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We model the strategic interaction between fundamental investors and “back-runners,”
whose only information is about the past order flow of fundamental investors. Back-
runners partly infer fundamental investors’ information from their order flow and exploit
it in subsequent trading. Fundamental investors counteract back-runners by randomizing
their orders, unless back-runners’ signals are too imprecise. Surprisingly, a higher accuracy
of back-runners’ order flow information can harm back-runners and benefit fundamental
investors. As an application of the model, the common practice of payment for (retail) order
flow reveals information about institutional order flow and enables back-runners to earn
large profits. (JEL G14, G18)
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This paper studies the strategic interaction between fundamental informed
trading and order flow informed trading, as well as its implications for market
equilibrium outcomes. By order flow informed trading, we mean strategies
that begin with no innate trading motives—be it fundamental information or
liquidity needs—but instead learn about other investors’ order flows and then
act accordingly. A primary example of order flow informed trading is “order
anticipation” strategies. According to the Securities and Exchange Commission
(2010, pp. 54–55), order anticipation “involves any means to ascertain the
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existence of a large buyer (seller) that does not involve violation of a duty,
misappropriation of information, or other misconduct. Examples include the
employment of sophisticated pattern recognition software to ascertain from
publicly available information the existence of a large buyer (seller), or the
sophisticated use of orders to ‘ping’ different market centers in an attempt to
locate and trade in front of large buyers and sellers [emphasis added].”

Order anticipation strategies have always been controversial and recently
generated heated debates in the context of high-frequency traders (HFTs),
especially following the publication of Lewis (2014).1 Although most
(reluctantly) agree that such strategies are legal in today’s regulatory
framework, many investors and regulators have expressed severe concerns
that they could harm market quality and long-term investors. For example,
in its influential Concept Release on Equity Market Structure, Securities and
Exchange Commission (2010, p. 56) asks: “Do commenters believe that order
anticipation significantly detracts from market quality and harms institutional
investors?”

Motivated by such regulatory concerns, this paper proposes a simple model
to formally analyze the strategic interaction between institutional investors and
strategic traders that use order anticipation strategies based on past order flows,
which we refer to as “back-running.” We also examine the effect of back-
running on institutional and retail investors as well as market quality.

Our model adds back-runners to an otherwise standard two-period Kyle
(1985) model. There are I ≥1 fundamental investors, J ≥1 back-runners, noise
traders, and a competitive market maker. In the first period, each fundamental
investor observes a component fi of the true asset value v, where v =p0 +

∑
i fi

and the components {fi} are independent. Fundamental investors and noise
traders submit market orders, which are executed by the competitive market
maker at the conditional expected value of the asset given the total order
flows. Although back-runners start with no fundamental information or liquidity
needs, each receives a noisy signal of the fundamental investors’ total order flow
in period 1, denoted X1, after that order is executed by the market maker. This
information allows the back-runners to partly infer the fundamental investors’
private information. In the second period, back-runners join fundamental
investors and noise traders in trading in the market, and their aggregate
order flow is again filled by the competitive market maker. We characterize
a linear equilibrium in which each fundamental investor and each back-runner
maximizes her profit, taking everyone else’s strategy as given.

The presence of back-runners substantially changes the strategies of
fundamental investors. In particular, we show that if the back-runners’ signals
about order flows are sufficiently precise, their optimal trading strategies involve
randomization, that is, mixed strategies. To see why a pure strategy is not

1 For example, Harris (2003, p. 245) writes “(o)rder anticipators are parasitic traders. They profit only when they
can prey on other traders” [emphasis in original].
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optimal, consider the extreme case in which the back-runners’ signals are
perfect. In this case, a pure strategy by fundamental investors completely
reveals their private information to the back-runners and reduces their profits
through competition. Instead, fundamental investors’ optimal strategy is
to add endogenous, normally distributed noise into their period-1 orders.
By continuity, randomization remains optimal if back-runners’ signals are
sufficiently precise, that is, if the standard deviation of the noise in signal is
below a certain threshold that we can compute. A mixed strategy equilibrium of
this nature is first shown by Huddart, Hughes, and Levine (2001) in a model with
a monopolist insider, whose trades are publicly disclosed ex post. The mixed
strategy also nicely echoes Stiglitz’s (2014, p. 8) remark on high-frequency
trading: “[T]he informed, knowing that there are those who are trying to extract
information from observing (directly or indirectly) their actions, will go to great
lengths to make it difficult for others to extract such information.”

A major contribution of our analysis relative to Huddart, Hughes, and Levine
(2001) is that randomization is not only possible but also likely. In particular, we
show that a moderate number of back-runners sufficiently widens the parametric
region for randomization so that a mixed strategy equilibrium is likely to obtain.
For example, for ten back-runners, a choice motivated by van Kervel and
Menkveld (2019), the noise threshold in a back-runner’s signal is comparable to
the amount of noise trading in the entire market. This is not a stringent condition
on the accuracy of back-runners’ order flow information. Intuitively, as more
back-runners join the market, information leakage becomes more costly, and
the fundamental investors have stronger incentives to randomize.

Furthermore, the model generates new theoretical results that we did not
expect ex ante. For example, in the mixed strategy region, for sufficiently many
back-runners, increasing the accuracy of back-runners’ signals can actually
reduce back-runners’ profits and increase fundamental investors’ profits. This
result is analytically proven for the special case of a single fundamental investor
and holds in numerical calculations for a general number of fundamental
investors. In addition, in the pure strategy region, the total profit of back-runners
increases in the number J of back-runners if J ≤3 and decreases in J if J >3.
This result suggests that the industry structure of back-runners is likely to
gravitate toward a tight oligopoly of three or four firms, but not a duopoly or a
monopoly.

The most direct empirical prediction from our theory is that certain HFTs that
can detect institutional orders are also able to anticipate their future paths and
then trade in the same direction for profits. Our prediction contrasts with the
market-making view about HFTs, which should trade in the opposite direction
of institutional investors. To test this prediction, the relevant data should identify
institutional investors and HFTs. To the best of our knowledge, three empirical
studies of HFTs have used data of this granularity: van Kervel and Menkveld
(2019) in the Swedish equity market, Korajczyk and Murphy (2019) in the
Canadian equity market, and Tong (2015) in the U.S. equity market.
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van Kervel and Menkveld (2019) and Korajczyk and Murphy (2019) directly
test and support our prediction about HFT behavior. van Kervel and Menkveld
(2019) find that certain HFTs initially provide liquidity when institutional
investors start executing their orders, but if such order execution takes a long
time, the HFTs eventually reverse course and trade in the same direction as the
institutions. Moreover, HFTs’ same-direction trading is associated with higher
permanent price impact than opposite-direction trading. Korajczyk and Murphy
(2019) find that “there is a significant increase in same-direction abnormal
trading activity by HFTs relative to their opposite-direction abnormal activity
when an institutional trade is being executed.” They also find that institutional
trading costs dropped after an exogenous reduction in HFT activity, caused by
a regulatory change that increases the cost of sending electronic messages to
Canadian exchanges. Tong’s (2015) empirical strategy is not a direct mapping
to our theory, but her evidence—an increase in HFT activity is associated with
a higher implementation-shortfall cost of institutions—is consistent with our
prediction.2

Beyond the HFT context, back-running also provides a useful framework to
interpret the behavior of financial intermediaries. Using transaction-level data
from a group of institutional investors, Di Maggio et al. (2019) find evidence
that brokers sometimes leak informed order-flow information to their best
clients, who then earn excess returns by trading in the same direction as those
informed orders. In a follow-up study, Barbon et al. (Forthcoming) present
similar evidence about fire sales, although in this case brokers leak information
about liquidity shocks, not fundamental values.

Our results provide a natural theoretical foundation for the use of randomiza-
tion in the execution of large institutional orders. While randomization in our
two-period model boils down to adding a mean-zero perturbation, the practical
implementation could involve using irregular execution size, time intervals, or
speed, among others. For example, Sağlam (2018) finds that the implementation
shortfall of a client order is higher if it is split and executed in a regular manner,
in the sense of more regular trade sizes, more regular time intervals between
trades, or a more regular rate of execution. Sağlam’s interpretation, as well as
ours, is that any such regularity makes the large client order detectable and
makes back-running easier.

As an application of the model, we estimate the value of retail order flow
information in U.S. equity markets through the lens of back-running. Under
the interpretation that retail order flows are proxies for noise trading and
institutional order flows are proxies for informed trading, information about
retail order flows is equivalent to information about institutional order flows,
by market clearing. Numerical solutions of the equilibrium under reasonable

2 Somewhat relatedly, Hirschey (2018) finds that HFTs’ aggressive orders lead those of other investors, and these
patterns are stronger in situations when the non-HFTs are less concerned with hiding their order flows. His data
do not identify institutional orders.
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parameters suggest that back-runners’ profits are in the order of 5–30 bps
of retail dollar volume, or billions of dollars per year, whereas institutional
investors’ profits are in the order of 70–80 bps of retail dollar volume, or tens of
billions of dollars per year. The order of magnitude of these estimates suggests
that the common practice of payment for (retail) order flow in U.S. equity
markets could be an important yet overlooked channel of the back-running of
institutional orders.

Finally, let us caution that our model is inherently stylized, with only two
periods and exogenous noise trading, among other assumptions. A full dynamic
model would be more realistic and a better match to the data, but we have not
found a way to solve it. In addition, our theory is meant to capture only one
aspect of HFTs, namely their back-running strategies. The other side of the coin,
namely, the market-making strategies of HFTs, also receives strong empirical
support, as surveyed by Jones (2013) and Menkveld (2016). A useful future
research direction is to incorporate multiple dimensions of HFT strategies in
a coherent theoretical framework and use it for better understanding of the
data and implications for policy. The ambiguous and nonmonotone theoretical
predictions on market quality and various traders’ profits in our current model
already suggest that the qualitative results will likely remain ambiguous in
a more comprehensive model. Yet future research may find useful empirical
proxies or structural methods to bound parameter values to a narrower range,
where model implications can be directly assessed quantitatively.

At a technical level, the model of our paper is closest to that of Huddart,
Hughes, and Levine (2001), which is an extension of Kyle (1985). Motivated
by the mandatory disclosure of trades by firm insiders, they assume that the
insider’s orders are disclosed publicly and perfectly after being filled. They
show that the only equilibrium in their setting is a mixed strategy one. In
their model the mandatory public disclosure unambiguously improves price
discovery and market liquidity in each period. Buffa (2013) studies disclosure
of insider trades when the insider is risk averse. His equilibrium with disclosure
also features mixed strategies. In contrast to Huddart, Hughes, and Levine
(2001), however, he shows that disclosing insider trades can harm price
discovery by making the risk-averse insider trade less aggressively. Besides
these two most closely related papers, several other papers with mixed strategy
equilibria can be found in the literature, but they are quite different in terms of
the economic questions or modeling approaches.3

Our results differ from those of Huddart, Hughes, and Levine (2001) and
Buffa (2013) along a number of important dimensions. First, our model is

3 In a continuous-time extension of Glosten and Milgrom (1985) model, Back and Baruch (2004) show that there
is a mixed strategy equilibrium in which the informed trader’s strategy is a point process with stochastic intensity.
Baruch and Glosten (2013) show that “flickering quotes” and “fleeting orders” can arise from a mixed strategy
equilibrium in which quote providers repeatedly undercut each other. Yueshen (2015) shows that if market makers
are not perfectly competitive and the number of market makers is uncertain, then market makers who are present
use a mixed pricing strategy. These papers do not explore the question of trading on order flow information or a
switch between pure and mixed strategy equilibria.
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more general in allowing an arbitrary number of fundamental investors and
back-runners. This setup reveals some new theoretical results that one would not
expect ex ante. For example, as mentioned earlier, an increase in the accuracy of
back-runners’ signals may reduce their profits if there are sufficiently many of
them. Second, equipped with the general model, we show that the mixed strategy
equilibrium is not only possible but also likely, under reasonable parameters.
This broadens the applicability of this class of models. Third, while their models
apply to public disclosure of insider trades, our model is much more suitable to
analyze the private learning of order flow information by proprietary firms such
as HFTs. Fourth, and finally, while our model remains stylized, it is more general
than earlier models so that we have more confidence in calibrating it. The model-
implied profits of institutional investors are fairly close to those from mutual
fund studies, which, in turn, suggests that our estimation of back-runners’ profits
are not entirely off target.

Also related to our paper, Madrigal (1996) considers a two-period Kyle
(1985) model with an insider and a “(non-fundamental) speculator.” Madrigal’s
equilibrium analysis contains some errors and misses the mixed strategy
equilibrium, so we refer readers to Yang and Zhu (2017) for a full discussion.

An earlier literature explores information about liquidity-driven order flows,
including Brunnermeier and Pedersen (2005), Attari, Mello, and Ruckes (2005),
Cao, Evans, and Lyons (2006), Carlin, Lobo, and Viswanathan (2007), and
Bernhardt and Taub (2008). Our model differs from them in two ways: (1)
the relevant information is about asset fundamentals, not liquidity needs, and
(2) order flow information is learned over time, not endowed instantly. More
recently, in partial equilibrium setting, Boulatov, Bernhardt, and Larionov
(2016) study the strategic interaction among a large liquidity trader and several
“parasitic traders” when the price impact is exogenously given.

In terms of its applications, our paper is most related to the recent theoretical
literature on HFTs. Biais, Foucault, and Moinas (2015) model HFTs as agents
who have a higher probability of finding a trade and who have information
about the asset’s fundamental value. Foucault, Hombert, and Roşu (2016) model
HFTs who continually receive proprietary information about the innovations
(or news) in the asset’s fundamental value. Roşu (2018) develops a model
in which traders differ in their information processing speed and shows
that the order flow of fast traders predicts the order flow of slow traders
(anticipatory trading). Jovanovic and Menkveld (2012) show that informed
HFTs can alleviate adverse selection and restore trades. Hoffmann (2014)
show that HFTs’ ability to react to information fast reduce their own risk of
being picked off but may have the opposite effect on slow traders. Budish,
Cramton, and Shim (2015) argue that HFTs’ ability to “snipe” stale quote is a
major concern for the design of exchanges. Baldauf and Mollner (2018) show
that liquidity-providing HFTs and quote-sniping HFTs respond differently
to the same publicly observed transaction. Cespa and Vives (2016) model
a market in which agents’ heterogeneous speeds creates market instability.
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Li (2014) models the “front-running” behavior of multiple HFTs who observe
the aggregate order flow ex ante with noise. Relative to these studies and
many others (see Menkveld 2016 for a comprehensive survey), back-runners
in our model are not as informed as fundamental investors, but back-runners
can collect information from fundamental investors’ trading behavior. It is the
separation between fundamental information and order flow information that
gives rise to the interesting interactions and implications derived from our
model.

1. A Model of Back-Running

We consider a variant of the two-period Kyle (1985) model with one risky asset.
The risky asset has a liquidation value given by a random variable

v =p0 +
I∑

i=1

fi =p0 +f1 + ...+fI , (1)

where p0 is a commonly known constant, each fi is normally distributed with
mean 0 and variance σ 2

f >0, and {f1,...,fI } are mutually independent. Such
an additive payoff structure is used in, for example, Back, Cao, and Willard
(2000), Bernhardt and Miao (2004), Brunnermeier (2005), Goldman (2005),
Yuan (2005), Kondor (2012), and Goldstein and Yang (2015), among others.4

For convenience, we write �0 ≡V ar(v)=Iσ 2
f .

The market is populated by four types of players: I ≥1 fundamental investors,
J ≥1 back-runners, a representative competitive market-maker, and noise
traders. Everyone is risk neutral.

At the beginning of period 1, fundamental investor i observes the private
signal fi . She places market orders x1,i and x2,i in periods 1 and 2, respectively.
Let us denote the aggregate period-1 order flow of all fundamental investors as

X1 ≡
I∑

i=1

x1,i . (2)

At the beginning of period 2, back-runner j observes a private signal of the
collective trade of fundamental investors in period 1:

sj =X1 +εj , (3)

where
εj ∼N

(
0,σ 2

ε

)
with σε ∈ [0,∞), (4)

where εj is independent of each other and of all other random variables. The
parameter σε captures the accuracy of back-runners’ signals (a smaller σε means

4 As pointed out by Paul (1993, p. 1477), this additive structure of information “is in the spirit of Hayek’s view
that one of the most important functions of the price system is the decentralized aggregation of information and
that no one person or institution can process all information relevant to pricing.” In practical terms, the additive
structure of information captures that different institutions have expertise in different styles or industries (see
Goldstein and Yang 2015 for more discussions).
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more accurate signals). We allow the degenerate case of σε =0, that is, the back-
runners observe X1 perfectly. After observing the private signal sj and period-1
price p1, back-runner j places a market order d2,j in period 2.

The total order flows from noise traders in period 1 and period 2 are,
respectively,

u1 ∼N
(
0,σ 2

u

)
, with σu >0, (5)

U2 ∼N
(
0,σ 2

U

)
, with σU >0. (6)

The potential heterogeneity in the noise traders’ variances in the two periods
is a reduced-form way to model the relative length of the two periods. For
example, if period 2 is much longer than period 1, we would expect σU >>σu.

The aggregate order flows in the two periods are, respectively,

y1 =
I∑

i=1

x1,i +u1, (7)

y2 =
I∑

i=1

x2,i +
J∑

j=1

d2,j +U2. (8)

At the end of period t , after observing the total order flow yt for that period,
the market-maker sets price pt according to the weak-efficiency rule, that is,

p1 =E (v|y1) and p2 =E (v|y1,y2). (9)

2. Equilibrium

We look for a perfect Bayesian equilibrium, in which the I fundamental
investors and the J back-runners choose their trading strategies to maximize
expected profits. The market maker’s strategy is pinned down by the weak-
efficiency rule.

We conjecture the following symmetric linear strategies:

x1,i = β1fi +zi , with zi ∼N
(
0,σ 2

z

)
, (10)

x2,i = β2 [fi −E (fi |y1)]−βx

[
x1,i −E

(
x1,i |y1

)]
, (11)

d2,j = δ
[
sj −E

(
sj |y1

)]
, (12)

p1 = p0 +λ1y1, (13)

p2 = p1 +λ2y2. (14)

These strategies are symmetric in the sense that the I fundamental investors
choose identical strategies and the J back-runners choose identical strategies.
That is, the parameters β1, β2, βx , and σz do not depend on i in (10) and (11),
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and the parameter δ does not depend on j in (12). The form of Equations (10)–
(12) is motivated by Bernhardt and Miao (2004), who specify that the trading
strategy of an informed agent is a linear function of each piece of his unrevealed
private information, that is, the difference between each signal of an informed
agent and the expectation of that signal given public information. In Equation
(10), we allow fundamental investors to play a mixed strategy in period 1 by
adding a random noise term zi . We can show that fundamental investors and
back-runners always play pure strategies in period 2 in a symmetric linear
equilibrium and, thus, we do not include a random noise term in Equations (11)
and (12).

We have followed Huddart, Hughes, and Levine (2001) and restricted
attention to normally distributed zi in order to maintain tractability. If σz =0,
fundamental investors play a pure strategy in period 1, and we refer to
the resultant linear equilibrium as a pure strategy equilibrium. If σz >0,
fundamental investors play a mixed strategy in period 1, and we refer to the
resultant linear equilibrium as a mixed strategy equilibrium. As we will show
shortly, by adding noise into their orders, the fundamental investors limit the
back-runners’ ability to infer their private information about v. To an outside
observer, the endogenously added noise zi may look like exogenous noise
trading.

As usual, Equations (13) and (14) simply say that the equilibrium pricing
rule is a linear function of net order flows.

2.1 Main derivation steps
2.1.1 Market maker’s decisions. In period 1, the market maker sees the
aggregate order flow y1 and sets p1 =E (v|y1). Using the conjectured trading
strategies and the projection theorem, we can compute

λ1 =
Cov(v,y1)

V ar (y1)
=

β1�0

β2
1�0 +Iσ 2

z +σ 2
u

. (15)

Similarly, in period 2, the market maker sees {y1,y2} and sets p2 =E (v|y1,y2),
which implies that λ2 = Cov(v,y2|y1)

V ar(y2|y1) . By the conjectured trading strategies and
applying the projection theorem, we have

λ2 =
(β2 −βxβ1 +δJβ1)�0 − β1�0

[
(β2−βxβ1+δJβ1)β1�0+(δJ−βx )Iσ 2

z

]
β2

1 �0+Iσ 2
z +σ 2

u⎡
⎣ (β2 −βxβ1 +δJβ1)2�0 +(δJ −βx)2Iσ 2

z +δ2Jσ 2
ε +σ 2

U

−
[
(β2−βxβ1+δJβ1)β1�0+(δJ−βx )Iσ 2

z

]2

β2
1 �0+Iσ 2

z +σ 2
u

⎤
⎦

. (16)

2.1.2 Back-runners’ decisions. πB
2,j =d2,j (v−p2) denotes back-runner j ’s

profit that comes from her traded2,j in period 2. Back-runner j observes
{
sj ,p1

}
and chooses d2,j to maximize E(πB

2,j |sj ,p1). Using the conjectured trading
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strategies and the pricing function (14), we can compute the first-order condition
(FOC), which delivers

d2,j =
E
(
v−p1|sj ,p1

)
2λ2

−
E
(∑

i x2,i +
∑

j ′ 
=j d2,j ′ |sj ,p1

)
2

. (17)

The second-order condition (SOC) is

λ2 >0. (18)

Note that by (13), the information set
{
sj ,p1

}
is equivalent to

{
sj ,y1

}
. Using

this fact and the conjectured trading strategies, we apply the projection theorem

to show that both E
(
v−p1|sj ,p1

)
and E

(∑
i x2,i +

∑
j ′ 
=j d2,j ′ |sj ,p1

)
are linear

functions of sj −E
(
sj |y1

)
. Inserting these linear functions into (17), we express

d2,j as a linear function of sj −E
(
sj |y1

)
. Finally, we compare this expression

with the conjectured strategy (12) to arrive at the following equation:

δ =
1

2

⎡
⎢⎣

1
λ2

β1�0
β2

1 �0+Iσ 2
z

−
(

β2
β1�0

β2
1 �0+Iσ 2

z
−βx

)
−(J −1)δ

⎤
⎥⎦ σ−2

ε(
β2

1�0 +Iσ 2
z

)−1
+σ−2

ε +σ−2
u

.

(19)

2.1.3 Fundamental investors’ problems. Fundamental investors trade in
both periods. We solve their problems by backward induction. Let πF

t,i =
xt,i (v−pt ) denote fundamental investor i’s profit that comes from her period-
t trade xt,i . In period 2, fundamental investor i chooses x2,i to maximize
E(πF

2,i |fi,p1,x1,i). Taking the FOC results in the following solution:

x2,i =
E
(
v−p1|fi,p1,x1,i

)
2λ2

−
E
(∑

i′ 
=i x2,i′ +
∑

j d2,j |fi,p1,x1,i

)
2

. (20)

The SOC is still λ2 >0, as given by (18). Applying the projection theorem,

we can express E
(
v−p1|fi,p1,x1,i

)
and E

[∑
i′ 
=i x2,i′ +

∑
j d2,j |fi,p1,x1,i

]
as linear functions of fi −E (fi |y1) and x1,i −E

(
x1,i |y1

)
. Inserting these

expressions into (20) and comparing with the conjectured strategy (11), we
have

β2 =
1

2λ2
, (21)

βx =
1

2

⎡
⎢⎣

1
λ2

β1
I−1
I

�0

β2
1

I−1
I

�0+(I−1)σ 2
z +σ 2

u

+(I−1)
−β2β1

�0
I

+βx

(
β2

1
�0
I

+σ 2
z

)
β2

1
I−1
I

�0+(I−1)σ 2
z +σ 2

u
+Jδ

σ 2
u

β2
1

I−1
I

�0+(I−1)σ 2
z +σ 2

u

⎤
⎥⎦.(22)

In period 1, fundamental investor i observes fi and chooses x1,i to maximize
E(πF

1,i +πF
2,i |fi), where the second-period profit πF

2,i is generated from the
optimal trading strategy (11). Direct computation shows
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E
(
πF,1 +πF,2|fi

)

=−
⎡
⎣λ1 −λ2

(
βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

)2
⎤
⎦x2

1,i

+

[
1−2λ2β2

(
βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

)]
fix1,i

+λ2

⎡
⎢⎣β2

2f 2
i +

⎛
⎜⎝ β2

β1
1
I
�0

β2
1 �0+Iσ 2

z +σ 2
u

−βx
β2

1
1
I
�0+σ 2

z

β2
1 �0+Iσ 2

z +σ 2
u

⎞
⎟⎠

2(
β2

1
I−1
I

�0

+(I −1)σ 2
z +σ 2

u

)⎤⎥⎦. (23)

Depending on whether fundamental investors play a mixed or a pure strategy
(i.e., whether σz is equal to 0), we have two cases:

Case 1. Mixed Strategy (σz >0)

For a mixed strategy to sustain in equilibrium, fundamental investors have to
be indifferent among all realizations of their order flows. This, in turn, means
that coefficients on x2

1,i and x1,i in (23) are equal to zero, that is,

λ1 −λ2

(
βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

)2

=0, (24)

1−2λ2β2

(
βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

)
=0. (25)

Case 2. Pure Strategy (σz =0)

If fundamental investors play a pure strategy, zi =0 (and σz =0) in the
conjectured strategy, and thus (10) degenerates to x1,i =β1fi . We take the FOC
of (23) and solve x1,i as a linear function of fi , which, compared with the
conjectured pure strategy x1,i =β1fi , implies

β1 =
1−2λ2β2

(
βx

β2
1

I−1
I

�0+(I−1)σ 2
z +σ 2

u

β2
1 �0+Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1 �0+Iσ 2

z +σ 2
u

)

2

[
λ1 −λ2

(
βx

β2
1

I−1
I

�0+(I−1)σ 2
z +σ 2

u

β2
1 �0+Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1 �0+Iσ 2

z +σ 2
u

)2
] . (26)

The SOC is

λ1 −λ2

(
βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

)2

>0. (27)
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In sum, a mixed strategy equilibrium is defined in terms of seven unknowns:
β1, σz, β2, βx , δ, λ1, and λ2. They are characterized by seven equations, (15),
(16), (19), (21), (22), (24), and (25), together with one SOC, (18).

In a pure strategy equilibrium, we have σz =0; thus, it is defined in terms of
six unknowns: β1,β2,βx,δ,λ1, and λ2. These six unknowns are determined by
six equations, (15), (16), (19), (21), (22), and (26), together with two SOCs,
(18) and (27).

2.2 Mixed strategy and pure strategy equilibria
After further simplification, we can characterize a mixed strategy equilibrium
and a pure strategy equilibrium in more parsimonious forms. That said, the
mathematical expressions are still involved and may not appear intuitive at first
sight. We will postpone the discussion of the intuition to Section 3 (the special
case of I =1).

Proposition 1 (Mixed strategy equilibrium). A mixed strategy equilibrium
is characterized by the following system of equations in three unknowns
(δ,β1,σz):

δ =

(
β2

1�0I −β2
1�0 +I 2σ 2

z −Iσ 2
z +3Iσ 2

u −σ 2
u

)(
β2

1�0 +Iσ 2
z +σ 2

u

)
2Jσ 2

u

(
β2

1�0I −β2
1�0 +I 2σ 2

z −Iσ 2
z +Iσ 2

u

) ,

(28)

δ =

β2
1 �0+Iσ 2

z +σ 2
u

2
(
β2

1 �0+Iσ 2
z

) + I−1
2I

(
β2

1 �0+Iσ 2
z +σ 2

u

)
β2

1
I−1
I

�0+(I−1)σ 2
z +2σ 2

u

2

(
β2

1 �0+Iσ 2
z

)−1
+σ−2

ε +σ−2
u

σ−2
ε

− Jσ 2
u

β2
1

I−1
I

�0+(I−1)σ 2
z +2σ 2

u
+(J −1)

, (29)

δ2Jσ 2
ε +σ 2

U =

(
σ 2

u −β2
1�0

)(
σ 2

u +β2
1�0 +σ 2

z I
)2

4β2
1�0σ 2

u

, (30)

where β1 ∈
(

0, σu√
�0

)
.

After we solve (δ,β1,σz), the other variables are given by

λ1 = λ2 =
β1�0

β2
1�0 +Iσ 2

z +σ 2
u

, (31)

βx =
1

2λ2
β1

I−1
I

�0 +Jδσ 2
u

β2
1

I−1
I

�0 +(I −1)σ 2
z +2σ 2

u

, (32)

β2 =
1

2λ2
. (33)

The price discovery variables are

�1 =V ar (v|y1)=

(
Iσ 2

z +σ 2
u

)
�0

β2
1�0 +Iσ 2

z +σ 2
u

, (34)
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�2 =V ar (v|y1,y2)

=�0
[(

IJ 2δ2σ 2
u +IJ δ2σ 2

ε −2IJ δσ 2
u βx +Iσ 2

U +Iσ 2
u β2

x

)
σ 2

z

+
(
Jδ2σ 2

u σ 2
ε +σ 2

Uσ 2
u

)]

×
[(

IJ 2δ2σ 2
u +IJ δ2σ 2

ε −2IJ δσ 2
u βx +�0Iβ

2
2 +Iσ 2

U +Iσ 2
u β2

x

)
σ 2

z

+�0J
2δ2β2

1σ 2
u +�0Jδ2β2

1σ 2
ε +Jδ2σ 2

u σ 2
ε

−2�0Jδβ2
1σ 2

u βx +2�0Jδβ1β2σ
2
u +�0β

2
1σ 2

U

+�0β
2
1σ 2

u β2
x −2�0β1β2σ

2
u βx +�0β

2
2σ 2

u +σ 2
Uσ 2

u

]−1

. (35)

The expected profits of each fundamental investor and each back-runner are,
respectively,

E(	F
i )=E(πF

1,i +πF
2,i) (36)

=λ2

⎡
⎢⎢⎣β2

2
�0

I
+

⎛
⎜⎝ β2

β1
1
I
�0

β2
1 �0+Iσ 2

z +σ 2
u

−βx
β2

1
1
I
�0+σ 2

z

β2
1 �0+Iσ 2

z +σ 2
u

⎞
⎟⎠

2(
β2

1
I −1

I
�0 +(I −1)σ 2

z +σ 2
u

)⎤⎥⎥⎦,

(37)

E
(
πB

2,j

)
=λ2δ

2

(
σ 2

ε +
�Xσ 2

u

�X +σ 2
u

)
, with �X =β2

1�0 +Iσ 2
z , (38)

and the expected loss of noise traders is

λ1σ
2
u +λ2σ

2
U . (39)

Proposition 2 (Pure strategy equilibrium). A pure strategy equilibrium is
characterized by the following system in two unknowns (β1,λ2)∈R

2
++:

λ2 =
(β2 −βxβ1 +δJβ1) �0σ 2

u

β2
1 �0+σ 2

u

(β2 −βxβ1 +δJβ1)2 �0σ 2
u

β2
1 �0+σ 2

u
+δ2Jσ 2

ε +σ 2
U

, (40)
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β1 =
1−

(
βx

β2
1

I−1
I

�0+σ 2
u

β2
1 �0+σ 2

u
+β2

β1
1
I
�0

β2
1 �0+σ 2

u

)

2

[
λ1 −λ2

(
βx

β2
1

I−1
I

�0+σ 2
u

β2
1 �0+σ 2

u
+β2

β1
1
I
�0

β2
1 �0+σ 2

u

)2
] , (41)

where

β2 =
1

2λ2
, (42)

δ =

1
2λ2

(
1
β1

+
β1

I−1
I

�0

β2
1

I−1
I

�0+2σ 2
u

)

2

(
β2

1 �0

)−1
+σ−2

ε +σ−2
u

σ−2
ε

− Jσ 2
u

β2
1

I−1
I

�0+2σ 2
u

+(J −1)

, (43)

βx =
1

2λ2
β1

I−1
I

�0 +Jδσ 2
u

β2
1

I−1
I

�0 +2σ 2
u

, (44)

λ1 =
β1�0

β2
1�0 +σ 2

u

, (45)

and one SOC:

λ1 −λ2

(
βx

β2
1

I−1
I

�0 +σ 2
u

β2
1�0 +σ 2

u

+β2
β1

1
I
�0

β2
1�0 +σ 2

u

)2

>0. (46)

The price discovery variables are

�1 = V ar (v|y1)=
σ 2

u �0

β2
1�0 +σ 2

u

, (47)

�2 = V ar (v|y1,y2)

= �0
Jδ2σ 2

u σ 2
ε +σ 2

Uσ 2
u⎡

⎣ �0J
2δ2β2

1σ 2
u +�0Jδ2β2

1σ 2
ε +Jδ2σ 2

u σ 2
ε

−2�0Jδβ2
1σ 2

u βx +2�0Jδβ1β2σ
2
u +�0β

2
1σ 2

U

+�0β
2
1σ 2

u β2
x −2�0β1β2σ

2
u βx +�0β

2
2σ 2

u +σ 2
Uσ 2

u

⎤
⎦

. (48)

The expected profits of each fundamental investor and each back-runner are,
respectively,

E
(
	F

i

)
=E(πF

1,i +πF
2,i)

=

⎡
⎣λ1 −λ2

(
βx

β2
1

I−1
I

�0 +σ 2
u

β2
1�0 +σ 2

u

+β2
β1

1
I
�0

β2
1�0 +σ 2

u

)2
⎤
⎦β2

1
�0

I
(49)
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+λ2

⎡
⎣β2

2
�0

I
+

(
β2

β1
1
I
�0

β2
1�0 +σ 2

u

−βx

β2
1

1
I
�0

β2
1�0 +σ 2

u

)2(
β2

1
I −1

I
�0 +σ 2

u

)⎤⎦,

E
(
πB

2,j

)
=λ2δ

2

(
σ 2

ε +
�Xσ 2

u

�X +σ 2
u

)
, with �X =β2

1�0, (50)

and the total expected loss of noise traders is

λ1σ
2
u +λ2σ

2
U . (51)

2.3 Baseline parameters for numerical comparative statics
The model can be numerically solved for any given set of parameters: I , J , p0,
�0, σu, σU , and σε. To help intuition, we interpret the full model as a trading day,
with each period corresponding to half a day. The traded asset is interpreted
as a typical stock in the U.S. equity market. In numerically calculating the
equilibrium, we set the baseline parameters as follows:

• p0 and �0. Because �0 =V ar[v]=p2
0V ar[v/p0], we normalize p0 =1

and set �0 to be the daily stock return variance. According to the CBOE,5

the VIX index has a daily average of about 18.5 from January 2004 to
February 2018, corresponding to an annualized volatility of 18.5% for
the S&P 500 index. Because a typical stock is more volatile than a stock
index, we set the baseline parameter to be an annualized return volatility
of 30%. Hence, we set

�0 =
(30%)2

252
=0.00036, (52)

corresponding to the volatility of
√

0.00036=1.9% per day, very close
to the calibration of Kyle and Obizhaeva (2016) that a typical stock has
a daily return volatility of 2%.

• σu and σU . We interpret the noise traders in the model as retail investors,
and set σu =σU =1 million shares. Given the normalized price of p0 =1,
this implies a daily dollar volume of retail investors of

E(|u1p1|+|U2p2|)≈E(|u1|+|U2|)p0

=

√
2

π
×2×1=1.6 millions of dollars, (53)

where the first step (“≈”) relies on the approximation that p1 and p2 are
close to p0 because the daily stock volatility is small. The implied daily

5 See http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data.
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retail volume of $1.6 million corresponds to a typical medium-cap stock
in U.S. equity markets.6

• I and J . van Kervel and Menkveld (2019) investigate the behavior
of high-frequency traders around large institutional investors’ order
execution on Nasdaq OMX. Their data contain 4 institutions and 10 high-
frequency traders. Because they observe the activities of all HFTs on trade
reports, setting J =10 seems reasonable. However, the actual number of
institutional investors is likely to be higher than 4. We thus consider a
few possibilities, I =4, I =100, and I =10,000. In our symmetric model,
each fundamental investor’s information is 1/I th of the total private
information in terms of variance.

One way to interpret the choice of I is to map it to the predictability of
v based on fi . In our model, the correlation between each fundamental
investor’s signal fi and the fundamental value v is

Corr(fi,v)=
Cov(fi,v)√

V ar[fi]V ar[v]
=

1√
I
. (54)

Under the assumption of I =4, I =100, and I =10,000, the correlation is
0.5, 0.1, and 0.01, respectively, corresponding to an R2 in a univariate
regression of v on fi of 0.25, 0.01, and 0.0001 at the daily frequency.
Thus, I =4 seems too low, and I =100 or I =10,000 seems more
seasonable.

We can also judge how reasonable the baseline calibrations of I are by
the “alpha” (or risk-adjusted return) generated by fundamental investors.
Each individual fundamental investor’s signal has a daily volatility of√

�0/I , and the daily alpha generated should be in the same order of
magnitude.7 Under

√
� =1.9% and I =10,000, the alpha is roughly

1.9 bps per day, or 4.8% per year, assuming that each fundamental
investor trades every day of the year. Alternatively, if I =100 and each
fundamental investor trades only once per month, the annual alpha is in
the order of 1.9%/10×12≈2.3% per year, which is also reasonable.

• The only remaining parameter, σε, is difficult to observe and is a key
variable that determines the nature of the equilibrium. Thus, we primarily
explore the variation in σε in subsequent analysis.

Figure 1 shows equilibrium outcomes as functions of σε (equivalently, as
functions of σε/σu, because σu =1), for various values of I . Looking across

6 Using 1 month of disaggregated data in various type of trading venues in U.S. equity markets, Menkveld, Yueshen,
and Zhu (2017) report that the average retail trading volume of large-, medium-, and small-cap stocks is 3,783
shares, 133 shares, and 70 shares per minute. Converted to daily frequency, the three categories have daily share
volume of 145.78 million shares, 51,870 shares, and 27,300 shares, respectively. If a typical stock has a price of
$30, then a typical medium-cap stock would have a daily dollar volume of $1.56 million.

7 A fully informed investor who buys one share if v−p0 >0 and sells one share otherwise makes a return
proportional to the volatility of v, that is, E(|v−p0|/p0)∝√

V ar(v/p0), which is just
√

V ar(v) under the
normalization of p0 =1.
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Figure 1
Comparative statics of the model
Parameters: �0 =0.32/252, σu =σU =1, and J =10. The three panels show I =4, I =100, and I =10,000,
respectively.

the three panels (as well as many others that we have calculated, but have not
reported), we observe that the shape of equilibrium does not depend critically
on I . Moreover, the other equilibrium outcome variables are also relatively
insensitive to I , with the exception of σz and E(	F ). As I increases, σz seems
to decrease at the rate

√
1/I , whereas E(	F ) seems to decrease at the rate 1/I .

The insensitivity to I of the equilibrium probably has to do with the model
setup that each fundamental investor observes an iid piece of information and
acts effectively as a monopolist on her piece of private information.8

8 As a comparison, Holden and Subrahmanyam (1992) show that if multiple informed traders have identical
information about the fundamental value, the competition produces very aggressive trading that the information
is revealed very quickly. This does not happen in our setting, because, again, each fundamental investor has
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Figure 1
(Continued)

In all panels of Figure 1, a mixed strategy equilibrium obtains if σε is below
about 1 (million shares). This condition implies a fairly inaccurate signal of
back-runners because the total volume of noise traders is about 1.6 (million
shares per day). In other words, the condition for the existence of a mixed
strategy equilibrium is not too stringent.

Further analytical results and sharper intuition can be obtained in the special
case of a monopolist fundamental investor, that is, I =1. We turn to this case in

a unique piece of information. Back, Cao, and Willard (2000) show that if multiple informed traders receive
imperfectly correlated signals about the fundamental value, then the “common” part of the signals is revealed
very quickly (like in Holden and Subrahmanyam 1992), but the remaining (idiosyncratic) parts are revealed
very slowly. Because of the analytical challenge, we have not solved the case with correlated signals (i.e., fi
and fj are correlated), but the insight from Back, Cao, and Willard (2000) suggests that our results on mixed
strategies would still apply whenever fundamental investors are trading on their unique pieces of information,
after revealing the common part, if any.
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Figure 1
(Continued)

the next section. Again, in light of Figure 1, the special case of I =1 does not
appear particularly restrictive for the vast majority of equilibrium outcomes.
(As we will show later, the equilibrium outcomes are more sensitive to J .)

3. Special Case of a Monopolist Fundamental Investor

The equilibrium characterization is not in closed form in the previous section.
To gain further intuition, in this section we consider the special case of I =1,
that is, a monopolist fundamental investor. In addition, our comparative statics
analysis reveals that it is the number J of back-runners rather than the number
I of fundamental investors that drives the patterns of variables. Thus, focusing
on the special case of I =1 allows us to deliver our qualitative results most
parsimoniously.
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Under I =1, we can show that the equilibrium is ultimately characterized by
three parameters:

J : number of back-runners (55)

θ ≡ σ 2
ε

σ 2
u

: accuracy of back-runners’ information (56)

η ≡ σ 2
U

σ 2
u

: relative size of markets over the two periods (57)

3.1 Mixed strategy equilibrium
Proposition 3. Suppose I =1. A linear mixed strategy equilibrium exists if
and only if

(J −4θ )

[
4θ

J
+η

(
J +2+4θ

J +1

)2
]

>2(1+4θ ), (58)

where θ =σ 2
ε /σ 2

u and η=σ 2
U/σ 2

u . If a mixed strategy equilibrium exists, it is
the unique linear mixed strategy equilibrium, which is specified by equations
(10)–(14) with

σ 2
z =

[
J −4θ

J +2+4θ
− 1

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2

]
σ 2

u , (59)

β1 =
1√

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2

σu√
�0

, (60)

β2 =
J +1

J +2+4θ

√
1+

4θ

J
+η

(
J +2+4θ

J +1

)2
σu√
�0

, (61)

βx =
J +1

J +2+4θ
, (62)

δ =
2(J +1)

J (J +2+4θ )
, (63)

λ1 = λ2 =
J +2+4θ

2(J +1)
√

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2

√
�0

σu

. (64)

The conditions under which the mixed strategy equilibrium exists can be
spelled out more explicitly.

Corollary 1. Suppose I =1. Then
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• If J is sufficiently large, there always exists a unique linear mixed strategy
equilibrium.

• For a fixed and sufficiently small σ 2
ε , as η≡ σ 2

U

σ 2
u

becomes sufficiently

large, there always exists a unique linear mixed strategy equilibrium.
• If σε =0, then there exists a linear mixed strategy equilibrium if and only

if

J

(
J +2

J +1

)2

η>2. (65)

If a mixed strategy equilibrium exists, it is the unique linear mixed
strategy equilibrium.

This corollary essentially says that a mixed strategy equilibrium is more
likely to obtain if J or σ 2

U/σ 2
u is sufficiently large, or if σ 2

ε is sufficiently small.
The intuition could be seen by considering the potential loss of the fundamental
investor due to information leakage. If information is potentially leaked to more
back-runners (larger J ), the fundamental investor should be more cautious and
uses a mixed strategy to reduce information leakage. Likewise, if period 2 of
the economy has more noise traders, implying a higher potential profit from
information, then the fundamental investor should be more cautious and use a
mixed strategy. Finally, a small σ 2

ε implies more precise order-flow information,
which again encourages mixing by the fundamental investor.

Figure 2 illustrates the existence of a mixed strategy equilibrium for various
values of J and θ ≡σ 2

ε /σ 2
u , fixing I =1 and σU/σu =1. In general, a mixed

strategy equilibrium exists if and only if the back-runners’ signals are precise
enough (small enough σε). And this threshold is more likely to be satisfied if
there are more back-runners. Unless J is very small, the condition in σε/σu for
the existence of a mixed strategy equilibrium is not too stringent.

3.2 Pure strategy equilibrium
Likewise, we can characterize the pure strategy equilibrium as follows.

Proposition 4. Suppose I =1 and define k≡ β2
1 �0

σ 2
u

. A linear pure strategy

equilibrium exists if and only if the following two conditions defined over
k∈ (0,1] are satisfied:

• k solves a seventh-order polynomial:

f (x)=A7k
7 +A6k

6 +A5k
5 +A4k

4 +A3k
3 +A2k

2 +A1k1 +A0, (66)

where the A0,A1,...,A7 coefficients are given by equations (A22)–(A29)
in the appendix.
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Figure 2
Mixed strategy region, denoted by “+”
Parameters: I =1 and σU /σu =1.

• The following SOC is satisfied:

λ1 −λ2

(
βx

σ 2
u

β2
1�0 +σ 2

u

+β2
β1�0

β2
1�0 +σ 2

u

)2

>0, (67)

where

β1 =

√
kσu√
�0

, (68)

λ1 =

√
�0

σu

√
k

1+k
, (69)

λ2 =

√
�0

σu

√√√√√
[

4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2

+4k2θ +k2 +Jkθ +Jk2θ

]
η(k+1)(2k+4θ +4kθ +Jk)2 , (70)

β2 =
1

2λ2
, (71)
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δ =
1

2λ2

1

2
[
θ
(

1
k

+1
)
+1

]
+ J

2 −1

√
�0√
kσu

, (72)

βx =
J

2
δ, (73)

with θ =σ 2
ε /σ 2

u and η=σ 2
U/σ 2

u .

3.3 Switch of equilibrium
Proposition 5 (Mixed versus pure strategy equilibrium). Suppose I =1.

1. Fix (�0,σu,σU ,J ). Then

(a). If σε is sufficiently large, then there is no linear mixed strategy
equilibrium, and there is a unique linear pure strategy equilibrium.

(b). If σε is sufficiently small and if (J +1)η≥2, then there is no
linear pure strategy equilibrium, and there is a unique linear mixed
strategy equilibrium.

2. Fix (�0,σu) and set σε =0. Then

(a). If both J and η are sufficiently small, then there is no linear mixed
strategy equilibrium, and there is a unique linear pure strategy
equilibrium.

(b). If either J or η is sufficiently large, then there is no linear pure
strategy equilibrium, and there is a unique linear mixed strategy
equilibrium.

The intuition for Part 1(a) can be obtained by considering the extreme
case of σε →∞. This case degenerates to the familiar Kyle (1985) setting,
in which mixing is not an optimal choice for the fundamental investor. The
parametric condition in Part 1(b), (J +1)η≥2, is marginally more stringent than

the condition in Corollary 1, J
(

J+2
J+1

)2
η>2. Note that the parametric condition

(J +1)η≥2 is satisfied by any J if σ 2
U/σ 2

u ≥1. In that case, as σε approaches
zero, the only possible equilibrium has mixed strategies.

The intuition for Part 2 of Proposition 5 could be obtained by asking how
much profit the fundamental investor loses to back-runners if she uses a pure
strategy. If J is large, leaking information to more back-runners is more costly.
If η is large, then the profit in period 2 is too large to be compromised by
information leakage. Either effect encourages the fundamental investor to add
noise, leading to a mixed strategy equilibrium, like in part 2(b). Conversely, a
pure strategy equilibrium obtains if both J and η are relatively small, like in
part 2(a).

The conditions in Proposition 5 are mostly about very large or very small
values of the parameters. It would be desirable to further tighten the parameter
range for which only one case of equilibrium is obtained, but we have not
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been able to do so. Likewise, we have been unable to analytically prove that
a pure strategy equilibrium and a mixed strategy equilibrium do not coexist
for a given set of parameters, although numerically we have always obtained a
unique equilibrium.

3.4 Comparative statics with respect to σε

While the model can be characterized in closed form, the comparative statics
are not as tractable. We can, however, characterize the comparative statics in
closed form for the two special cases: σε →0 and σε →∞.

3.4.1 Mixed strategy equilibrium (if σε is sufficiently small).

Proposition 6. Suppose I =1, (J +1)η≥2, and σε is sufficiently small, so
that the unique linear equilibrium is a mixed strategy equilibrium. In this case
λ1 =λ2 and we denote both by λ. Then

∂σ 2
z

∂σε

<0,
∂β1

∂σε

<0,
∂βx

∂σε

<0,
∂δ

∂σε

<0; (74)

∂�1

∂σε

>0,
∂�2

∂σε

>0; (75)

∂β2

∂σε

< 0 if and only if J >2; (76)

∂λ

∂σε

> 0 if and only if J >2; (77)

∂
(
λσ 2

u +λσ 2
U

)
∂σε

> 0 if and only if J >2; (78)

∂E
[
	F

]
∂σε

<0 if and only if

(η+1)J 4 −(η+3)J 3 −6(3η+2)J 2 −4(7η+2)J −8η>0; and (79)

∂E
[
πB

2,j

]
∂σε

>0 if and only if

(η+1)J 4 +ηJ 3 −(10η+7)J 2 −10(2η+1)J −4(2η+1)>0. (80)

We begin with variables that describe trading strategies in the first two lines
of Proposition 6. An increase in σε means that the back-runners’ information
becomes less precise, which also reduces the back-runners’ trading intensity
(smaller δ). Worrying less about information leakage, the fundamental investor
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adds less noise (smaller σ 2
z ) and relies on less aggressive trading (smaller β1)

in period 1 to defend herself. For the same reason, in period 2, the fundamental
investor also trades less aggressively against the noise in period-1 order flow
(smaller βx). Less information corresponds to less price discovery, shown in
larger conditional variances �1 and �2.

The last five items of Proposition 6 shows how a reduction in back-runners’
information accuracy affects the fundamental investor’s trading intensity in
period 2, market liquidity (equal in the two periods), and the expected profits
of various agents. All these relations depend on J .

In particular, if J is sufficiently large, lowering the accuracy in back-runners’
signals increases their own profits and decreases the fundamental investor’s
profits. This is quite surprising. The bottom row of panel A of Figure 3 illustrates
these surprising patterns for J =10. If J is small, the opposite pattern is true,
as shown in the bottom row of panel B of Figure 3 for J =2.

Our intuition for the profit patterns is the following trade-off. It is slightly
easier to describe it for a reduction of σε around 0, that is, as back-runners’
information improves.

• Competition: As σε decreases, in period 2, the fundamental investor faces
more competition from back-runners, who are now endowed with more
accurate information. The fundamental investor thus suffers from more
competition.

• Endogenous noise: As σε decreases, a mixed strategy with a larger
σz is supported as an equilibrium. Because only the fundamental
investor knows her own added noise z, this information gives her an
information advantage about the period-2 price relative to the back-
runners. Moreover, because back-runners receive different noisy signals
of X1, this noise generates additional uninformed order flows from the
back-runners that the fundamental investor can exploit. In this dimension,
the fundamental investor can benefit.

Proposition 6 shows that, in terms of the fundamental investor’s profit, the
competition effect dominates for a small J but the endogenous-noise effect
dominates for a large J . The reason that J matters in this trade-off could be
further understood as follows. The effect of competition is likely concave: the
first competitor reduces profits by a large margin, but each additional competitor
reduces the profit by a smaller amount. The endogenous noise channel, however,
is more likely linear, in the sense that each additional back-runner’s signal is
contaminated by the endogenous noise z and contains a fresh idiosyncratic
noise ε (because σε >0). Both noises can be exploited by the fundamental
investor in period 2. Once J is sufficiently large, the fundamental investor’s
benefit of exploiting these noises in back-runners’ order flows dominates the
cost of competition.

This intuition could also explain the comparative statics with respect to β2

and λ. For a large J , the intuition above suggests that the back-runners inject
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Figure 3
Comparative statics of the model for a monopolist fundamental investor
Parameters: �0 =0.32/252, σu =σU =1, and I =1. The two panels show J =10 and J =2, respectively.

“more” noise {εj } in the market than information. Thus, by increasing the back-
runners’ trading intensity, a reduction in σε leads to better market liquidity
(smaller λ) and more aggressive trading by the fundamental investor in period
2 (larger β2). The opposite is true if J is small.

The thresholds for J in the last five equations of Proposition 6 are not all
identical, suggesting that the trade-off mentioned above differentially applies
to different variables. Beyond the “large J versus small J ” intuition and the
analytical proof, we have not been able to find the exact economic intuition for
the difference in these if-and-only-if conditions.

3.4.2 Pure strategy equilibrium (if σε is sufficiently large).

Proposition 7. Suppose I =1 and σε is sufficiently large, so that the unique
linear equilibrium is a pure strategy equilibrium. Then
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Figure 3
Continued

∂β1

∂σε

> 0,
∂β2

∂σε

<0,
∂βx

∂σε

<0,
∂δ

∂σε

<0; (81)

∂λ1

∂σε

> 0,
∂λ2

∂σε

>0,
∂�1

∂σε

<0; (82)

∂�2

∂σε

>0 if and only if η<η̂≈3.06; (83)

∂E
[
	F

]
∂σε

>0,
∂E

[
πB

2,j

]
∂σε

<0, and
∂
(
λ1σ

2
u +λ2σ

2
U

)
∂σε

>0. (84)

For a sufficiently large σε, a pure strategy equilibrium obtains. As the back-
runners’ information precision decreases (higher σε), they naturally trade less
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aggressively (smaller δ) and make lower profits (smaller E[πB
2,j ]). Worrying

less about information leakage, the fundamental investor shifts more trading
activity to the first period (larger β1 and smaller β2 and βx) and makes more
profits (larger E[	F ]). Because of this shift of informed activity to the first
period, price impact increases and price discovery improves in period 1. Price
impact also increases in period 2, presumably because the fundamental investor
smooths trading intensity across the two periods.

The period-2 price discovery, however, depends on η≡σ 2
U/σ 2

u . If η is
sufficiently low (in this case lower than 3.06), namely, if period 2’s noise
trading is not too high relative to period 1’s, then period-2 price discovery
improves as σε becomes smaller. Intuitively, as long as period 2’s noise trading
is not too high, the fundamental investor would still trade nontrivial amount
in period 1, leading to potential information leakage. This information leakage
naturally improves price discovery in period 2. This qualitative intuition seems
generic, although the specific numerical threshold of 3.06 is likely specific to
the two-period setting.

3.5 Comparative statics with respect to J

Now, we turn to comparative statics with respect to J , the number of back-
runners. It would be desirable to prove them for any value of σε, but, because
of analytical difficulty, we can only sign the comparative statics for σε =0, that
is, perfect order-flow information. (Of course, by continuity, the same results
obtain if σε =0 is sufficiently small.)

3.5.1 Mixed strategy equilibrium (if J is sufficiently large). Recall from
Proposition 5 that a large J leads to a mixed strategy equilibrium.

Proposition 8. Suppose I =1, σε =0, and J is sufficiently large, so that the
unique linear equilibrium is a mixed strategy equilibrium. In this case λ1 =λ2

and we denote both by λ. Then

∂σ 2
z

∂J
>0,

∂β1

∂J
>0,

∂β2

∂J
>0,

∂βx

∂J
>0,

∂δ

∂J
<0,

∂λ

∂J
<0; (85)

∂�1

∂J
<0 if and only if η>1; (86)

∂�2

∂J
<0 if and only if η>1; (87)

∂E
(
	F

)
∂J

>0,
∂E

(
πB

2,j

)
∂J

<0,
∂
[
J ×E

(
πB

2,j

)]
∂J

<0,

and
∂
(
λσ 2

u +λσ 2
U

)
∂J

<0. (88)
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These comparative statics are quite natural. If there are more back-runners
(larger J ), the fundamental investor front-loads her trades more (larger β1)
and simultaneously adds more noise in her order flow (larger σ 2

z ) in period
1. The net effect is that the price impact of trades drops (smaller λ, same for
both periods). The smaller price impact of trades encourages the fundamental
investors to trade more aggressively in period 2 (large β2). On the other hand,
the endogenous noise injected by fundamental investors obscures back-runners’
order flow information, so back-runners trade less aggressively in period 2
(smaller δ), reducing their profits. Conversely, fundamental investors’ profits
increase, and noise traders’ losses decrease in J .

We have expected the price discovery variables �1 and �2 to decrease as
more back-runners are added, but this is true if and only if η is sufficiently large
(in this case, if η>1), that is, if the fundamental investor has large enough
profits to protect from back-running.

Theoretical ambiguity may help reconcile seemingly conflicting evidence
in the empirical literature. For example, Brogaard, Hendershott, and Riordan
(2014) find that, on average, HFTs contribute to price discovery by trading in
the direction of permanent price movement. At the same time, Weller (2018)
finds that the more active is algorithmic trading, the more delayed is the price
jump near earnings announcement, suggesting delayed price discovery.

3.5.2 Pure strategy equilibrium (if both J and η are small). Recall from
Proposition 5 that a sufficiently small J combined with a sufficiently small η

leads to a pure strategy equilibrium.

Proposition 9. Suppose I =1, σε =0, and both J and η are small, so that the
unique linear equilibrium is a pure strategy equilibrium. Then

∂β1

∂J
>0,

∂β2

∂J
>0,

∂βx

∂J
<0,

∂δ

∂J
<0,

∂λ1

∂J
>0,

∂λ2

∂J
<0; (89)

∂�1

∂J
<0,

∂�2

∂J
<0; (90)

∂E
(
	F

)
∂J

< 0,
∂E

(
πB

2,j

)
∂J

<0,
∂
(
λ1σ

2
u +λ2σ

2
U

)
∂J

<0; (91)

∂E
(
J ×πB

2,j

)
∂J

< 0 if and only if J >3. (92)

It is informative to compare the comparative statics in Proposition 9 to those
in Proposition 8. The difference reveals the economic difference between the
mixed strategy equilibrium and the usual pure strategy equilibrium.
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A major difference here is that in the pure strategy equilibrium, the
fundamental investor cannot adjust the size of the endogenous noise (it is
zero). As J increases, the fundamental investor’s adjustment has to come from
trading intensity, and this part goes in the same direction as the mixed strategy
equilibrium (β1 and β2 increase in J ). Naturally, the price impact of trade
increases in J in period 1. Competition among more back-runners causes each
of them to trade less aggressively (δ decreases), and the price impact goes
down in period 2 (λ2 decreases). Price discovery improves in both periods
as J increases, presumably because, again, the only way for the fundamental
investor to reduce information leakage is to front-load her trades.

The lack of endogenous noise injected by the fundamental investor in the
pure strategy equilibrium also shows up in the profits. As J increases, the
fundamental investor’s profit declines in the pure strategy equilibrium, opposite
to the pattern in the mixed strategy equilibrium. Interestingly, the total profit
of the back-runners decreases in J if and only if J >3. That is, back-runners
receive the maximal profits at J =3 or J =4, which suggests that the “optimal”
industry structure for back-runners is a tight oligopoly of three or four firms,
but not a monopoly or duopoly.

4. Application: Value of Retail Order Flows

We conclude this paper with an application: the value of retail order flows
through the lens of back-running. This question is highly relevant because
of the widespread practice of payment for order flow, whereby retail brokers
aggregate customer orders and route them to a third party for execution, in return
for a fee. From some of the largest retail brokerage firms’ public disclosures,
SEC (2016) finds that payments for order flow to these firms range from $92
million to $304 million in 2014. The current discussion about payment for
order flow focuses on its distorted routing incentives, namely, retail brokers
may choose the destination of these retail orders to maximize fees or rebates,
which are kept by the retail brokers.9

In this section, we illustrate an orthogonal channel through which handling
retail orders gives retail brokers an economic benefit. To make this point most
clearly, we rewrite each back-runner’s signal sj as sj =X1 +εj =y1 −u1 +εj ,
where y1 is publicly observable. Thus, each back-runner effectively receives
a signal about the total noise traders’ past order flow u1, with the same
perturbation εj . Under a common interpretation that retail orders are proxies
for noise trading, we could view back-runners as, say, proprietary trading firms

9 Battalio, Corwin, and Jennings (2016) find that for 4 of the 10 retail brokers they examine, rebates seem to be a
significant determinant of their routing decisions. The SEC (2016) discusses potential issues raised by payment
for order flow, particularly the distorted routing incentives, as well as various options of addressing them, ranging
from an outright ban to passing on the fees and rebates to customers. In 2012, the U.K. FSA (FCA’s precursor)
effectively banned payment for order flow in the United Kingdom, citing the conflict of interest created between
clients and brokers by this practice.
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that directly handle and fill retail orders, which are routed by retail brokers
(e.g., Charles Schwab, E*Trade, or TD Ameritrade). According to Bloomberg,
Citadel and KCG dominate the handling of retail orders in the United States (see
Massa 2017). Our model does not have a concern of “front-running,” suboptimal
order routing decisions, or intercepting marketable retail investors, all of which
are the focus of previous literature. Instead, we show that the knowledge about
retail investors’ trades can lead to back-running, and the profits from back-
running would be an estimate of the economic value of observing or handling
retail orders.

We now quantitatively explore the value of retail order flow information
through the lens of back-running. As before, the full model is interpreted as a
trading day, with each period being half a day. For ease of interpretation, we
express the profits of fundamental investors and back-runners in multiples of
the dollar volume of noise traders:

QF =
I ×E

(
	F

i

)
E [(|u1|+|U2|)p0]

, (93)

QB =
J ×E

(
πB

2,j

)
E [(|u1|+|U2|)p0]

, (94)

where the denominator uses on the approximation that p1 and p2 are close to
p0.

We can show that QF and QB only depend on five variables: I,J,
√

�0
p0

,
σU

σu
,

and σε

σu
. That is:

QF =QF

(
I,J,

√
�0

p0
,
σU

σu

,
σε

σu

)
and QB =QB

(
I,J,

√
�0

p0
,
σU

σu

,
σε

σu

)
. (95)

Figure 1 and panel A of Figure 3 reveal that the profits of back-runners could
be nonmonotone in σε. Thus, we consider two possible values of σε:

• σ 2
ε =0. This corresponds to perfect information about the entire retail

order flow in the first half of a trading day.
• σε is chosen so that it maximizes the total profits of back runners,

that is, for a given J , we define σ
opt
ε ≡argmaxσε Q

B
(
I,J,

√
�0

p0
,

σU

σu
,

σ 2
ε

σ 2
u

)
.

This choice allows the possibility that back-runners also optimize their
information technology.

Although these choices of σε may appear to be low, we believe they are in fact
reasonable choices because two firms dominate the handling of retail orders in
U.S. equity markets. Alternatively, one can interpret our calibration results as
upper bounds for the value of retail order flow information. The ratio σU/σu is
set to be 1.

Figure 4 plots σ
opt
ε /σu, σz, QF and QB , all as functions of J . The annual

stock return volatility is kept at 30%. The only difference in the four panels is
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Figure 4
Profits of fundamental investors and back-runners with various I

Parameters: �0 =0.32/252, and σu =σU =1. The four panels show I =1, I =4, I =100, and I =10,000, respectively.

I , which takes the value of 1, 4, 100, or 10,000. As before, the general shape
and magnitude of these variables are insensitive to I .

Figure 4 shows that the value of order-flow information is rather similar
for both choices of σε. Conditional on nontrivial back-running (J ≥1), the
institutional investors’ (fundamental investors’) total profits are about 70–80
bps of retail trading volume (noise traders’ volume), and the back-runners’
profits are about 5–30 bps of retail trading volume. Moreover, conditional on
J ≥1, fundamental investors’ total profits are generally increasing in J , but
back-runners’ total profits are generally decreasing in J .

Figure 5 plots QF and QB under larger or smaller return volatilities, �0 =
(50%)2/252 or �0 =(10%)2/252, but fixing I =100. We observe that the shapes
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Figure 4
(Continued)

of QF and QB are identical to the case of �0 =(30%)2/252, but the magnitude
is simply scaled by

√
�0. This means that inaccurate assumptions about return

volatility do not change the order of magnitude of these estimated profits.
The magnitude of these numbers suggests that retail order flows are highly

valuable for back-runners. A typical daily dollar volume in the U.S. equity
market is about $200 billion and retail volume is about 10% of the total. Under
the assumption of 30% annualized return volatility for a typical stock, back-
runners’ profits are, at the high end of QB =30 bps, in the order of $200 billion
×10%×0.003%=$60 million per day, or about $15 billion per year. At the low
end of QB =5 bps, back-runners’ profits from retail order flow information are
in the order of $2.5 billion. The magnitude is economically large.
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Figure 5
Profits of fundamental investors and back-runners with various �0
Parameters: σu =σU =1 and I =100. The two panels show �0 =0.52/252 and �0 =0.12/252, respectively.

By analogous calculations, using QF ≈75 bps, institutional investors’ daily
profits in the U.S. equity market is in the order of $150 million per day, or
about $37.5 billion per year. As a comparison, Berk and van Binsbergen (2015)
estimate that an average U.S. mutual fund generates a value of about $3.2
million per year, or about $19.2 billion per year in aggregate for their sample
of 6,000 funds. Our estimate from an extremely stylized model is in the same
order of magnitude.

5. Conclusion

This paper presents a theory of back-running and its implications. Back-runners
start with no innate trading motive but observe past order flow information of
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fundamental investors (or equivalently, noise traders). Order flow information
allows back-runners to partly infer the information of fundamental investors
and exploit it in subsequent trading. We characterize conditions under which
the resultant equilibrium involves mixed strategies or pure strategies. Various
market outcomes depend on the number of back-runners more than on
the number of fundamental investors. When the number of back-runners is
sufficiently large, some usual intuition flips. For instance, more accurate order
flow information may reduce back-runners’ profits and increase fundamental
investors’ profits. A straightforward application of the model reveals a high
value for past order flow information from retail investors, which effectively
gives a signal about past institutional order flows. Under reasonable parameters,
the total value earned by back-runners is 5–30 bps of retail dollar volume and
the total value earned by institutional investors is 70–80 bps of retail dollar
volume.

Appendix: Proofs

Proof of Proposition 1
A mixed strategy equilibrium is defined by seven unknowns,
(β1,σz,β2,βx,δ,λ1,λ2), which are characterized by seven equations,
(15), (16), (19), (21), (22), (24), and (25), together with one SOC (18). By
(21), (24), and (25), we show

λ1 = λ2 =λ, (A1)

βx

β2
1

I−1
I

�0 +(I −1)σ 2
z +σ 2

u

β2
1�0 +Iσ 2

z +σ 2
u

+β2
β1

1
I
�0

β2
1�0 +Iσ 2

z +σ 2
u

= 1. (A2)

We are thus left with six unknowns, (β1,σz,β2,βx,δ,λ). We then express
(λ,βx,β2) as functions of (β1,σz,δ) and further simplify the system in
terms of three unknowns (β1,σz,δ), characterized by Equations (28)–(30) in
Proposition 1.

By (15) and (A1), we have

λ1 =λ2 =
β1�0

β2
1�0 +Iσ 2

z +σ 2
u

. (A3)

Using (21) and (A3), we can compute

β2 =
β2

1�0 +Iσ 2
z +σ 2

u

2β1�0
. (A4)

By (21) and (22), we obtain the expression of βx in terms of (β1,σz), which is
given by Equation (32) in Proposition 1. Then, using (21), (A1), (A2), and (32),
we can express δ in terms of (β1,σz), arriving at Equation (28) in Proposition 1.
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Inserting (21) and (32) into (19) leads to

δ =

1
2λ2

β1�0
β2

1 �0+Iσ 2
z

+ 1
2λ2

β1
I−1
I

�0

β2
1

I−1
I

�0+(I−1)σ 2
z +2σ 2

u

2

(
β2

1 �0+Iσ 2
z

)−1
+σ−2

ε +σ−2
u

σ−2
ε

− Jσ 2
u

β2
1

I−1
I

�0+(I−1)σ 2
z +2σ 2

u
+(J −1)

. (A5)

Combining the above equation with (A3), we obtain Equation (29) in
Proposition 1.

Equation (30) in Proposition 1 is simplified from Equation (16). Specifically,
by (32) and (A3), we show

βx =

(
I − 1

2

)
σ 2

u +β2
1�0 +σ 2

z I

σ 2
z I 2 −β2

1�0 +σ 2
u I −σ 2

z I +β2
1�0I

. (A6)

Using (28), (A4), and (A6), we obtain

λ2 =

σ 2
u +β2

1 �0+σ 2
z I

2β1

1
4

(
σ 2

u +β2
1�0

) (σ 2
u +β2

1 �0+σ 2
z I

)2

β2
1 �0σ 2

u
+δ2Jσ 2

ε +σ 2
U

, (A7)

which, combined with (A3), leads to Equation (30) in Proposition 1.
Equations (28)–(30) in Proposition 1 form a system of three equations in

terms of three unknowns (δ,β1,σz). For the range of β1 ∈
(

0, σu√
�0

)
, the lower

bound comes from (A3) and the SOC (18), and the upper bound is the result
of Equation (30). The price discovery and profit variables come from direct
computations.

Proof of Proposition 2
A pure strategy equilibrium is defined in terms of six unknowns
(β1,β2,βx,δ,λ1,λ2), which are characterized by six equations, (15), (16),
(19), (21), (22), and (26), together with two SOCs, (18) and (27). We prove
Proposition 2 by expressing (β2,βx,δ,λ1) as functions of (β1λ2), which
simplifies the system in terms of two unknowns (β1λ2).

Equation (42) is simply Equation (21), which expresses β2 as a function of
λ2. Equations (44) and (45) express (βx,λ1) as functions of (β1,λ2) and they
are obtained from Equations (32) and (15), respectively, replaced with σz =0.
Inserting Equations (21) and (44) into Equation (19) and noting σz =0, we
obtain Equation (43), which expresses δ as a function of (β1,λ2). Using (42)
and σz =0, we can rewrite (16), (26), and (27), respectively, as (40), (41), and
(46).

The requirement λ2 >0 comes from the SOC, (18). The requirement β1 >0
is implied jointly by (45) and (46). The price discovery and profit variables
arise from direct computations.
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Proof of Proposition 3
Using I =1, we simplify Equations (28)–(30) as the following three equations:

δ =
σ 2

u +β2
1�0 +σ 2

z

Jσ 2
u

, (A8)

δ =

β2
1 �0+σ 2

z +σ 2
u

β2
1 �0+σ 2

z

4

(
β2

1 �0+σ 2
z

)−1
+σ−2

ε +σ−2
u

σ−2
ε

+J −2

, (A9)

δ2Jσ 2
ε +σ 2

U =
1

4

(
σ 2

u −β2
1�0

) (σ 2
u +β2

1�0 +σ 2
z

)2

β2
1�0σ 2

u

. (A10)

We now solve δ, β1, and σz sequentially. First, by (A8), we have

β2
1�0 +σ 2

z =(Jδ−1)σ 2
u , (A11)

which is inserted into (A9), leading to the value of δgiven by (63) in Proposition
3. Second, plugging (63) and (A11) into (A10) and with some algebra, we have

4

⎛
⎝ J +1

J +2+ 4σ 2
ε

σ 2
u

⎞
⎠

2

1

J

σ 2
ε

σ 2
u

+
σ 2

U

σ 2
u

=

(
1− β2

1�0

σ 2
u

)⎛⎝ J +1

J +2+ 4σ 2
ε

σ 2
u

⎞
⎠

2

σ 2
u

β2
1�0

, (A12)

which gives the solution to β1 in (60). Last, using (63), (60), and (A8), we
compute the value of σ 2

z given by (59) in Proposition 3.
Once (δ,β1,σz) are solved, the other variables are given by Equations (31)–

(33) with I =1.
By definition, a mixed strategy equilibrium exists if and only if σz >0. By

the expression of σz in (59), we can show that σz >0 if and only condition (58)
holds.

Proof of Corollary 1
Corollary 1 directly follows from condition (58).

Proof of Proposition 4
Inserting I =1 into Equations (41), (43), and (44), we have

β1 =
1−

(
βx

σ 2
u

β2
1 �0+σ 2

u
+β2

β1�0
β2

1 �0+σ 2
u

)

2

[
λ1 −λ2

(
βx

σ 2
u

β2
1 �0+σ 2

u
+β2

β1�0
β2

1 �0+σ 2
u

)2
] , (A13)

δ =
1

2λ2

1
β1

2

(
β2

1 �0

)−1
+σ−2

ε +σ−2
u

σ−2
ε

+ J
2 −1

, (A14)
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βx =
Jδ

2
. (A15)

Using (21), (45), and (A15), we can further simplify Equation (A13) as follows:

2λ2

(
2β2

1�0

β2
1�0 +σ 2

u

−1

)

=

(
Jδλ2σ

2
u

β2
1�0 +σ 2

u

+
β1�0

β2
1�0 +σ 2

u

)[
β1

(
Jδλ2σ

2
u

β2
1�0 +σ 2

u

+
β1�0

β2
1�0 +σ 2

u

)
−1

]
. (A16)

To arrive at the polynomial (66), we want to express δλ2 and λ2
2 as functions

of β1 and then insert these expressions into the squared Equation (A16). By
Equation (A14),

λ2δ =
β1σ

2
u �0

4σ 2
u σ 2

ε +2β2
1�0σ 2

u +4β2
1�0σ 2

ε +Jβ2
1�0σ 2

u

. (A17)

Inserting (21) and (A15) into (40), we have

σ 2
Uλ2

2 =

[
1+Jβ1δλ2

2
−
(

1+Jβ1δλ2

2

)2
]

�0σ
2
u

β2
1�0 +σ 2

u

−Jσ 2
ε (δλ2)2 . (A18)

In the above equation, we replace λ2δ given by (A17) to derive

λ2
2 =

σ 2
u

σ 2
U

�0

[
4σ 4

u σ 4
ε +β4

1�2
0σ

4
u +4β4

1�2
0σ

4
ε +8β2

1�0σ
2
u σ 4

ε +4β2
1�0σ

4
u σ 2

ε

+4β4
1�2

0σ
2
u σ 2

ε +Jβ4
1�2

0σ
4
u +Jβ2

1�0σ
4
u σ 2

ε +Jβ4
1�2

0σ
2
u σ 2

ε

]
(
σ 2

u +β2
1�0

)(
4σ 2

u σ 2
ε +2β2

1�0σ 2
u +4β2

1�0σ 2
ε +Jβ2

1�0σ 2
u

)2 .

(A19)
We then square the both sides of (A16) in order to use (A17) and (A19)

to substitute λ2δ and λ2
2. Doing so requires that the terms

2β2
1 �0

β2
1 �0+σ 2

u
−1 and

β1

(
Jδλ2

σ 2
u

β2
1 �0+σ 2

u
+ β1�0

β2
1 �0+σ 2

u

)
−1 have the same sign, that is,

(
2β2

1�0

β2
1�0 +σ 2

u

−1

)[
β1

(
Jδλ2σ

2
u

β2
1�0 +σ 2

u

+
β1�0

β2
1�0 +σ 2

u

)
−1

]
≥0. (A20)

Inserting the expression of λ2δ (A17) into the above condition, we find that the
above inequality is equivalent to requiring

β2
1 ≤ σ 2

u

�0
, (A21)

which must be true in a pure strategy equilibrium, as stated in Proposition 2.
Thus, we take square of (A16), insert (A17) and (A19) to substitute λ2δ and
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λ2
2, and define k≡ β2

1 �0

σ 2
u

∈ (0,1], which yields the seventh-order polynomial of

k in (66), where

A7 =
(
J +4θ +Jθ +4θ2 +1

)
(J +4θ +2)2 , (A22)

A6 =(J +4θ +2)
(−3J +4θ +4Jθ +40θ2 +48θ3 +12Jθ2 −J 2 −2

)
, (A23)

A5 =64θ4 −64θ −4η−24J 2θ2 −88Jθ −4Jη−192θ2 −128θ3

−8J −32θη−160Jθ2

−32J 2θ −48Jθ3 −2J 3θ −J 2η−96θ2η−128θ3η

−64θ4η−5J 2 −J 3 −4J 2θ2η

−24Jθη−48Jθ2η−4J 2θη−32Jθ3η−4, (A24)

A4 =8J −24J 2θ2 −4Jη−192θ2 −512θ3 −320θ4 −32θη

−160Jθ2 −192Jθ3 −2J 2η−192θ2η

−384θ3η−256θ4η+5J 2 +J 3 −16J 2θ2η−48Jθη

−144Jθ2η−12J 2θη−128Jθ3η+4, (A25)

A3 =32θ +12J 2θ2 +44Jθ +96θ2 −128θ3 −320θ4

+80Jθ2 +16J 2θ −48Jθ3 +J 3θ −J 2η

−96θ2η−384θ3η−384θ4η−24J 2θ2η−24Jθη

−144Jθ2η−12J 2θη−192Jθ3η, (A26)

A2 =−4θ
(
−24θ −20Jθ −64θ2 −16θ3 −24Jθ2 −3J 2θ +J 2η+32θ2η+64θ3η

+12Jθη+32Jθ2η+4J 2θη
)
, (A27)

A1 =−4θ2
(−32θ −12Jθ −48θ2 +J 2η+16θ2η+8Jθη

)
, (A28)

A0 =64θ4. (A29)
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The SOC (67) is obtained from (46) with I =1. The expressions of the other

variables in the proposition simply substitute k≡ β2
1 �0

σ 2
u

, θ ≡ σ 2
ε

σ 2
u

, and η≡ σ 2
U

σ 2
u

.

Proof of Proposition 5
Part (a): Switch based on σε

When σε is large: For sufficiently large σε, condition (58) in Proposition 3
is violated and thus there exists no linear mixed strategy equilibrium. We now
show that there exists a unique linear pure strategy equilibrium. The polynomial
(66) in Proposition 4 is equivalent to the following equation:

f (k;θ,η)

≡ log(k+1)+2log(2k+4θ +4kθ +Jk)+2log(1−k)

+log
(
4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2 +4k2θ +k2 +Jkθ +Jk2θ

)
−logkη−2log(k+2θ +2kθ )−2log(J +2k+4θ +4kθ +Jk)

= 0. (A30)

We can easily show f (0;θ,η)>0 and f (1;θ,η)<0, and, thus, by the

intermediate-value theorem, there exists a solution to k for any value of θ = σ 2
ε

σ 2
u

.

Note that as σε →∞, we have θ = σ 2
ε

σ 2
u

→∞. We can show that

∂f (k;θ,η)

∂k

∣∣∣∣
θ→∞

∝−2k2 +k+1

k
(
1−k2

) <0. (A31)

Thus, for sufficiently large σε, f (·;θ,η) is downward sloping, and, hence, the
solution to (A30) is unique.

To prove that this solution forms a linear pure strategy equilibrium, we
remain to show that the SOC (67) is satisfied as well. Using the expressions of
λ1,λ2,β1,β2, and βx in Proposition 4, we can show that as θ →∞, condition
(67) is equivalent to

4+4k−kη>0. (A32)

Note that in a linear pure strategy equilibrium, kη is given by (A30) as follows:

kη=
(k+1)(2k+4θ +4kθ +Jk)2 (1−k)2

(
4k2θ2 +4kθ +4θ2 +Jk2

+8kθ2 +4k2θ +k2 +Jkθ +Jk2θ

)
(k+2θ +2kθ )2 (J +2k+4θ +4kθ +Jk)2

→ (1−k)2 (1+k), as θ →∞. (A33)

Hence, as θ →∞, condition (A32) is satisfied:

4+4k−kη→ (3−k)(k+1)2 >0 as θ →∞. (A34)
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When σε is small: By Corollary 1, for sufficiently small σε, a mixed strategy
equilibrium exists if and only if (65) is satisfied. Note that

(J +1)η−Jη

(
J +2

J +1

)2

= −
(
J 2 +J −1

)
η

(J +1)2 <0⇒ (A35)

Jη

(
J +2

J +1

)2

> (J +1)η>2. (A36)

Thus, if (J +1)η>2, then condition (65) holds, and there exists a unique mixed
strategy equilibrium.

Next, we prove that there is no linear pure strategy equilibrium under the
condition (J +1)η>2. Note that in a pure strategy equilibrium, we have β1 >0.
By (A13), we have

1−
(

βx

σ 2
u

β2
1�0 +σ 2

u

+β2
β1�0

β2
1�0 +σ 2

u

)
>0. (A37)

Using (21) and (A15), we can rewrite the above condition as

4λ2
2 >

(
Jδλ2

σ 2
u

β2
1�0 +σ 2

u

+
β1�0

β2
1�0 +σ 2

u

)2

. (A38)

We employ the expressions of λ2 and δλ2 in (70) and (A17), together with the

definitions k≡ β2
1 �0

σ 2
u

and θ ≡ σ 2
ε

σ 2
u

, we can show that condition (A38) is equivalent

to the following:

η<4(k+1)
4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2 +4k2θ +k2 +Jkθ +Jk2θ

k(J +2k+4θ +4kθ +Jk)2 . (A39)

Setting θ =0, the right-hand side (RHS) of the above condition degenerates to
4(J+1)k(k+1)
(J+2k+Jk)2 . Thus, for sufficiently small σε (and hence θ ), in a pure strategy

equilibrium, we must have:

η<
4(J +1)k(k+1)

(J +2k+Jk)2 . (A40)

Taking derivative shows that 4(J+1)k(k+1)
(J+2k+Jk)2 is increasing in k∈ (0,1]. Thus,

its maximum is achieved at k =1; that is, maxk∈(0,1]
4(J+1)k(k+1)
(J+2k+Jk)2 = 4(J+1)2

(J+2+J )2 = 2
J+1 .

Hence, if (J +1)η>2, then condition (A40) is never satisfied and thus, there
exists no linear pure strategy equilibrium.
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Part (b): Switch based on J and η

When both J and η are small:. Now, we fix J and consider a process of
η→0. By the third part of Corollary 1, there is no mixed strategy equilibrium

because J
(

J+2
J+1

)2
η<2 for sufficiently small η. Now let us show that there exists

a unique pure strategy equilibrium.

At σε =0 (and hence θ = σ 2
ε

σ 2
u

=0), the polynomial (A30) characterizing the pure

strategy equilibrium becomes

(J +1)(J +2)2k(1−k)2 (k+1)=η(J +2k+Jk)2 . (A41)

As η→0, the solution of k must either converge to 0 or 1. Now, we show that
k =0 violates the SOC, whereas k =1 does not, so that the unique pure strategy
equilibrium features k→1 (as η→0 and J is fixed).

Inserting θ =0 into the expressions of δ,β’s, and λ’s in Proposition 4, the
SOC (67) degenerates to

k
√

k−
√

η√
k+1

J +2

4
√

J +1

(
J

J +2
+k

)2

>0. (A42)

As η→0 and k→1, the left-hand side (LHS) goes to 1, and, thus, the SOC is
satisfied. In contrast, suppose that k→0 as η→0. By (A41), we must have

k∝η
J 2

(J +1)(J +2)2 . (A43)

Inserting the above expression into the LHS of (A42), we have

k
√

k−
√

η√
k+1

J +2

4
√

J +1

(
J

J +2
+k

)2

(A44)

∝√
η

[
η

J 2

(J +1)(J +2)2

√
J 2

(J +1)(J +2)2 − J +2

4
√

J +1

(
J

J +2

)2
]
, (A45)

which is negative as η→0. Thus, the SOC is violated.

When J or η is large:. First, fix η and let J diverge to ∞. The condition in the
third part of Corollary 1 is satisfied, and, thus, there is a unique mixed strategy
equilibrium. Now, we show that there exists no pure strategy equilibrium. As
J →∞, the LHS of (A42) is

k
√

k−
√

η√
k+1

J +2

4
√

J +1

(
J

J +2
+k

)2

(A46)

< 1−
√

η√
1+1

J +2

4
√

J +1

(
J

J +2
+0

)2

(A47)
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∝ −
√

η

4
√

2

J

J +2

J√
J +1

∝−
√

η

4
√

2

√
J <0. (A48)

Thus, the SOC for a pure strategy equilibrium is violated no matter the value
of k∈ [0,1].

Second, fix J and let η diverge to ∞. Again, by the third part of Corollary
1, there exists a unique mixed strategy equilibrium. Also, the LHS of (A42)
diverges to −∞ and hence the SOC for a pure strategy equilibrium cannot be
satisfied.

Proof of Proposition 6
We first examine the derivatives of the strategy variables. By the expressions
of β1,βx, and δ in Proposition 3, direct computations yield

∂β1

∂σε

<0,
∂βx

∂σε

<0, and
∂δ

∂σε

<0. (A49)

By (59), we can show that ∂σ 2
z

∂σε

∣∣∣∣
σε=0

has the opposite sign as

2Jη(J +2)2
[
η(J +2)2 +J (J +1)

]
+
(
J 2 −2J −4

)
(J +1)3 , (A50)

which is positive under the assumption of (J +1)η≥2. Hence, ∂σ 2
z

∂σε

∣∣∣∣
σε=0

<0. By

(61) and (64), we can show that

∂β2

∂σε

∣∣∣∣
σε=0

<0⇐⇒ ∂λ

∂σε

∣∣∣∣
σε=0

>0⇐⇒J >2. (A51)

Next, we examine the price discovery variables, �1 and �2. Inserting the
expressions of σz,δ, and β ′s into the � variables in Proposition 1, we obtain

�1 = �0

[
1− 1

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2

J +2+4θ

2(J +1)

]
, (A52)

�2 =
�0

2

[
16Jηθ2 +

(
4J +16Jη+8J 2η+4

)
θ

+
(
4Jη−J +4J 2η+J 3η−J 2

) ]
[

16Jηθ2 +
(
8J +16Jη+8J 2η+4J 2 +4

)
θ

+
(
J +4Jη+4J 2η+J 3η+2J 2 +J 3

) ] . (A53)

Taking derivative of (A52) with respect to σε shows ∂ log�1
∂σε

>0. Taking

derivative of (A53), we find that ∂ log�2
∂σε

has the same sign as

J (J +2)2

[
η− J +1

(J +2)2

]
+4θ

(
J +4Jη+2J 2η+4Jθη+1

)
. (A54)

Under the assumption of (J +1)η≥2, we have η− J+1
(J+2)2 ≥ J 2+6J+7

(J+1)(J+2)2 >0 and

thus, ∂ log�2
∂σε

>0.
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Finally, let us examine the profit variables. We insert the expressions of δ,
β1, and σz into the profit variables in Proposition 1 to show that the profits of
the fundamental investor and each back-runner are, respectively,

E
(
	F

)
=

σu

√
�0

2(J +1)

(J +1)2
[
1+ 4θ

J
+η

(
J+2+4θ

J+1

)2
]

+(1+4θ )2

(J +2+4θ )
√

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2
, (A55)

E
(
πB

2,j

)
=

σu

√
�0

J 2

J +
(

J−1
2

)
4θ

(J +2+4θ )
√

1+ 4θ
J

+η
(

J+2+4θ
J+1

)2
. (A56)

Taking derivative of the above profit expressions of profits with respect to σε

and setting σε =0 lead to

∂E
[
	F

]
∂σε

∣∣∣∣
σε=0

<0 if and only if

(η+1)J 4 −(η+3)J 3 −6(3η+2)J 2 −4(7η+2)J −8η>0; and (A57)

∂E
[
πB

2,j

]
∂σε

∣∣∣∣
σε=0

>0 if and only if

(η+1)J 4 +ηJ 3 −(10η+7)J 2 −10(2η+1)J −4(2η+1)>0. (A58)

Proof of Proposition 7

Note that as σε →∞, we have θ = σ 2
ε

σ 2
u

→∞. So, we examine the derivatives

evaluated at the limit θ →∞. Applying the implicit function theorem to (A30),
we have

∂k

∂θ
=−∂f (k;θ,η)/∂θ

∂f (k;θ,η)/∂k
. (A59)

By (A31), ∂f (k;θ,η)
∂k

∣∣∣
θ→∞

<0, and thus ∂k
∂θ

∣∣
θ→∞ has the same sign as

∂f (k;θ,η)
∂θ

∣∣∣
θ→∞

. Direct computation shows

∂f (k;θ,η)

∂θ

∣∣∣∣
θ→∞

∝ J (2−k)

4(k+1)θ2
>0. (A60)

Hence, ∂k
∂θ

∣∣
θ→∞ >0.

By the expressions of β1 and λ1 in Proposition 4, it is straightforward to

show that ∂β1
∂σε

∣∣∣
σε→∞

∝ 1
2k

∂k
∂θ

∣∣
θ→∞ >0 and ∂λ1

∂σε

∣∣∣
σε→∞

∝ 1−k
2k(k+1)

∂k
∂θ

∣∣
θ→∞ >0.

By the expression of λ2 in Proposition 4, we can compute

∂ logλ2

∂θ
=

Jk(k+1)4θ (k+1)+k(J −2)

2(2k+4θ +4kθ +Jk)

(
4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2

+4k2θ +k2 +Jkθ +Jk2θ

)
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+
1

2

[
8kθ2+4θ+2Jk+8θ2+8kθ+2k+Jθ+2Jkθ

4k2θ2+4kθ+4θ2+Jk2+8kθ2+4k2θ+k2+Jkθ+Jk2θ

− 1
k+1 + 2(2+4θ+J )

(2k+4θ+4kθ+Jk)

]
∂k

∂θ
. (A61)

As θ →∞, both the second term of the above expression is positive. Thus,
∂λ2
∂σε

∣∣∣
σε→∞

>0. Because β2 = 1
2λ2

, we have ∂β2
∂σε

∣∣∣
σε→∞

<0.

By the expression of δ in Proposition 4, we have

∂ logδ

∂θ
= −∂ logλ2

∂θ
− 2

(
1
k

+1
)

2
(
θ
(

1
k

+1
)
+1

)
+ J

2 −1
(A62)

−
⎡
⎣ 2θ

(
− 1

k2

)
2
(
θ
(

1
k

+1
)
+1

)
+ J

2 −1
+

1

2

1

k

⎤
⎦ ∂k

∂θ
. (A63)

Inserting the expression of ∂ logλ2
∂θ

in (A61) and the expression of ∂k
∂θ

in (A59)
into the above expression, we can show

∂δ

∂σε

∣∣∣∣
σε→∞

∝− 4(k+1)

2k+4θ +4kθ +Jk
<0. (A64)

Given βx = J
2 δ, we also have ∂βx

∂σε

∣∣∣
σε→∞

<0.

Inserting I =1 and the expressions of δ and β’s in Proposition 4 into the
expressions of �’s in Proposition 2, we have

�1 =
�0

k2 +1
, (A65)

�2 = �0
k+2θ +2kθ

(k+1)(2k+4θ +4kθ +Jk)
. (A66)

Taking derivative of �1 shows

∂�1

∂σε

∣∣∣∣
σε→∞

=− 2k�0(
k2 +1

)2

∂k

∂σε

∣∣∣∣∣
σε→∞

<0 (A67)

by ∂k
∂σε

∣∣∣
σε→∞

>0. Taking derivative of �2 with respect to θ and using the

expression of ∂k
∂θ

in (A59), we can compute

∂ log�2

∂σε

∣∣∣∣
σε→∞

∝ Jkθ (k+1)2
(
k+2k2 +1

)
(
4k+k2 −1

)
(2k+4θ +4kθ +Jk)

. (A68)

Thus the sign of ∂�2
∂σε

∣∣∣
σε→∞

is determined by the sign of

g(k)≡4k+k2 −1. (A69)

1528

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/33/4/1484/5526886 by M

IT Libraries user on 06 August 2020



[20:19 27/2/2020 RFS-OP-REVF190076.tex] Page: 1529 1484–1533

Back-Running: Seeking and Hiding Fundamental Information in Order Flows

Direct computation shows

g(k)>0⇐⇒k>0.23607. (A70)

Note that as θ →∞, the value of k is determined by (A33), that is,

kη≈ (1−k)2 (1+k). (A71)

It is easy to show that k as a function of η, which is implicitly determined by
(A71), is decreasing in η. In addition, k→1 as η→0, and k∝ 1

η
as η→∞.

Thus, as η gradually increases from 0 toward ∞, k must gradually decrease
from 1 toward 0. At the threshold of k =0.23607 in (A70), the corresponding
value of η is η̂=3.0557. Taken together, we have

∂�2

∂σε

∣∣∣∣
σε→∞

⇐⇒k>0.23607⇐⇒η<η̂≈3.06. (A72)

Finally, let us examine the profit variables. Inserting I =1 and the expressions

of δ, β’s and λ’s in Proposition 4 into the expressions of E
(
πB

2,j

)
and E

(
	F

)
in Proposition 2, we can obtain

E
(
πB

2,j

)
=

√
η(k+1)(2k+4θ +4kθ +Jk)2σu

√
�0

4k

[
2
(
θ
(

1
k

+1
)
+1

)
+ J

2 −1

]2
√[

4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2

+4k2θ +k2 +Jkθ +Jk2θ

] ,

(A73)

E
(
	F

)
=

k
√

k

1+k

√
�0σu

+

√
η(k+2θ +2kθ ) k+2θ+8kθ+Jk2+6k2θ+Jk+3k2

(k+1)
√

k+1(2k+4θ+4kθ+Jk)√
4k2θ2 +4kθ +4θ2 +Jk2 +8kθ2

+4k2θ +k2 +Jkθ +Jk2θ

√
�0σu. (A74)

Direct computations show
∂E

(
πB

2,j

)
∂σε

∣∣∣∣
σε→∞

<0 and
∂E

(
	F

)
∂σε

∣∣∣∣
σε→∞

>0.

The result
∂
(
λ1σ 2

u +λ2σ 2
U

)
∂σε

∣∣∣∣
σε→∞

>0 directly follows from ∂λ1
∂σε

∣∣∣
σε→∞

>0 and

∂λ1
∂σε

∣∣∣
σε→∞

>0.

Proof of Proposition 8
Now set I =1 and σε =0 (and hence θ =σ 2

ε /σ 2
u =0). Fix the values of (�0,σu,σU )

and let J diverge to ∞. By part (b) of the proof of Proposition 5, the unique
linear equilibrium is a mixed strategy equilibrium.
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Inserting θ =0 into the expressions of δ,β’s, and λ’s in Proposition 3 and
taking derivative with respect to J , we can sign the derivatives of these
parameters directly.

Inserting θ =0 in (A52) and taking derivative, we find that

∂�1

∂J
<0⇐⇒ (η−1)J 2 +(4η−2)J +(4η−1)>0. (A75)

Thus, for sufficiently large J , ∂�1
∂J

<0⇐⇒η>1. Similarly, inserting θ =0 in
(A53) and taking derivative, we can show

∂�2

∂J
<0⇐⇒ (η−1)J 2 +(4η−2)J +(4η−1)

ηJ 2 +(4η−1)J +(4η−1)
>0. (A76)

Therefore, ∂�2
∂J

<0⇐⇒η>1 for sufficiently large J .
Inserting θ =0 into the profit expressions in (A55) and (A56) and taking

derivatives, we can obtain

∂E
(
	F

)
∂J

>0,
∂E

(
πB

2,j

)
∂J

<0, and
∂
[
J ×E

(
πB

2,j

)]
∂J

<0, (A77)

for sufficiently large J . The result of
∂
(
λσ 2

u +λσ 2
U

)
∂J

<0 directly follows from
∂λ
∂J

<0.

Proof of Proposition 9
Like in the proof of part (b) of Proposition 5, we still fix J and let η→0.
From the proof of Proposition 5, we know that k→1, and its value is implicitly
determined by Equation (A41). Formally, using (A41), we can compute

k∝1−√
η

√
2(J +1)

J +2
. (A78)

Applying the implicit function theorem to (A41), we have

∂k

∂J
=

(J +2k+Jk−4)k
(
1−k2

)
(J +2)

((
2k3 +5k2 +2k−1

)
J +

(
4k3 +2k2 +2k

))
∝ J −1√

2(J +1)(J +2)2

√
η, (A79)

where the second equation follows from (A78). Using (A78), direct
computation shows the value of k is higher at J =2 than at J =1. Combining
with (A79), we know k is increasing in J , and thus,

∂k

∂J
>0⇒ ∂β1

∂J
>0, (A80)

by the expression of β1 in Proposition 4.
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Similarly, using the expressions of β2,βx,δ,λ1, and λ2 in Proposition 4,
together with θ =0, we can compute

∂β2

∂J
>0,

∂βx

∂J
<0,

∂δ

∂J
<0,

∂λ1

∂J
>0,

∂λ2

∂J
<0. (A81)

Inserting θ =0 in (A65) and (A66), taking derivative and combining with (A79),
we can show

∂�1

∂J
<0 and

∂�2

∂J
<0. (A82)

Inserting θ =0 in (A74) and (A73), taking derivative and combining with
(A78) and (A79), we have

∂ logE
(
	F

)
∂J

∝ −1

4

4J +5

(J +2)2 (J +1)2

√
2(J +1)

√
η<0, (A83)

∂ logE
(
πB

2,j

)
∂J

∝ −1

2

3J +4

(J +1)(J +2)
<0, (A84)

∂ (λ1 +λ2η)

∂J
∝ − J

2
√

2(J +1)(J +2)2

√
η<0, (A85)

and
∂ log

[
J ×E

(
πB

2,j

)]
∂J

∝−1

2

J 2 −2J −4

J (J +1)(J +2)
, (A86)

which implies

∂
[
J ×E

(
πB

2,j

)]
∂J

<0⇐⇒J 2 −2J −4>0⇐⇒J >3. (A87)
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