconstrained, we have curse of dimensionality

• Overparametrized models often find good enough solutions

→There are simplicity biases in deep learning
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Solutions found 
by practical 

models trained 
with SGD

All solutions

Simple 
solutions

Complex 
solutions

Why?



Hypothesis
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Symmetry + Noise + Regularization ≈ Simplicity Bias 
(for Deep Learning)



Simplicity Triangle
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Regularization
(learning theory)

Noise
(optimization,
thermodynamics)

Symmetry
(physics)

Conservation laws
Saddle points
Plateaus of training

Exploration
Uncertainty
Flatter minima (?)

Norm reduction
Prevent overfitting (?)
Generalization bounds

?arxiv/1806.00900
arxiv/2012.04728

Vapnik (1998)
arxiv/1503.00036

arxiv/1704.04289
arxiv/2002.03495
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[1] Symmetry Induces Structure and Constraint of Learning. 

ICML 2024



Two Types of symmetries in Deep Learning

1. Data symmetry:
• Equivariant networks

2. Parameter symmetry
• Can be leveraged to understand the learning dynamics and loss 

landscape of neural networks

13

Definition. Let 𝐺 be a group. The loss function 𝐿(𝜃) has a 𝐺-symmetry if
𝐿 𝜃 = 𝐿 𝑔𝜃

for all 𝜃 and 𝑔 ∈ 𝐺.



Landscape of models with symmetry

• Consider quadratic regression with 𝐿2 regularization (weight 
decay):

𝐿(𝑤) = 𝑤2𝑥 − 𝑦
2
+ 𝛾𝑤2
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Small 𝛾 Intermediate 𝛾 Large 𝛾



Landscape of models with symmetry

• The symmetric solution becomes the global minimum at strong 
regularization
• Can be generalized to high dimension
• Can be generalized to an arbitrary discrete group

• Setting:
𝐿 𝜃 = 𝐿0 𝜃 + 𝛾||𝜃||2
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Theorem. (Informal) Let 𝐿0(𝜃) have the 𝐺-symmetry. Then, if 𝛾 is large 
enough, all global minima 𝜃∗ of the 𝐿(𝜃) satisfy

𝑔𝜃∗ = 𝜃∗

for any 𝑔 ∈ 𝜃∗.
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small 𝛾 large 𝛾



Abundance of Mirror symmetries

Symmetry Loss Symmetry 
Projector

Symmetric State

Rescaling
invariance

ℓ0 𝑢,𝑤 = ℓ0(𝜆𝑢, 𝜆
−1𝑤)

𝑂𝑂𝑇 =
𝐼𝑤 0
0 𝐼𝑢

𝑢 = 0,𝑤 = 0

Rotation
invariance

ℓ0 𝑊 = ℓ0(𝑅𝑊)
for arbitrary orthogonal 𝑅

𝑂𝑂𝑇 =
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝑛𝑇𝑊 = 0
for arbitrary 𝑛

Permutation
invariance

ℓ0 𝑢,𝑤 = ℓ0(𝑤, 𝑢) 𝑂𝑂𝑇 =
0 𝐼𝑢
𝐼𝑤 0

𝑤 = 𝑢

17



• In words,
• Rescaling symmetry → sparsity
• Rotation symmetry → low rankness
• Permutation symmetry → identical neurons

• With 𝐿2 regularization, every discrete symmetry leads to a 
structured constraint of learning
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Implication for the loss landscape

• When ℤ2 symmetries exist, 1d projections of the loss landscape are 
symmetric around the mirror surface (let OT𝑤 = 𝑠𝑛, for a unit vector 
𝑛)

ℓ 𝑠 = 𝑐0𝑠
2 + 𝑐1𝑠

4 + 𝑂(𝑠6)

• Sign of 𝑐0 determines the local geometry

19



Activation pattern of ResNet18

20

Preactivation

no weight decay with weight decay

Preactivation and 
postactivation have a similar 
rank

Postactivation



Dimensional Collapse in Self-Supervised 
Learning
• The SimCLR loss has a rotation symmetry between the data point 

pairs

*Ziyin et al. What shapes the loss 
landscape of self-supervised learning?
ICLR 2023
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Posterior collapse in Bayesian deep learning

• The ELBO loss is invariant to a simultaneous rotation of the 
decoder input and incoder output

*Wang et Ziyin. Posterior collapse 
in a latent variable model.
NeurIPS 2022
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Removing symmetry also Removes the 
Constraint

23

Resnet 18



Message

• Discrete symmetries creates constraints over model parameters 
and model capacity

• In physics terms, collapses are transitions from symmetry-broken 
states to symmetry states
• One can leverage symmetry to design training algorithms (arxiv/2210.01212)

24

[1] Symmetry Induces Structure and Constraint of Learning. 

ICML 2024
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An example

• Consider a simple example with rescaling symmetry:
ℓ 𝑢, 𝑤 = 𝑢𝑤𝑥 − 1 2

where 𝑥 ∼ 𝑁(0,1).

• Under gradient flow, 𝑢2 −𝑤2 does not change in training

2024/10/24 26

Video not ready!



Lagrangian Formalism

• Training proceeds with continuous-time gradient descent,
ሶ𝜃 = −∇𝜃𝐿(𝜃)

• The training loss itself is the Lagrangian of the system (Bregman 
Lagrangian):

ℒ = 𝐿(𝜃)

• Under GD, the learned solution is dependent on the initialization
27

Noether’s Theorem. (Exaggerated) Every continuous symmetry of the 
loss (𝐿 𝜃 = 𝐿(𝑔(𝜃))) leads to a conserved quantity 𝐶

𝑑

𝑑𝑡
𝐶 𝜃 = 0



Two common continuous symmetry

• Continuous Symmetries in deep learning
• Rescaling symmetry: 𝐿0 𝑢,𝑤 = 𝐿0(𝜆𝑢, 𝜆

−1𝑤)
• ReLU activation, linear models

• The norm difference is conserved: 𝑢 2 − 𝑤 2

• Double rotation symmetry: 𝐿0 𝑈,𝑊 = 𝐿0(𝑈𝐴
−1, 𝐴𝑊)

• Matrix factorization (𝑓 𝑥 = 𝑈𝑊𝑥), transformers

• The matrix product is conserved: 𝑈𝑇𝑈 −𝑊𝑊𝑇

28



Breakdown of Noether’s Theorem

• In actual model training, the training process is always stochastic

• Even if ℓ 𝜃 has a symmetry with probability 1, Noether’s theorem 
is no longer applicable

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ≠ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑒

• Can we still say something universal?

29



General Theory

• Let ℓ(𝜃) have an exponential symmetry: with probability 1, for a 
fixed symmetric matrix 𝐴 and any 𝜆 ∈ ℝ,

ℓ 𝜃 = ℓ(𝑒𝜆𝐴𝜃)

30



General Theory

• Noether Charge: 𝐶𝐴(𝜃) = 𝜃𝑇𝐴𝜃

• Under continuous-time GD: 
𝑑

𝑑𝑡
𝐶𝐴 = 0

• Under SGD: 
𝑑

𝑑𝑡
𝐶𝐴 = Tr[Σ 𝜃 𝐴]

• Every exponential symmetry leads to a unique and attractive fixed 
point (in the degenerate direction) for training.

31

Theorem 4.3 (Fixed point theorem. Informal). For every A-exponential 
symmetry, and every 𝜃, there exists a unique and attractive 𝜆∗ such 
that, 

𝑑

𝑑𝑡
𝐶𝐴 𝑒𝜆

∗𝐴𝜃 = 0



Example of Scale Invariant Losses

• Consider a 2d problem with scale invariance: ℓ 𝜃 = ℓ(𝜆𝜃)

• The gradient ∇ℓ must be tangent to conservation laws

32

∇ℓ ∇ℓ

Step 𝑡 Step 𝑡 + 1

𝜃𝑡

𝜃𝑡+1

Scale invariance →
A systematic flow towards infinity



Applications
• A deep linear network:

ℓ = 𝑊𝐷𝑊𝐷−1…𝑊2𝑊1𝑥 − 𝑦 2

• Global minimum: 𝑊𝐷𝑊𝐷−1…𝑊2𝑊1 = 𝑉∗

• What is the fixed point of SGD?
• 1. Orthogonality: 𝑊𝐷−1, … ,𝑊2 are all (scalar multiples of) orthogonal matrices

• 2. Alignment: 𝑊𝐷−1…𝑊2 aligns with the left singular matrix Σ𝜖𝑊𝐷 and the right 

singular matrix of 𝑊1 Σ𝑥
• 3. Balance: all the following matrices have the same norm: 

Σ𝜖𝑊𝐷,𝑊𝐷−1, … ,𝑊2,𝑊1 Σ𝑥

33



34

SGD can drive the sharpness both up and 
down (depending on Σ𝑥 and Σ𝜖 and init.)

Similar alignment in nonlinear nets



Message
• Symmetry implies different things for deterministic dynamics and 

stochastic dynamics
• Deterministic: conservation law
• Stochastic: unique equilibrium

• Under GD, the learned solutions are determined by initialization

• Under SGD, the learned solutions are determined by the gradient 
noise, and independent of initialization

35

[2] Loss Symmetry and Noise Equilibrium of Stochastic 

Gradient Descent. NeurIPS 2024
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[3] Formation of Representations in Neural Networks. 

arxiv/2410.03006

https://arxiv/2410.03006


Latent Representation of Neural Networks

• Neural Networks process information layer by layer:
𝑥 → ℎ1 → ℎ2 → ⋯ → ℎ𝐷 → 𝑦

• During training, the latent variables ℎ becomes increasingly 
structured 

• Of particular interest to deep learning and neuroscience is the 
second moment of the latent variables

𝐻 ≔ 𝔼[ℎℎ𝑇]

• We will refer to 𝐻 as the representation
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Latent Representation 
• After training, the representation becomes highly structured:
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Init. End



Latent representation

• Consider any layer connected by a linear weight:
ℎ𝑏 = 𝑊ℎ𝑎(𝑥)

• The model is arbitrarily nonlinear:
𝑓 𝑥 = 𝑓 ℎ𝑏 𝑥

• We are also concerned with the gradient of the neurons
𝑔𝑏 = ∇ℎ𝑏ℓ
𝑔𝑎 = ∇ℎ𝑎ℓ

• ℓ(𝜃, 𝑥) is the per-sample loss

2024/10/24 39



How does latent representations form?
• Neural Collapse (NC) is found to happen in the penultimate layer 

of overparametrized classifiers

• When NC happens,
𝔼 ℎ𝑎ℎ𝑎

𝑇 ∝ 𝑊𝑇𝑊

• Neural feature ansatz (NFA) states that during the training of fully 
connected networks,

𝑊𝑇𝑊 ∝ 𝔼 ∇ℎ𝑎ℓ(∇ℎ𝑎ℓ)
𝑇

2024/10/24 40

Papyan et al. 
PNAS 2020

Radhakrishnan et al. 
Science 2024



Canonical Representation Hypothesis

• Together, this implies that the neuron gradient 𝑔, weight 𝑊, and 
activations ℎ are well aligned

• There exists six possible alignments between these quantities of the 
same layer:

where c ∈ {𝑎, 𝑏}, 𝐻𝑐 = 𝔼[ℎ𝑐ℎ𝑐
𝑇], 𝐺𝑐 = 𝔼 𝑔𝑐𝑔𝑐

𝑇 , 𝑍𝑎 = 𝑊𝑇𝑊,𝑍𝑏 = 𝑊𝑊𝑇

• That all six relations are satisfied is referred to as the CRH

2024/10/24 41



Canonical Representation Hypothesis

• There exists six possible alignments between these quantities of the 
same layer:

where c ∈ {𝑎, 𝑏}, 𝐻𝑐 = 𝔼[ℎ𝑐ℎ𝑐
𝑇], 𝐺𝑐 = 𝔼 𝑔𝑐𝑔𝑐

𝑇 , 𝑍𝑎 = 𝑊𝑇𝑊,𝑍𝑏 = 𝑊𝑊𝑇
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Canonical Representation Hypothesis

• Meaning:

1. Neuron variation is aligned with its importance

2. Representation is fully compact and robust to perturbations

3. The information processing becomes invertible
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How to prove it?

• Consider an overdamped particle moving in a harmonic potential, 
with random force 𝐷𝜉 𝑡 :

ሶ𝑥 = −𝜇𝑥 + 𝐷𝜉(𝑡)
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How to prove it?

• Consider an overdamped particle moving in a harmonic potential, 
with random force 𝐷𝜉 𝑡 :

ሶ𝑥 = −𝜇𝑥 + 𝐷𝜉(𝑡)

• At stationarity, the rate of dissipation must balance with the 
fluctuation:

𝐷 = 𝜇⟨𝑥2⟩

• This is the Einstein Relation (1905)
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Fluctuation-Dissipation Theorem 

• In deep learning, the time evolution is induced by the learning 
algorithm (SGD):

Δ𝜃 = −𝜂 ∇𝜃ℓ 𝜃, 𝑥 − 𝛾𝜃

• 𝜂 is the learning rate

(Stochastic) 
loss function 
minimization

Weight decay 
that prevents 
overfitting
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Fluctuation-Dissipation Theorem 

• For our purpose, we are interested in the time evolution of the 
representation:

• At stationarity,

2024/10/24 48

Drift, Energy minimization Diffusion



Fluctuation-Dissipation Theorem
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Polynomial Alignment Hypothesis

• The spectra of 𝐻, 𝐺, 𝑍 are power-laws of each other when the 
CRH is violated
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Summary

• Fluctuation-Dissipation Theorem (FDT) is a main mechanism for 
the formation of representation in neural networks

• FDT leads to the emergence of the canonical representation, 
where weights, representation and gradients are all aligned

• Breaking of the CRH leads to reciprocal power-law relations

2024/10/24 51



Takeaways

• Can we understand fundamental aspects of deep learning with 
physics? 
• Yes

• Are there universal laws (“alternative physics”) that exists uniquely 
in deep learning?
• Yes (and we need to invent new mathematical tools to find them!)

• How can physics help understand deep learning?
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How can physics help understand deep 
learning?
• Treat deep learning as an empirical science

• “This Analysis consists in making Experiments and Observations, and in 
drawing general Conclusions from them by Induction” -- Newton

• Connect concepts from physics to concepts in deep learning
• E.g. symmetry = constraint

• Use physics mechanisms to explain deep learning phenomena
• E.g. Fluctuation Dissipation Theorem → Representation alignment

• Leverage these understanding to design novel algorithms
• E.g. engineer artificial symmetries to compress neural networks
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Collaborators
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Thanks
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[3] Formation of Representations in Neural Networks. arxiv/2410.03006
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Violation of CRH 
• CRH is more like to be violated than hold

• The following theorem characterizes what happens if the CRH is 
partially violated:
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Polynomial Alignment Hypothesis
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Polynomial Alignment Hypothesis

• The spectra of 𝐻, 𝐺, 𝑍 are power-laws of each other when the 
CRH is violated
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