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a b s t r a c t 

The Dodd-Frank Act mandates that certain standard over-the-counter (OTC) derivatives 

must be traded on swap execution facilities (SEFs). Using message-level data, we provide 

a granular analysis of dealers’ and customers’ trading behavior on the two largest dealer- 

to-customer SEFs for index credit default swaps (CDS). On average, a typical customer con- 

tacts few dealers when seeking liquidity. A theoretical model shows that the benefit of 

competition through wider order exposure is mitigated by a winner’s curse problem and 

dealer-customer relationships. Consistent with the model, we find that order size, mar- 

ket conditions, and customer-dealer relationships are important empirical determinants of 

customers’ choice of trading mechanism and dealers’ liquidity provision. 
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1. Introduction 

Title VII of the Dodd-Frank Act was designed to, among 

other objectives, bring transparency into the once-opaque 

over-the-counter (OTC) derivatives markets, also known as 

swaps markets. The Act’s goal of increased transparency 

in these markets likely reflected their economic signifi- 

cance. As of June 2017, OTC derivatives markets world- 

wide had a notional outstanding amount of $542 trillion, 

according to the Bank for International Settlements (BIS). 

Key implementation steps related to transparency in Title 

VII of Dodd-Frank include mandatory real-time reporting 

of swaps transactions, 1 mandatory central clearing of stan- 

dardized swaps, 2 and for a subset of liquid, standardized 

interest rate swaps (IRS) and credit default swaps (CDS), a 

requirement that all trades must be executed on swap ex- 

ecution facilities (SEFs). According to SEF Tracker published 

by the Futures Industry Association (FIA), 3 SEFs handled 

about $7 trillion of CDS volume 4 and about $129 trillion 

of IRS volume in 2017. 

This paper provides a granular analysis of SEF trading 

mechanisms and the associated behavior of market partic- 

ipants after the implementation of Dodd-Frank. A better 

understanding of post-Dodd-Frank swaps markets is im- 

portant because of their large size and their central po- 

sition in the post-crisis regulatory framework in the US 

and worldwide. It is far from obvious what are the best, 

or even desirable, market designs for swaps markets. To 

improve swaps market design, it is useful to understand 

market participants’ behavior in the new, post-Dodd-Frank 

swap trading environment. Moreover, insights from analyz- 

ing swaps trading are also informative for the design of 

related markets, such as the Treasury and corporate bond 

markets, which are undergoing their own evolution due to 

regulatory or technological changes. 

Our analysis focuses on index CDS markets. Relative 

to interest rate swaps (the only other asset class subject 

to the SEF trading mandate), index CDS are more stan- 

dardized and have fewer alternatives in futures and cash 

markets. Specifically, we analyze combined message-level 

data for index CDS traded on Bloomberg SEF (Bloomberg) 

and Tradeweb SEF (Tradeweb) in May 2016. These two 

SEFs specialize in dealer-to-customer (D2C) trades. Accord- 

ing to SEF Tracker , in May 2016, Bloomberg and Tradeweb 

were the top two SEFs in the index CDS market, captur- 

ing market shares of 71.0% and 13.6%, respectively. There- 

fore, data from these two SEFs offer a comprehensive 
1 Beginning in December 2012, certain swaps transactions are required 

to be reported to Swap Data Repositories (SDRs). At the same time, SDRs 

started making a limited set of the information about these transactions 

available to the public. This allowed the public to learn quickly (typi- 

cally, as little as 15 minutes after the trade) about the transactions that 

have taken place, including information about the product traded and the 

price. 
2 Beginning in January 2013, swaps in the most liquid interest rate 

swaps and index credit default swaps became subject to mandatory cen- 

tral clearing. 
3 The FIA is a trade organization for futures, options, and centrally 

cleared derivatives markets. 
4 CDS trading on SEFs is predominantly comprised of index CDS, and 

there is very little single-name CDS trading on SEFs. 
view of customer activities in SEF-traded index CDS. Other 

SEFs are mostly interdealer SEFs where dealers trade with 

each other, with little customer participation (see Collin- 

Dufresne et al., 2018 ). 

A critical aspect of a trading mechanism is the de- 

gree to which potential trading interest is exposed to the 

broader market. On both Bloomberg and Tradeweb, cus- 

tomers interested in trading index CDS typically receive in- 

dicative quotes from dealers who are available to trade, 

and then choose one of the following three execution 

mechanisms: 

• Central limit order book (CLOB). Customers may exe- 

cute against existing orders or post new orders on a 

mostly transparent order book. As explained in detail in 

Section 2 , CLOBs in swap markets typically have “name 

give-ups,” which reveal the identities of the two coun- 

terparties to each other after the trade. 

• Request for quote (RFQ). Customers select multiple 

dealers and request quotes from each, revealing their 

intended trade size, side, and identity. The RFQ mech- 

anism is thus similar to sealed-bid first-price auctions. 

Importantly, dealers observe how many other dealers a 

customer contacts in the RFQ. 

• Request for streaming (RFS). Customers observe two- 

sided quotes from multiple dealers, and can respond to 

a single dealer’s streaming quote, proposing to trade at 

the dealer’s quoted price. If the customer does respond 

to a quote, he/she reveals the intended trade size, side, 

and his/her identity. The dealer can accept or reject this 

request. 

In a sense, from CLOB to RFQ to RFS, a customer’s de- 

tailed order information is progressively exposed to fewer 

and fewer market participants. The customer’s choice is 

always made conditional on observing indicative stream- 

ing quotes, and the customer understands that none of the 

three mechanisms are anonymous ex post to the eventual 

counterparty. 

The granular message-level data give us a unique op- 

portunity to analyze trading mechanisms and strategic be- 

havior. Our data record the full trade formation process, 

including customers’ inquiries (demand for liquidity), deal- 

ers’ responses (supply of liquidity), and resulting trades (or 

lack thereof). In contrast, publicly reported transaction data 

contain little information about how the trade takes place. 

In addition, our data contain identifiers for customers and 

dealers, which allow us to measure or control certain char- 

acteristics of these institutions. 

A first look at data. Our main analysis focuses on eight 

CDS contracts that, by Commodity Futures Trading Com- 

mission (CFTC) rules, must be transacted on SEFs (see 

Section 3 for details). Among the three mechanisms men- 

tioned above, we find that the CLOB mechanism has very 

low trading activity on both SEFs in our sample. Between 

RFQ and RFS, the RFS mechanism captures over 60% of cus- 

tomer activity in both the number of orders and notional 

quantity. That is, bilateral trades remain the most popular 

trading mechanism of index CDS in our sample, although 

customers are now provided with pre-trade transparency 

in the form of indicative streaming quotes. Moreover, con- 

ditional on using RFQ (e.g., electronic auctions), customers 
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request quotes from only about four dealers on average,

even though more quotes could be obtained on both plat-

forms. Dealers’ response rates in RFQs are high overall but

decline in the number of competitors. If a customer con-

tacts 3–5 dealers in an RFQ, the response rate from dealers

is about 90%, but the response rate drops to about 80% if

the customer contacts more than five dealers in the RFQ. 

A model of SEF trading. The salient empirical patterns

mentioned above—limited order exposure by customers

and variations in dealers’ response rates—strongly suggest

that competition is not the only consideration when cus-

tomers trade on SEFs. Because competitiveness is widely

viewed as a key yardstick for the health of markets, it is

important to understand economic incentives that mitigate

the desire to maximize competition on SEFs. 

To better understand these incentives and to guide fur-

ther empirical analysis, we propose and solve a model of

SEF trading. We focus on the RFQ mechanism because of

its central position in the spectrum of mechanisms. At least

in theory, an RFQ to one dealer is similar to the RFS mech-

anism (bilateral), whereas an RFQ to all available dealers

approaches the CLOB mechanism. In the model, the cus-

tomer first contacts an endogenous number k of dealers

in an RFQ process on a dealer-to-customer SEF, and then

dealers smooth inventories among themselves on an in-

terdealer SEF. This market segmentation between D2C and

interdealer SEFs is realistic ( Collin-Dufresne et al., 2018 )

and, as we discuss shortly, creates a winner’s curse prob-

lem, which dampens the effect of competition. In addition

to the winner’s curse, we also incorporate customer-dealer

relationship in the model, whereby a customer can freely

request a quote from the “relationship” dealer but request-

ing quotes from each non-relationship dealer incurs an in-

cremental cost. 

Both the winner’s curse channel and the relationship

channel are important for explaining empirical facts in the

data. The relationship channel generates an interior so-

lution for the optimal number of dealers requested, and

the winner’s curse channel generates the comparative stat-

ics that we eventually test. For this reason, let us explain

briefly the nature and the intuition of the winner’s curse. 

Suppose that the customer is selling an index CDS and

has sent an RFQ to k dealers. In equilibrium, the dealer

who wins the RFQ infers that he has the highest value

among the k dealers contacted. In our model, a dealer with

a lower inventory has a higher valuation of a customer

sell order, all else equal. Therefore, the winning dealer in-

fers that the total inventory of all dealers is more likely to

be long. This inference about other dealers’ positions will

lower the price the winning dealer expects to receive when

he offloads some of that position in the interdealer market

(that is, the conditional expected interdealer price is below

the unconditional expected price). This adverse inference

reduces dealers’ response rates and reduces each partici-

pating dealer’s bid for the customer’s order. On the other

hand, a larger k does reduce each participating dealer’s

market power. Thus, the total effect of k on dealers’ quoted

spreads (defined as the difference between the dealers’

quotes and a benchmark price), conditional on participat-

ing, is ambiguous. One prediction that is unambiguous is

that dealers’ response rate will be decreasing in k . 
Within the context of the model, dealers’ response rates

have the most tractable and unambiguous theoretical pre-

dictions: all else equal, a dealer is more likely to respond

to an RFQ if the customer’s order is larger or nonstandard-

ized, if more dealers are streaming quotes, or if dealers’ in-

ventory cost is lower. In contrast, the model’s predictions

on the customer’s choice of order exposure and dealers’

quoted spreads generally have ambiguous signs and de-

pend on model parameters. We will present evidence on

all these dimensions for empirical relevance, but the tight-

est link to theory is dealers’ response rates. 

Empirical results. As in the model, our empirical analy-

sis also primarily focuses on RFQs. Compared to order book

trading (exchange markets) and bilateral trading (most OTC

markets before the crisis), trading by RFQ in financial mar-

kets has a shorter history and hence receives little aca-

demic attention, especially in empirical work (also see

the literature section). On the other hand, as more fixed-

income securities and OTC derivatives move to electronic

trading, the RFQ mechanism has emerged as a very impor-

tant source of liquidity, a flexible middle ground between

the two “extremes” of bilateral trading and the equity-

like CLOB (or all-to-all) mechanism. Therefore, an empir-

ical analysis of RFQs sheds light not only on the liquid-

ity of OTC derivatives after Dodd-Frank, but also on other

fixed-income markets that are undergoing similar transi-

tions due to changes in technology and regulation. 

We begin our empirical tests by analyzing the cus-

tomer’s choice of how widely the customer exposes his

trading interest. Because the model does not make unam-

biguous predictions in this regard, we directly go to the

data. We exclude the CLOB due to its low activity but an-

alyze both RFQ and RFS mechanisms at this step. We find

that a larger trade size significantly reduces the customer’s

likelihood of choosing RFQ relative to RFS, and, if the cus-

tomer does choose RFQ, reduces the number of dealers

queried in the RFQ. For example, a $22 million increase in

notional quantity (close to one standard deviation in the

order size in the sample) reduces the probability of initi-

ating an RFQ by about 3.9%. Conditional on the customer

sending an RFQ, the same increase in notional quantity re-

duces the number of contacted dealers by approximately

half a dealer, which is fairly substantial given that the av-

erage number of dealers queried is just above four. In addi-

tion, customers tend to expose their orders to fewer deal-

ers if the trade size is standard or if it is early in the trad-

ing day. While these results are not directly predicted by

the model, we believe they are still noteworthy because

they establish facts that are new to the literature. 

Using identifying information for dealers and cus-

tomers, we also find that customers are more likely to send

RFQs to their relationship dealers, that is, their clearing

members or dealers with whom they have traded more ac-

tively in the last four months, controlling for dealer fixed

effects. This evidence supports that customer-dealer rela-

tionships play a role in index CDS markets, just like in

many other markets without anonymous trading. 

Next, we examine dealers’ strategic responses to RFQs.

Again, on the two SEFs we study, dealers selected for RFQs

observe how many other dealers are competing for the or-

der (but not the identities or responses of other dealers).
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Our model makes clear predictions about dealers’ response 

rates, especially when combined with the empirical deter- 

minants of the number of dealers the customer contacts in 

an RFQ. As predicted by the model, we find that a dealer’s 

likelihood of responding to an RFQ decreases in the num- 

ber of dealers selected (suggesting a winner’s curse effect), 

increases in notional quantity (suggesting larger gains from 

trade), and increases in the number of streaming quotes 

available before the customer places the order (suggesting 

it is easier to offload positions in interdealer markets), all 

controlling for dealer fixed effects. Moreover, for a fixed 

dealer, having a clearing relationship with the customer in- 

creases the dealer’s response probability, but a higher trad- 

ing volume with the customer in the past does not. Cus- 

tomer RFQs are executed more than 90% of the time and 

are more likely to result in actual trades if order sizes are 

larger or nonstandard, which is consistent with the inter- 

pretation that those orders imply larger gains from trade 

between customers and dealers. 

Finally, we examine dealers’ pricing behavior condi- 

tional on responding to RFQs, for which the model does 

not make unambiguous predictions. For on-the-run con- 

tracts that account for the vast majority of the sample, 

the average transaction cost is about 0.2 basis points (bps) 

for investment grade CDS indices and 0.5–1.1 bps for high 

yield ones. Using individual dealers’ quotes, we find that a 

higher notional quantity slightly increases dealers’ quoted 

spreads, albeit with a small economic magnitude. Dealers’ 

quotes become more competitive, in the sense of a smaller 

distance between the best and the second-best quotes, if 

more dealers are selected in the RFQ or if the number of 

streaming quotes is higher, but again the economic magni- 

tude is small. The clearing relationship reduces the quoted 

spread slightly only for investment grade contracts. The 

customer’s final transaction cost does not depend signifi- 

cantly on any other variable in our regressions. Overall, the 

regressions on quoted spread do not reveal any striking or 

quantitatively large effect. 

Relation to the literature. Our paper contributes to the 

small but growing literature that analyzes swaps trading 

after the implementation of Dodd-Frank. Collin-Dufresne 

et al. (2018) use swap data reported on SDRs to analyze 

the difference in trading costs between dealer-to-customer 

(D2C) and interdealer SEFs in the index CDS market. They 

report that effective spreads are higher on D2C SEFs and 

that price discovery seems to originate from D2C SEFs. 

Moreover, Collin-Dufresne et al. (2018) provide an in-depth 

analysis of mid-market matching and workup, which turn 

out to account for most trading activity on GFI, an inter- 

dealer SEF. 

Benos et al. (2016) analyze the impact of the introduc- 

tion of SEFs on the US interest rate swaps market, using 

publicly reported interest rate swaps data from swap data 

repositories (SDRs) and a private data set acquired from 

a clearinghouse. The authors find that the introduction of 

SEFs improved liquidity and reduced execution costs for 

end-users. Related to earlier rules in swaps markets, Loon 

and Zhong (2016) analyze the effect of public dissemina- 

tion of swap transactions in the index CDS market. They 

find evidence of improved liquidity as a result of post- 

trade transparency. Loon and Zhong (2014) find that the 
(voluntary) central clearing of single-name CDS reduces 

counterparty risk, lowers systemic risk, and improves liq- 

uidity. 

Relative to these studies, our main empirical contribu- 

tion is the analysis of customers’ and dealers’ strategic be- 

havior throughout the trade formation process, from the 

initial customer inquiry to dealers’ responses to the final 

trade confirmation, all with time stamps. The granular data 

enable us to separately analyze the demand for liquidity 

(customers’ inquiries) and the supply of liquidity (dealers’ 

responses), which would not be possible if only completed 

transactions were observed. Moreover, identity informa- 

tion in the data allows us to study how customer-dealer 

relationships affect the trade formation process. Overall, 

equipped with the granular data, we can ask economic 

questions that are distinct from the papers mentioned 

above. 

Our study also contributes to the understanding of new 

electronic trading mechanisms in fixed-income markets, in 

particular the RFQ mechanism. Hendershott and Madha- 

van (H&M, 2015 ) compare voice trading versus electronic 

RFQs in US corporate bond markets. In their data, cus- 

tomers typically request quotes from 25 or more bond 

dealers, and dealers’ response rates are generally between 

10% and 30%. Like H&M, we find that the number of deal- 

ers queried in RFQs decreases in trade size but dealers’ re- 

sponse rates increase in trade size. But beyond H&M, we 

show that dealers’ response rates depend on intraday mar- 

ket conditions such as the number of streaming quotes as 

well as stable variables such as customer-dealer clearing 

relationships and customer types. In addition, H&M find 

that RFQs are used more frequently for more liquid bonds 

and are associated with lower transaction costs. We do not 

find evidence that the degree of order exposure is signif- 

icantly correlated with transaction cost in the index CDS 

market, possibly because the CDS indices we examine are 

already highly liquid and generally have low transaction 

costs (see also Collin-Dufresne et al., 2018 ). Finally, an- 

other key contribution of our paper is the model. While 

H&M discuss dealers’ inventory premium and information 

leakage, these notations do not have a microfoundation in 

their analysis. In contrast, we provide a microfoundation 

for the winner’s curse in a model of segmented SEF trad- 

ing, which produces additional empirical predictions that 

are confirmed in the data. 

The winner’s curse problem in our model is related to 

but different from the risk of information leakage modeled 

by Burdett and O’Hara (1987) . In their model, a seller of a 

block of shares contacts multiple potential buyers sequen- 

tially. The sequential nature of search implies that a con- 

tacted potential buyer may subsequently short the stock 

and thereby drive down the stock price. In our model, by 

contrast, the customer contacts multiple dealers simulta- 

neously and the customer’s order flow is not driven by su- 

perior fundamental information. 

A number of papers have studied the effect of relation- 

ships on trading behavior in OTC markets. Using enhanced 

Trade Reporting and Compliance Engine (TRACE) data in 

corporate bond markets, Di Maggio et al. (2017) find that 

dealers offer lower spread to counterparties with stronger 

prior trading relations, and this pattern is magnified 
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during stressful periods as measured by a higher VIX (the

CBOE volatility index for S&P 500). Using data on trans-

actions of insurance companies in corporate bond markets,

Hendershott et al. (2016) find that larger insurers use more

dealers and also have lower transaction costs. Their inter-

pretation, also modeled formally, is that the value of future

business with large insurers provides strong incentives for

dealers to offer better prices. Using regulatory CFTC data,

Haynes and McPhail (2019) find that customers in index

CDS markets who trade with more dealers and have con-

nections to more active dealers incur lower price impact.

In single-name CDS markets, Iercosan and Jiron (2017) find

that, consistent with bargaining power, a customer’s trans-

action cost is lower if the customer is more important for

the dealer or if the dealer is less important for the cus-

tomer in terms of past transactions. While all these stud-

ies focus on past trading relationships, our evidence high-

lights the importance of clearing relationships: customers

send more RFQs to their clearing dealers and their clear-

ing dealers are more likely to respond. However, we do

not find evidence that clearing relationships or past trad-

ing relationships have a significant impact on transaction

costs. This is possibly due to our short sample and because

SEF-traded CDS indices already have high liquidity and low

transaction costs on average. 

2. SEF trading mechanisms 

In this section, we briefly describe SEF trading mech-

anisms, focusing on index CDS markets. Detailed descrip-

tions of the trading mechanisms used on each SEF can be

found on the web sites of Bloomberg SEF and Tradeweb

SEF. 5 

Under CFTC rules, a SEF must offer a central limit or-

der book (CLOB) where buy and sell quotes for various

sizes can be observed by traders. SEFs also offer other

ways of executing a trade such as RFQ and RFS, as we dis-

cuss in detail below. The two SEFs examined in this study,

Bloomberg and Tradeweb, are similar in that the vast ma-

jority of trading is executed via electronic RFQ and RFS

but differ slightly in the implementation of these execu-

tion mechanisms. Fig. 1 provides a stylized representation

of the trading process on these two SEFs. 

On either SEF, the customer typically starts by choosing

to initiate RFS for the contract(s) he or she might be inter-

ested in trading. 6 That indication of interest automatically

transmits a request for streaming (RFS) message to deal-

ers who make markets in that contract and have agreed to

stream quotes to the customer. As a result of the RFS, the

customer receives a stream of two-way indicative quotes

from those dealers. (Dealers have the choice of not stream-

ing quotes to a specific customer.) The customer also ob-

serves the resting orders on the CLOB, which are firm. At

this point, the customer has essentially three choices: re-
5 Bloomberg SEF: https://data.bloomberglp.com/professional/sites/ 

10/Rulebook-Clean.pdf . Tradeweb SEF: http://www.tradeweb.com/ 

uploadedFiles/Exhibit%20M-1%20TW%20SEF%20Rulebook.pdf . Both files 

were accessed on June 23, 2017. 
6 Customers may choose to go to RFQ directly, but they typically choose 

to initiate RFS since it provides valuable information. 

 

 

 

sponding to one of the RFS quotes, initiating a request for

quote (RFQ), or interacting with the order book (CLOB). 

The customer’s first option is to respond to the stream

of indicative quotes by selecting a single quote and inform-

ing that dealer about the side of the transaction (i.e., buy

or sell), the associated quantity, and the customer’s iden-

tity. At that point, the dealer has the choice to accept or

reject the order. If the dealer accepts, the trade occurs; and

if the dealer rejects, the transaction is not executed. This is

quite similar to the “last look” option in FX (foreign ex-

change) markets. 

The customer’s second option is to send an RFQ. The

RFQ process is essentially an electronic, sealed-bid, first-

price auction. As in an auction, price inquiries can be sent

to a set of dealers chosen by the customer. CFTC rules

mandate that for swaps that are subject to the SEF manda-

tory trading rule (known as the “made available to trade”

or “MAT” mandate) at least three different dealers must

be contacted for each RFQ. (Bloomberg SEF sets an upper

bound of five dealers in a single RFQ, whereas Tradeweb

does not set a limit. 7 ) In the RFQ mechanism, the customer

reveals his identity, the size of the potential transaction,

and whether he or she is buying or selling. Each contacted

dealer observes how many other dealers are contacted in

the RFQ. The dealers who have received an inquiry can

then choose to respond. In some cases, the dealer can

choose to send either a firm or an indicative quote, but

generally dealers send firm quotes. When a firm quote is

sent, the quote has a clock that counts down (generally

30 seconds), during which time the quote is firm and the

dealer cannot update their quote. The customer can select
7 According to Fermanian et al. (2016) , in European corporate bond 

markets, Bloomberg Fixed Income Trading sets a limit of up to six dealers 

in a single RFQ. 

https://data.bloomberglp.com/professional/sites/10/Rulebook-Clean.pdf
http://www.tradeweb.com/uploadedFiles/Exhibit%20M-1%20TW%20SEF%20Rulebook.pdf
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Fig. 2. SEF daily trading volume of index CDS in $ billion. Source: Futures Industry Association, https://fia.org/node/1834/ . 

8 All four indices are corporate indices administered by Markit Indices 

Limited. The CDX North American Investment Grade (CDX.NA.IG) and 

iTraxx Europe indices are composed of entities with investment grade 

credit ratings in North America and Europe, respectively. The CDX North 

American High Yield (CDX.NA.HY) index is composed of North American 

entities with high yield credit ratings. The iTraxx Crossover index is com- 

posed of European entities with non-investment grade credit ratings. 
one of the available quotes. If the customer selects a firm 

quote, the trade is completed, and other dealers are no- 

tified that their quotes were not selected. If the customer 

selects an indicative quote, the dealer has the option to ac- 

cept or reject the order. If the customer does not choose 

any of the quotes, they will expire and no transaction 

occurs. 

Finally, the customer may use the CLOB, by either tak- 

ing one of the firm orders on the CLOB (aggressive side), 

at the size and price of the existing order, or posting their 

own firm order on the CLOB (passive side) and waiting for 

another trader to take it. Different from order books in eq- 

uity and futures markets, order books in swaps markets 

typically have “post-trade name give-ups.” The Commodity 

Futures Trading Commission (2018a) defines post-trade 

name give-up as “the practice of disclosing the identity of 

each swap counterparty to the other after a trade has been 

matched anonymously.”

To summarize, customers on D2C SEFs for index CDS re- 

ceive some degree of pre-trade transparency through in- 

dicative streaming quotes and the CLOB when it is ac- 

tive. To trade, customers may respond to a single dealer’s 

streaming quotes (labeled as RFS for short), run an auc- 

tion (RFQ), or use the order book (CLOB). Note that even 

if the customer chooses RFQ or CLOB, he still observes 

the streaming quotes. Thus, the main difference between 

the three mechanisms is not the information received by 

the customer, but how widely the customer chooses to re- 

veal his order information. As discussed above, none of the 

three mechanisms are anonymous after the trade happens. 

3. Data and summary statistics 

3.1. A first look at SEF trading activity of index CDS 

Index CDS is an important derivative class that is, for 

the most part, subject to the CFTC’s SEF trading rules since 

February 2014. Fig. 2 shows the average daily trading vol- 
ume of index CDS in $ billions by month, from January 

2014 to December 2017. These data are publicly available 

from the Futures Industry Association and only cover US- 

registered SEFs. Throughout the four years, the daily trad- 

ing volume of index CDS is about $30 billion. Generally 

speaking, March and September have the highest average 

daily volume as the major CDS indices are reconstituted 

and investors roll their index CDS positions from one se- 

ries to the next during this time. 

To understand usual investor and dealer behaviors, it is 

desirable to avoid the index-rolling periods as trading dur- 

ing these periods may not be generalizable to other pe- 

riods. For example, Collin-Dufresne et al. (2018) find that 

the transaction prices of package trades like these tend to 

be abnormal and look like outliers. For this reason, we pick 

a non-roll month, May 2016, as our sample period for the 

empirical analysis. 

Table 1 shows more details of index CDS trading activ- 

ity in May 2016, broken down by SEF, currency, and index. 

Over the 21 trading days of this month, the average daily 

trading volume of index CDS is $18.6 billion. Bloomberg 

and Tradeweb have market shares of 71.0% and 13.6%, re- 

spectively. About 69% of the SEF trading activity is on USD 

indices, and the remainder is on EUR indices. CFTC rules 

require the on-the-run and the first off-the-run series of 

5-year CDX.NA.IG, CDX.NA.HY, iTraxx Europe, and iTraxx 

Europe Crossover to be executed on SEFs. 8 While other 

CDS indices are permitted (but not required) to be traded 

on SEFs, we observe that CDX.NA.IG, CDX.NA.HY, iTraxx 

Europe, and iTraxx Europe Crossover have a combined 

https://fia.org/node/1834/
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Table 1 

Daily SEF trading volume in index CDS in May 2016. 

Source: Futures Industry Association. 

By SEF Average daily volume ($ mil) Market share (%) 

Bloomberg $13,194 71.0 

TW $2,517 13.6 

GFI $945 5.1 

Tullett Prebon $931 5.0 

ICE $385 2.1 

MarketAxess $297 1.6 

ICAP $152 0.8 

BGC $116 0.6 

Tradition $39 0.2 

Total $18,576 100.0 

By currency Average daily volume ($ mil) Market share (%) 

USD $12,799 68.9 

EUR $5,774 31.1 

JPY $3 0.0 

Total $18,576 100.0 

By CDS index (top 10 only) Average daily volume ($ mil) Market share (%) 

CDX.NA.IG $9,128 49.1 

iTraxx Europe $3,893 21.0 

CDX.NA.HY $3,094 16.7 

iTraxx Europe Crossover $929 5.0 

iTraxx Europe Senior Financials $729 3.9 

CDX.EM $453 2.4 

iTraxx Europe-Option $210 1.1 

CDX.NA.IG-Option $68 0.4 

CDX.NA.HY-Option $16 0.1 

iTraxx Europe Sub Financials $15 0.1 

Total $18,533 99.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 In our sample, the smallest sizes of block trades are 110 million USD 

for CDX.NA.IG, 28 million USD for CDX.NA.HY, 99 million EUR for iTraxx 

Europe, and 26 million EUR for iTraxx Crossover. 
10 By CFTC rules, “permitted” trades refer to trades that can, but are not 

required, to be executed on SEFs. 
volume share of about 92%. Moreover, the two investment

grade indices, CDX.NA.IG and iTraxx Europe, have total vol-

ume about 3–4 times that of the two high yield indices,

CDX.NA.HY and iTraxx Europe Crossover. 

3.2. Main data set: Message-level data from Bloomberg and 

Tradeweb 

The primary data set we use in this paper is message-

level data from Bloomberg and Tradeweb from May 2016.

These two venues specialize in customer-to-dealer trades

and, as shown above, account for about 85% of all SEF trad-

ing volume in index CDS in our sample period. For each

message, the data include the message type (e.g., request

for quote or response to request), parties to the trade, the

specific CDS index being traded, a buy/sell indicator, price,

notional quantity, date, time, and other relevant trade char-

acteristics. The messages related to a given request or or-

der are grouped together with a unique identifier. We refer

to the group of related messages as a “session.”

We filter our message data based on the following

criteria: 

• We restrict the sample to MAT contracts, i.e., the on-

the-run and the first off-the-run series with a 5-year

tenor in CDX.NA.IG, CDX.NA.HY, iTraxx Europe, and

iTraxx (Europe) Crossover. By CFTC rules, non-MAT con-

tracts are not required to be traded on SEFs, and if they

trade on a SEF, they are not subject to the CFTC’s re-

quirement of sending RFQs to at least three dealers. 

• Among MAT contracts, we also exclude orders whose

sizes are above the contract-specific minimum block
sizes. 9 By CFTC rules, block-sized trades are not re-

quired to be executed on SEFs; nor are they subject

to the “RFQ to minimum three” rule (if they do trade

on a SEF by RFQ). Hence, the regulatory environment is

substantially different for block size and less-than-block

size trades. 

• We also exclude strategies and orders that are ex-

empted from the “RFQ to three” requirement. In our

data, these types of orders include packages such as in-

dex rolls (selling an off-the-run index CDS and simulta-

neously buying the on-the-run index). 

While it is undesirable to lose data, the filtering is done

to make sure that all customer orders in the final sam-

ple are required to be executed on SEFs. The complemen-

tary question of how investors determine where to execute

“permitted” trades, 10 on SEF or off SEF, is for a different

study. 

Table 2 below shows the number of transactions and

aggregate notional amount traded via RFQ, RFS, and CLOB

in our sample. We observe that RFS is the most popular

transaction mechanism, followed by RFQ. CLOBs only ac-

count for 3% of transactions and 2.5% of notional amounts.

The low level of activity on CLOBs could be due to post-

trade name give-ups, as discussed earlier. When swaps

were not centrally cleared, name give-up helped the swaps
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Table 2 

Transaction volume and count by trade mechanism. 

The sample includes index CDS trades on Bloomberg and 

Tradeweb in May 2016 that satisfy the following filtering cri- 

teria: MAT contracts, size below minimum block sizes, and 

not exempted from the “RFQ to three” requirement. 

RFQ RFS CLOB 

Notional quantity ($mil) 55,976 113,545 4,468 

Number of transactions 2,943 5,079 250 
counterparties manage counterparty credit risk. But such 

credit risk is now insulated by the clearinghouse because 

many standard OTC derivatives, including the index CDS 

that we consider, became centrally cleared after the finan- 

cial crisis. For this reason, some buy-side investors have ar- 

gued that post-trade name give-up no longer serves credit- 

risk purposes, but instead leads to information leakage, 

discourages the use of CLOBs, and bifurcates liquidity into 

a dealer-to-dealer (D2D) segment and a dealer-to-customer 

(or dealer-to-client, D2C) segment (see Managed Fund As- 

sociation, 2015 ). The Commodity Futures Trading Commis- 

sion (2018b) also states, in footnote 976 of its proposed 

rule, that “The Commission notes that additional factors, 

such as the use of name give-up and the lack of certain 

trading features, may have also contributed to the lim- 

ited use of Order Books.” Recently, the Commodity Futures 

Trading Commission (2018a) has requested comments on 

name give-ups but has not yet made its determination. 

Because of the low level of activity on CLOBs in the 

D2C SEFs in our sample period, we exclude CLOB mes- 

sages from our analysis and focus on RFQ and RFS. In 

the final sample, we have 8410 sessions and $177.602 bil- 

lion notional value, or 400 customer orders and $8.46 bil- 

lion notional value per day, including both RFS and RFQ. 

Note that these numbers refer to the initial customer or- 

ders, so they are larger than the final transaction numbers 

shown in Table 2 . The $177.602 billion notional value in 

customer orders and the $169.521 billion notional value in 

final trades imply that 95.5% of notional amount requested 

by customers through RFQ and RFS results in trades. 

Table 3 shows the summary statistics of key variables 

that we use in the empirical analysis. Panel A shows the 

summary statistics of all RFQ and RFS sessions, whereas 

Panel B restricts to RFQs since they are the focus of a sub- 

stantial part of our paper. In each panel, we report the 

summary statistics for all indices as well as separately for 

investment grade (IG, including CDX.NA.IG and iTraxx Eu- 

rope) and high yield (HY, including CDX.NA.HY and iTraxx 

Crossover). 

RFQ and RFS sessions—Across all eight indices, the no- 

tional quantity has a mean of $21 million, while IG indices 

have a mean of $34.8 million. 11 Order size is the most 

salient difference between HY and IG in our sample. 
11 The average order size in our sample is smaller than that reported in 

Haynes and McPhail (2019) due to different methodologies in construct- 

ing the data sample. Haynes and McPhail (2019) remove block trades by 

using a self-reported block flag in the trade repository data, whereas we 

use the contract-specific minimum block size as a cutoff. For example, a 

large trade that is above the minimum block size but not self-reported as 

such would be in the sample of Haynes and McPhail (2019) , but not in 

our sample. Moreover, Haynes and McPhail (2019) remove all trades with 
For each contract, a few notional quantities occur with 

very high frequency in the data, and we label them as 

“standard” quantities. 12 On average, more than 60% of the 

trades are in those standard quantities, and this number is 

comparable between IG and HY. When a customer sends 

out an RFQ or RFS inquiry, about 17.5 streaming quotes are 

available on the index. Slightly less than 30% of the ses- 

sions occur in the last four hours of active trading for the 

day. Customer buys and sells are balanced. 

The message-level data also contain identity informa- 

tion of the customer, enabling us to disaggregate the ac- 

tivity by customer type. The most active customer type 

is hedge fund/proprietary trading firm/private equity firm 

(HF/PTF/PE), representing 60% of the sessions, with a 

slightly higher fraction in HY indices. Asset manager is the 

second most active customer type, accounting for 24% of 

the sessions, but with a slightly higher share in IG indices. 

In about 7% of the sessions, the customer (quote seeker) 

is in fact a dealer (market maker), in the sense that the 

quote seeker has provided quotes to customers in other 

sessions. Only 6% of the sessions are initiated by banks 

or brokers who are not market makers. The remaining 2% 

of orders come from other customer types (including non- 

financial corporations, insurance companies, and pension 

funds, among others). We also calculate the share of these 

customer types in terms of notional quantity, and the re- 

sults are very similar (not reported). 

Only RFQ sessions—On average, customers select RFQ 

36% (= 3031 / 8410) of the time (the remaining 64% goes 

to RFS). Compared with the full sample with both RFQ and 

RFS sessions (Panel A of Table 3 ), RFQ sessions display the 

following features: 

• The average size of RFQ orders is $18.3 million, smaller 

than RFS (but standard deviation is similar, at $21 mil- 

lion). IG RFQ orders are about three times as large as 

HY RFQ orders. 

• Only 41% of RFQ orders are of standard size, lower than 

the full sample, with HY slightly higher. 

• The number of streaming quotes right before the ses- 

sion is similar between RFQ and RFS sessions. 

• 30% of RFQ orders are sent during the last four hours 

of active trading, similar to RFS orders. 

• For RFQ, asset manager is the most active cus- 

tomer type, accounting for 49% of the orders. Hedge 

fund/proprietary trading firm/private equity firm is the 

second most active customer type, accounting for 39% 

of RFQ orders. 

• Conditional on selecting RFQ, a customer on average 

queries 4.1 dealers and receives 3.6 responses, imply- 

ing an overall response rate of nearly 90%. About 92% 

of the RFQ sessions result in trades. 13 All these statis- 

tics are similar between IG and HY. 
notional size less than $5 million, whereas we do not impose a lower 

bound on the order size. 
12 For CDX.NA.IG, standard sizes include 10, 20, 25, 50, and 100 million 

USD notional. For CDX.NA.HY, standard sizes include 5, 10, 15 and 25 mil- 

lion USD. For iTraxx Europe, standard sizes include 10, 20, 25, and 50 

million EUR. For iTraxx Crossover, standard sizes include 3, 5, 10, 15, and 

20 million EUR. 
13 About 93% of RFS sessions result in trade (unreported). 
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Table 3 

Mean and standard deviation (SD) of key empirical variables. 

The top half shows the summary statistics for all RFQ and RFS sessions, and the bottom half 

shows only RFQ sessions. The sample is described in Table 2 , after suppressing trades that oc- 

curred on CLOBs. 

Panel A: RFQ and RFS 

All IG HY 

# Customer orders 8410 3860 4550 

Mean SD Mean SD Mean SD 

Notional quantity ($mil) 21.12 22.03 34.81 25.59 9.51 6.90 

Standard quantity (0/1) 0.64 0.48 0.60 0.49 0.67 0.47 

# Streaming quotes 17.56 7.19 16.30 5.95 18.56 7.93 

Last 4 hours of trading (0/1) 0.27 0.45 0.27 0.45 0.28 0.45 

Customer buys protection (0/1) 0.50 0.50 0.50 0.50 0.49 0.50 

Customer is asset manager (0/1) 0.24 0.43 0.28 0.45 0.21 0.40 

Customer is HF/PTF/PE (0/1) 0.60 0.49 0.54 0.50 0.66 0.48 

Customer is bank/broker (0/1) 0.06 0.24 0.09 0.28 0.05 0.21 

Customer is dealer (0/1) 0.07 0.26 0.07 0.26 0.08 0.27 

Customer is other (0/1) 0.02 0.15 0.03 0.17 0.02 0.12 

Customer selects RFQ (0/1) 0.36 0.48 0.37 0.48 0.35 0.48 

Panel B: RFQ Only 

All IG HY 

# Customer orders 3031 1427 1604 

Mean SD Mean SD Mean SD 

Notional quantity ($mil) 18.28 21.32 28.86 26.35 8.88 7.31 

Standard quantity (0/1) 0.41 0.49 0.36 0.48 0.47 0.50 

# Streaming quotes 17.18 7.16 15.96 5.66 18.27 8.13 

Last 4 hours of trading (0/1) 0.30 0.46 0.30 0.46 0.30 0.46 

Customer buys protection (0/1) 0.51 0.50 0.51 0.50 0.52 0.50 

Customer is asset manager (0/1) 0.49 0.50 0.52 0.50 0.46 0.50 

Customer is HF/PTF/PE (0/1) 0.39 0.49 0.35 0.48 0.42 0.49 

Customer is bank/broker (0/1) 0.06 0.24 0.07 0.26 0.05 0.22 

Customer is dealer (0/1) 0.04 0.20 0.03 0.16 0.05 0.23 

Customer is other (0/1) 0.02 0.15 0.03 0.17 0.01 0.12 

# Dealers queried in RFQ 4.12 1.35 4.02 1.19 4.21 1.48 

# Dealers’ responses in RFQ 3.64 1.36 3.57 1.14 3.70 1.52 

Response rate in RFQ 0.89 0.19 0.90 0.18 0.88 0.20 

Order results in trade in RFQ (0/1) 0.92 0.27 0.91 0.29 0.93 0.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 provides more details on the number of dealers

contacted and dealers’ response rates in RFQs. The top plot

of Fig. 3 reports the probability distribution of the num-

ber of dealers contacted. The probability masses add up to

one, although we separately label IG and HY indices. Cus-

tomers most frequently request quotes from three dealers,

which happens in about 45% of the RFQ sessions, followed

by five dealers, which happens in slightly less than 30% of

the RFQ sessions. Customers rarely select more than five

dealers for their RFQs. The bottom plot of Fig. 3 reports

dealers’ response statistics in RFQs. The overall pattern is

that response rates are high but decrease in the number

of dealers requested. The response rate is about 90% if the

customer requests quotes from three to five dealers, but

the response rate decreases to about 80% if the customer

requests quotes from six or more dealers. These patterns

are broadly similar between IG and HY. 

The summary statistics so far are at the session level.

Table 4 shows summary statistics of dealers’ and cus-

tomers’ activity. In our sample, there are 20 dealers and

287 customers (including dealers who act as quote seek-

ers). A salient pattern arising from Table 4 is that most
customers interact with relatively few dealers. The median

customer contacts only six out of the 20 dealers and trades

with four. The median dealer contacts 76 customers and

trades with 54. The fact that the mean activity for both

customers and dealers is greater than the median suggests

a right-skewed distribution, that is, some dealers and some

customers seem to be much more active than others. 

3.3. Relationship between customers and dealers 

An important aspect of non-anonymous trading is the

“relationship” between customers and dealers. We con-

struct two proxies. 

The first proxy is clearing relationship. All MAT con-

tracts in our sample are subject to the mandatory clearing

requirement of Dodd-Frank. However, most market partici-

pants are not direct members of derivatives clearinghouses.

Instead, they rely on their clearing agents, who are direct

members of clearinghouses, to get access to clearing and

therefore satisfy the clearing mandate. For a fee, the clear-

ing member helps the customer manage margin and col-

lateral as a normal part of a cleared derivative trade, and
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Fig. 3. Number of dealers queried and dealers’ response rate in RFQs. The top plot shows the probability distribution of the number of dealers contacted, 

where the masses add up to one. In the bottom plot, the x -axis shows the number of dealers contacted and the y -axis shows the response rate. The data 

sample is described in Table 3 , restricted to RFQs. 
also contributes to the clearinghouse’s default fund on be- 

half of the customer. These important functions make the 

clearing member somewhat “special” to the customer rel- 

ative to other dealers who are not affiliated with the cus- 

tomer’s clearing member. 

Indeed, the Joint FSB-BCBS-CPMI-IOSCO Report (2018) , 14 
for which one of the authors acted as an academic ex- 

14 The report is published jointly by the Financial Stability Board (FSB), 

the Basel Committee on Banking Supervision (BCBS), the Committee on 

Payments and Market Infrastructures (CPMI), and the International Orga- 

nization of Securities Commissions (IOSCO). 
pert, finds evidence about asymmetric bargaining positions 

in the clearing of derivatives. Survey data from a large 

clearinghouse indicate that 50% of clients have exactly one 

clearing member, and 30% two (see Fig. C.8 of the joint re- 

port). Moreover, clearing members typically give clients a 

notice period of 1–3 months before off-boarding (i.e., fir- 

ing) the clients, but the time required to find a new clear- 

ing agent is 4–6 months (see Fig. E.5 of the joint report). 

These facts point to the strong bargaining power of deal- 

ers in OTC derivatives where clearing is essential. In addi- 

tion, two recent class lawsuits in OTC derivatives alleged 

that, among other things, some dealer banks used their 
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Table 4 

Characteristics of dealers and customers in RFQ and RFS sessions. 

The data sample is described in Table 3 . In addition, a dealer is defined as a coun- 

terparty that has ever responded to an RFQ or an RFS in the sample, and all other 

counterparties are customers. 

Dealers (total 20) Mean Std. dev. Median 

Market share (dealer’s trade volume/total) 5.00% 5.44% 3.23% 

Total number of trades 391.7 416.3 286 

Number of unique customers traded with 68.1 60.9 54 

Number of unique customers interacted with 95.9 82.2 76 

Customers ∗ (total 287) Mean Std. dev. Median 

Market share (customer’s trade volume/total) 0.35% 0.99% 0.05% 

Total number of trades 27.3 70.2 6 

Number of unique dealers traded with 4.7 3.5 4 

Number of unique dealers interacted with 6.7 3.4 6 

∗Including dealers that request quotes from other dealers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unique positions as clearing members to discourage cus-

tomers from using multilateral trading mechanisms in cen-

trally cleared OTC derivatives (see Chang, 2016 ). 

For each customer c and dealer d , we say c and d have

a clearing relationship if customer c ’s clearing member

and dealer d are the same firm or affiliated through the

same bank holding company. In our sample, the vast ma-

jority of customers (over 85% of them) use a single clearing

member. (Different customers tend to use different clear-

ing members, but any given customer tends to use a single

clearing member.) 

The second proxy of relationship is past trading activity

between a customer and a dealer. To construct this proxy,

we supplement our message-level data with transaction-

level regulatory data that were made available to the CFTC

as a result of the Dodd-Frank Act. This complementary data

set has information on every trade that is in the CFTC’s

jurisdiction, including the identifier of each counterparty.

We focus on all index CDS trades (including non-MAT con-

tracts and block trades) from January to April 2016, the

four months leading up to our sample of May 2016 data.

Using counterparty identifiers, we calculate the total num-

ber of transactions and the total amount of notional traded

for each customer-dealer pair. These statistics are further

used to construct relationship variables that we describe

in more detail later. 

4. A model of SEF trading and implications 

The summary statistics presented in the previous sec-

tion show substantial heterogeneity in how customers ex-

pose their orders to dealers and how dealers respond to

customers’ requests. In particular, customers restrict their

order exposure to relatively few dealers, especially for

larger trades. Conversely, while dealers’ response rates are

high, they are not 100%. 

The primary objective of this section is to formally

propose, by building and solving a parsimonious model,

two relevant economic forces that could potentially explain

the customers’ and dealers’ behavior throughout the trade

formation process—the winner’s curse and the customer-

dealer relationship. 
• The winner’s curse problem is faced by dealers when

bidding in an RFQ. In practice, the RFQ is indivisi-

ble, which implies that the dealer who wins the cus-

tomer’s order on a D2C SEF may need to subse-

quently lay off unwanted positions on an interdealer

SEF. Appendix C presents evidence that on days for

which a dealer makes trades on either D2C SEFs or D2D

SEFs (or both), the trading directions in the two seg-

ments are opposite in about one-third of the dealer-

day observations. This fraction is slightly higher (38%) if

the absolute value of a dealer’s trades in D2C SEFs for

a particular contract is larger than the average across

all 21 days in our sample for the dealer and the con-

tract. This evidence suggests that offloading part of a

D2C trade in the D2D segment is an important feature

of the data. Therefore, when bidding for the customer’s

order in an RFQ, dealers are acutely concerned with the

expected interdealer price and the speed at which deal-

ers can lay off their unwanted positions. This concern

gives rise to the winner’s curse. 

• The relationship between customers and dealers is mo-

tivated by the clearing relationship, and modeled as an

overlay of costly solicitation of quotes from dealers who

are not the customer’s clearing agent. 

Winner’s curse and relationship are not the only

possible reasons behind limited order exposure.

Appendix D discusses front-running as another poten-

tial explanation, but the evidence presented there suggests

that the front-running hypothesis has little empirical

support in our setting. 

4.1. Model primitives 

Time is continuous, t ∈ [0, ∞ ). The payoff of a traded

asset is realized at some exponentially distributed time

with arrival intensity r , that is, with mean waiting time 1/ r .

The realized asset payoff has a mean of v . Everyone is risk

neutral. 

At time t = 0 , a customer arrives to the dealer-to-

customer (D2C) SEF with a demand −y, or supply y . There

are n dealers on the SEF, and the customer endogenously

chooses k ∈ { 1 , 2 , 3 , . . . , n } dealers and sends an RFQ to

them. One of the n dealers is the customer’s clearing
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D2C stage: Customer selects 
dealers in an RFQ, and dealers 
respond with quotes (or not)

D2D stage: all dealers trade 
in sequential double auctions

� 0 � 0

Fig. 4. Time line of the model. 
member, and adding the clearing member to the RFQ is 

costless for the customer. Contacting each additional dealer 

who is not his clearing member, however, incurs a cost of 

cy for the customer, where c is a constant and y > 0 is 

the order size. This cost could come from duplicated back- 

office operations with multiple dealers or from the implicit 

relationship cost of giving the trade to a dealer other than 

the customer’s clearing member. This assumption of costly 

addition of dealers in RFQs is not used for most of the 

analysis and is only invoked in Section 4.4 . 

While the customer’s choice here seems to be narrowly 

confined to the RFQ protocol, the model is in fact more 

general because responding to a single dealer’s streaming 

quotes is conceptually similar to setting k = 1 and posting 

the order to the CLOB is conceptually similar to setting k = 

n . 

As in practice, only the k selected dealers observe the 

customer’s supply y , and the k selected dealers also ob- 

serve k . The dealers’ decision is whether to respond to the 

RFQ and, if so, at what price. We assume that the customer 

has a reservation price p that depends on y , and this reser- 

vation price is observable to all dealers. The customer picks 

the best price and sells the entire supply y to the winning 

dealer. As a tie-breaking rule, a dealer does not respond 

to the RFQ if the probability of winning the order is zero. 

Again, as in practice, this RFQ behaves like an indivisible, 

first-price auction. 

Once the D2C trade takes place, the n dealers trade 

among themselves in a different interdealer (D2D) SEF. We 

denote by z i the inventory of the asset held by dealer i at 

time 0 before the D2C trade, where { z i } are independent 

and identically distributed (i.i.d.) with cumulative distribu- 

tion function F : (−∞ , ∞ ) �→ [0 , 1] and mean zero. We de-

note the total inventory held by dealers before the D2C 

trade by Z ≡ �i z i . Immediately after the D2C trade, any 

dealer i who does not win the D2C trade enters interdealer 

trading with an inventory z i 0 = z i , whereas the dealer j 

who wins the D2C trade enters interdealer trading with 

the inventory z j0 = z j + y . For any generic t > 0, we de- 

note the inventory of dealer i at time t by z it . The instanta- 

neous flow cost of dealer i for holding the inventory z it is 

0 . 5 λz 2 
it 
, where λ > 0 is a commonly known constant. For 

simplicity, dealers receive no further inventory shocks af- 

ter the D2C trade, so the total inventory held by dealers 

during D2D trading is Z t = Z + y for t ≥ 0. At any time, a 

dealer’s inventory is his private information. 

The trading protocol on the D2D SEF is periodic dou- 

ble auctions, as in Du and Zhu (2017) and Duffie and Zhu 

(2017) . Specifically, the double auctions are held at clock 

times t ∈ { 0 , �, 2�, . . . } , where � > 0 is a constant that

represents the “speed” of the interdealer SEF. For instance, 

continuous interdealer trading implies � = 0 . In the dou- 

ble auction at time t , each dealer i submits a demand 

schedule x it ( p ). The equilibrium price at time t, p t , is de- 

termined by 

∑ 

i 

x it (p t ) = 0 . (1) 

The continuation value of dealer i at some time t = � � > 

0 , right before the double auction at time t , is given recur- 
sively by 

V it = −x it p t − 0 . 5 λ(x it + z it ) 
2 1 − e −r�

r 

+ (1 − e −r�)(x it + z it ) v + e −r�E t [ V i,t+�] . (2) 

Here, the first term is the payment made to purchase x it 
units at price p t ; the second term is the expected delay 

cost incurred between time t = � � and the payoff time; 

the third term is the expected value of the asset if it pays 

off before the next double auction; and the final term is 

the continuation value if the asset payoff is not realized by 

the next double auction. Each dealer i ’s strategy x it ( ·) max- 

imizes E t [ V it ], taking all other dealers’ strategies as given. 

The time line of the model is summarized in Fig. 4 . We 

will solve it by backward induction, from the D2D SEF to 

the D2C SEF. 

4.2. Equilibrium on the interdealer SEF 

This model of interdealer trading was solved in Du and 

Zhu (2017) and Duffie and Zhu (2017) , as summarized in 

the next proposition. 

Proposition 1 ( Du and Zhu, 2017; Duffie and Zhu, 2017 ). The 

following strategies constitute an equilibrium in the inter- 

dealer SEF. In the double auction at time t, each dealer i sub- 

mits the demand schedule 

x it (p) = a 

(
v − p − λ

r 
z it 

)
, (3) 

where 

a = 

r 

λ

2(n − 2) 

(n − 1) + 

2 e −r�

1 −e −r� + 

√ 

(n − 1) 2 + 

4 e −r�

(1 −e −r�) 2 

. (4) 

The equilibrium price is 

p t = v − λ

nr 
Z t . (5) 

These strategies are ex post optimal, in that they remain 

an equilibrium even if the traders receive some information 

about each other’s inventories. 

Moreover, the continuation value of each trader i condi- 

tional on Z 0 is 

V i, 0+ = V (z i 0 , Z 0 ) 

= 

[
v 

Z 0 
n 

− λ

r 

(
Z 0 
n 

)2 
]

+ 

(
v − λ

r 

Z 0 
n 

)(
z i 0 −

Z 0 
n 

)
− 0 . 5 λ

r 

1 − aλ/r 

n − 1 

(
z i 0 −

Z 0 
n 

)2 

. (6) 
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The continuation value function V(·, ·) will serve as the

“terminal value” when dealers solve their optimal strategy

in the D2C SEF, which we turn to next. 

4.3. D2C SEF: Dealers’ optimal bidding strategy 

Without loss of generality, we will consider y > 0, that

is, the customer is selling the asset and the dealers are

buying it. The selected dealers in the RFQ are labeled as

dealer 1, 2, 3, ..., k . Upon receiving the RFQ, dealer i ’s value

immediately changes to V(z i , Z + y ) , and if dealer i wins

the quantity y t , his value changes to V(z i + y, Z + y ) . Thus,

by winning the RFQ, the increase in value to dealer i is 

 i ≡ V(z i + y, Z + y ) − V(z i , Z + y ) 

= v y − λ

r 

y 2 

n 

− 0 . 5 λC 

r 

n − 2 

n 

y 2 ︸ ︷︷ ︸ 
A 1 , dependent on y but observed by all dealers in RFQ 

− λ(1 − C) 

nr ︸ ︷︷ ︸ 
A 2 , “winner’s curse”

Zy − λC 

r ︸︷︷︸ 
B , “private value”

z i y, (7)

where 

 = 

1 − aλ/r 

n − 1 

. (8)

There is a common component and a private component

for U i . For instance, if y > 0, a dealer who is short inven-

tory benefits more from winning this customer order (last

term). In addition, if y > 0, the more negative is the total

inventory Z of all dealers, the more attractive it is for each

dealer to win the customer’s sell order (middle term). This

is because a more negative total inventory implies that the

interdealer price will be higher later, so it would be more

advantageous to acquire the inventory from the customer. 

Dealer i ’s increased value of winning the RFQ can be

rewritten as 

 i = A 1 − A 2 Z −i y − (A 2 + B ) z i y, (9)

where Z −i = Z − z i . 

Dealer i ’s profit of bidding p is 

πi = (U i − py )1(win ) , (10)

E[ πi ] = ( A 1 − A 2 yE[ Z −i | win ] − (A 2 + B ) z i y − py ) P (win ) . 
(11)

Recall that the inventories { z j } have zero mean, so E[ Z −i |
win ] = E[ Z k −k 

| win ] , where Z k −i 
≡ ∑ 

j 	 = i, 1 ≤ j ≤k z j . 

We conjecture the following equilibrium: 

• There is some inventory threshold z ∗ (which depends

on k ) such that dealer i responds to the RFQ if and only

if z i < z ∗. (Recall that, by the tie-breaking rule, a dealer

does not respond if he has zero probability of winning

the RFQ.) 

• Each dealer uses a downward-sloping bidding function

β( · ): z i �→ β( z i ), where β( z i ) denotes the per-notional

price. So the total price paid conditional on winning the
RFQ is β( z i ) y .  
Under the conjectured strategy, conditional on respond-

ing to the RFQ, dealer i wins the RFQ if and only if

z i < min j 	 = i ,1 ≤ j ≤ k z j . Thus, a dealer whose inventory is

just below z ∗ should receive zero expected profit, i.e., 

0 = 

(
A 1 − A 2 yE 

[
Z k −i | min 

j 	 = i 
z j > z ∗

]

− ( A 2 + B ) z ∗y − β( z ∗) y ) P 

(
min 

j 	 = i 
z j > z ∗

)
= 

(
A 1 − A 2 y ( k − 1 ) E 

[
z j | z j > z ∗

]
− ( A 2 + B ) z ∗y − p y 

)
( 1 − F ( z ∗) ) k −1 

. (12)

Here, the dealer at z ∗ bids the customer’s reservation price

p because he wins if and only if no other dealer responds,

in which case he, as the only dealer responding, would bid

the customer’s reservation price. By Eq. (12) , the cutoff z ∗

is given by 

0 = 

A 1 

y 
− A 2 (k − 1) E[ z j | z j > z ∗] 

− (A 2 + B ) z ∗ − p ≡ �(y, z ∗) . (13)

Since A 2 and B are both positive, the function �( y, z ∗) is

decreasing in z ∗. As z ∗ increases from −∞ to + ∞ , �( y, z ∗)

decreases from + ∞ to −∞ . Thus, there is a unique, finite

z ∗ that solves Eq. (13) . 

For a generic z i < z ∗, the expected gross profit of bid-

ding p (per unit notional) is 

E[ πi ] = 

(
A 1 − A 2 y (k − 1) E[ z j | β(z j ) < p] 

− ( A 2 + B ) z i y − py ) P ( max 
j 	 = i 

β(z j ) < p) 

= 

(
A 1 − A 2 y (k − 1) E[ z j | z j > β−1 (p)] 

− ( A 2 + B ) z i y − py ) (1 − F (β−1 (p))) k −1 . (14)

By the usual first-order approach, we can solve, for all

z i < z ∗, 

β(z i ) = 

A 1 

y 
− (A 2 + B ) z i − (A 2 + B ) 

∫ z ∗
u = z i (1 − F (u )) k −1 du 

(1 − F (z i )) k −1 ︸ ︷︷ ︸ 
Market power 

− A 2 (k − 1) E[ z j | z j > z i ] ︸ ︷︷ ︸ 
Winner’s curse 

. (15)

It is easy to verify that β( z i ) is decreasing in z i , as conjec-

tured. 

The bidding strategy in Eq. (15) combines two impor-

tant incentives: competition and winner’s curse. As is stan-

dard in auction theory, the term involving the integral

represents a dealer’s “market power” (also known as “bid

shading”). A higher number of dealers k reduces a dealer’s

market power. On the other hand, a higher k linearly in-

creases the winner’s curse problem, which is shown in the

last term of Eq. (15) . Intuitively, dealer i ’s winning of the

RFQ implies that all other invited dealers’ inventories are

more positive than dealer i ’s (recall the customer is sell-

ing). This inference, in turn, implies that the interdealer

price after the D2C trade tends to be lower. Given this

more attractive outside option, dealer i would not want to

bid a high price. Put differently, bidding a high price would
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subject dealer i to the winner’s curse, in the sense that he 

could have purchased the asset in the interdealer market 

at a lower price. 

We summarize the equilibrium in the following propo- 

sition. 

Proposition 2 . Suppose that the customer selects k dealers in 

the RFQ and the customer’s supply of the asset is y > 0 in no- 

tional amount. There exists a unique threshold inventory level 

z ∗ such that dealer i responds to the RFQ if and only if z i < z ∗,

where z ∗ is implicitly given by Eq. (13) . Moreover, conditional 

on responding to the RFQ, dealer i’s responding price (per unit 

notional) is given by Eq. (15) . 

The RFQ equilibrium of Proposition 2 takes as given the 

customer’s choice of k . At this point, we can prove the fol- 

lowing comparative statics in terms of partial derivatives. 

Proposition 3 . Suppose that the interdealer market is open 

continuously ( � = 0 ). 15 All else equal, conditional on receiv- 

ing an RFQ, a dealer’s probability of responding to the RFQ: 

• decreases in k, the number of dealers included in the RFQ; 

• increases in n, the number of active dealers in the market; 

• decreases in λ, the cost of holding inventory; and 

• increases in | v − p | , the gain from trade between the cus- 

tomer and dealers. 16 

If, in addition, ∂ �/ ∂ y > 0 (i.e., the customer’s reservation 

price decreases faster in quantity than dealers’ values do), 

then all else equal, a dealer’s response probability to the RFQ 

and the quoted spread both increase in notional size. 

Proof . See Appendix A . �

Note that these comparative statics refer to partial 

derivatives. For example, the prediction ∂ z ∗/ ∂ k < 0 says 

holding fixed all primitive model parameters such as y, n, λ
and p , a higher k reduces each contacted dealer’s response 

probability. By varying k but holding all else fixed, we rec- 

ognize that the customer’s actual choice of k may not be 

completely explained by these primitive model parameters. 

For instance, the relationship between customers and deal- 

ers could be one such orthogonal consideration. Likewise, a 

customer’s firm may have specific guidelines on how many 

bids a trader must obtain before executing a trade. These 

other idiosyncratic determinants of k are unobservable to 

us. In this sense, we could view the observed k as the sum 

k = k ∗ + ε, (16) 

where k ∗ is the theoretical optimal number of dealers 

contacted if the customer only cares about the primitive 

model parameters such as trade size and market condi- 

tions, and ε is the orthogonal residual that is a proxy for 

relationship or institutional constraint. Therefore, given the 
15 The result that z ∗ decreases in k is valid for any �. For other prim- 

itive parameters, working with � = 0 (a continuous interdealer market) 

simplifies the calculation. A continuous interdealer market is also realis- 

tic. 
16 If the customer is selling, as in the model, we expect p < v , so a 

higher p leads to a lower response probability. If the customer is buy- 

ing, then by symmetry, we expect p > v , so a lower p leads to a lower 

response probability. 
residual variation in observed k caused by ε, taking the 

partial derivative with respect to k is still a valid exercise. 

Likewise, when considering how the response prob- 

ability F ( z ∗) depends on, say, notional size y , ∂ z ∗/ ∂ y in

Proposition 3 only takes into account the direct effect of 

y on the response probability and not the indirect ef- 

fect of y on z ∗ through its effect on k ∗. These partial

derivatives are nonetheless very useful. Later, we com- 

bine Proposition 3 and the empirical patterns reported in 

Section 6 to derive the total derivatives dz ∗/ d • that we test

in Section 7 . 

The intuition of Proposition 3 comes from the winner’s 

curse problem. As we discuss near Eq. (15) , if a dealer wins

the RFQ against more competitors, he infers a worse inter- 

dealer price when he tries to lay off the position. This ad- 

verse inference reduces the dealer’s incentive to bid in the 

RFQ. In addition, because the winning dealer also incurs 

inventory cost and price impact cost when laying off the 

position in the interdealer SEF, he is less likely to partici- 

pate in the RFQ if these costs are higher, which happens if 

fewer dealers are present in sharing inventory (smaller n ) 

or if the inventory holding cost is higher (larger λ). 

The parameter | v − p | can be viewed as a proxy for 

gains from trade, or the urgency of the customer’s order. 

A larger gain from trade increases dealers’ response rate. 

Likewise, under the condition ∂ �/ ∂ y > 0, gains from trade 

between dealers and the customer increase in y , so deal- 

ers’ response rate increases in y . At the same time, a larger 

gain from trade implies that dealers can capture a larger 

absolute profit, hence a worse response price β( · ); at the 

same time, the customer is still willing to take this worse 

price because the cost of not trading, or the reservation 

price p , is worse still. 

4.4. D2C SEF: The customer’s optimal choice of order 

exposure 

The final step is to solve the customer’s optimal degree 

of order exposure, or k . Due to the cost for getting quotes 

from non-clearing members, the customer solves 

max 
k 

{
max 
1 ≤ j≤k 

β(z j ) − cy (k − 1) 

}
, (17) 

where β( z j ) is equal to the equilibrium bid if z j ≤ z ∗ and

p if z j > z ∗. We have not been able to derive analytical 

comparative statics of k ∗ with respect to primitive model 

parameters, but the model can be solved numerically. 

We stress that some kind of explicit cost is needed to 

generate an interior solution for k ∗, at least in our model 

framework. If we set c = 0 , the model tends to produce a

corner solution, k ∗ = n, despite the winner’s curse. The in- 

tuition is that the “strongest” dealer, whose inventory level 

is close to the lower bound of the distribution, faces little 

winner’s curse because 

lim 

z i →−∞ 

E 
[
z j | z j > z i 

]
= E 

[
z j 

]
= 0 . (18) 

Hence, the customer may still want to include as many 

dealers as possible to maximize the chance of reaching 

this strong type. A corner solution like this is clearly coun- 

terfactual (see Table 3 ). An explicit cost of adding deal- 

ers, as motivated by clearing relationship, is a simple way 
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to obtain an interior solution of k ∗. There are, of course,

other modeling approaches to generate an interior k ∗. For

example, one can adapt the costly participation model of

Menezes and Monteiro (20 0 0) in the SEF setting, where

the cost is paid by the dealers rather than the customer.

That model can also be solved with similar comparative

statics. 17 

We also stress that although the winner’s curse is in-

sufficient to generate an interior k ∗ by itself, it is flexi-

ble enough to generate interesting variations in k ∗ if k ∗

is already interior. Moreover, the severity of the winner’s

curse depends on high-frequency market conditions such

as the cost of holding inventory, whereas relationship is a

highly persistent variable. In this sense, the winner’s curse

and the customer-dealer relationship operate in different

dimensions. 

Appendix B illustrates the numerical solutions of our

model under reasonable parameters. The model-implied

solutions can match a few key summary statics as well as

key comparative statics we find in the next three sections. 

5. Empirical strategy 

In the previous section we have laid out a model and

derived its implications. In particular, Proposition 3 makes

the following predictions on the response probability of

dealers in terms of partial derivatives (under stated con-

ditions): 

∂z ∗

∂y 
> 0 , 

∂z ∗

∂| v − p | > 0 , 
∂z ∗

∂n 

> 0 , 
∂z ∗

∂λ
< 0 , 

∂z ∗

∂k 
< 0 .

(19)

To take these predictions into the data, however, we need

to derive the predictions in terms of total derivatives, such

as dz ∗
dy 

. The difference between the partial derivatives and

the total derivatives comes from the customer’s endoge-

nous choice of k , the number of dealers requested. The fol-

lowing equations spell out such dependence. 

dz ∗

dy 
= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂y ︸︷︷︸ 
ambiguous 

+ 

∂z ∗

∂y ︸︷︷︸ 
> 0 , in theory 

, (20)

dz ∗

d| v − p | = 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂| v − p | ︸ ︷︷ ︸ 
ambiguous 

+ 

∂z ∗

∂| v − p | ︸ ︷︷ ︸ 
> 0 , in theory 

, (21)

dz ∗

dn 

= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂n ︸︷︷︸ 
ambiguous 

+ 

∂z ∗

∂n ︸︷︷︸ 
> 0 , in theory 

, (22)

dz ∗

dλ
= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂λ︸︷︷︸ 
ambiguous 

+ 

∂z ∗

∂λ︸︷︷︸ 
< 0 , in theory 

. (23)
17 We do not show the results here but make them available upon re- 

quest. 

 

 

As we can see, the main challenge is that the partial

derivatives of k , ∂k 
∂• , do not have analytically proven signs

in the model (labeled as “ambiguous” in the equations

above). 

Therefore, our empirical test of the theory consists of

two steps. First, we check the sign of ∂k 
∂• directly in the

data (in Section 6 ). Second, we plug the empirical signs of
∂k 
∂• into Eqs. (20) –(23) , and test the total derivatives dz ∗

d•
in Section 7 . Besides the predictions on response rates,

we will also explore transaction costs in Section 8 for

their empirical relevance, although, again, the model does

not make unambiguous predictions about dealers’ quoted

prices. 

6. Customers’ choice of order exposure 

Our empirical tests begin with the customer’s choice

of order exposure. Specifically, we analyze three decisions

made by the customer: 

• Under what conditions does the customer select RFQ

versus RFS? 

• Conditional on using RFQ, what determines the number

of dealers the customer contacts? 

• Conditional on using RFQ, how does the customer’s

choice of dealers relate to the customer-dealer relation-

ship? 

Not only are these choices interesting in their own

right, they are also part of the test of the dealers’ response

rates, as explained above. 

6.1. RFQ or RFS? 

We denote a contract by i and a day by t . On each day

and for each contract, there are potentially multiple ses-

sions, where we denote the session number by m . (Recall

a session may or may not result in a trade.) 

We run a logistic regression of the following form: 

P (y itm 

= 1) = 

e β
′ X itm 

1 + e β ′ X itm 
, (24)

where y itm 

takes the value of one if the m th session of con-

tract i on day t is the customer’s initiation of an RFQ, and

zero otherwise (i.e., if the customer uses RFS by responding

to a streaming quote). The vector X itm 

includes the follow-

ing: 

• The notional quantity in millions USD. This corresponds

to y in the model of Section 4 . 

• A dummy variable equal to one if the notional value is

a standard size, and zero otherwise. The standard size

dummy may be viewed as a proxy for gains from trade

between the customer and the dealers, or | v − p | in

the model. For example, trades of nonstandard sizes are

less liquid by definition, so customers seeking to trade

such sizes may have particular hedging needs, which

implies a higher gain from trade between the customer

and dealers. 

• The number of streaming quotes right before the ses-

sion. This could be a proxy for how many dealers are

actively trading in this contract, or n in the model. 
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Table 5 

Logistic regression of RFQ dummy as left-hand variable. 

All estimates are marginal effects. t -statistics are in parentheses ( ∗ for p < 0.05, 
∗∗ for p < 0.01, and ∗∗∗ for p < 0.001, where p is the p -value). The data sample is 

described in Table 3 . The right-hand variables are defined right after Eq. (24) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD -0.00177 ∗∗ -0.00200 ∗∗∗ 0.00226 

(-3.15) (-3.77) (1.54) 

Quantity is standardized (0/1) -0.183 ∗∗∗ -0.228 ∗∗∗ -0.141 ∗∗∗

(-11.68) (-11.78) (-5.92) 

# Streaming quotes 0.000811 0.000246 0.00103 

(0.87) (0.14) (0.89) 

Last 4 hours of trading (0/1) 0.0319 0.0423 ∗ 0.0215 

(1.62) (1.98) (0.76) 

Customer is buyer (0/1) 0.0222 -0.0140 0.0538 ∗∗∗

(1.36) (-0.56) (3.47) 

Customer is asset manager (0/1) 0.371 ∗∗∗ 0.220 ∗∗∗ 0.642 ∗∗∗

(6.57) (3.55) (6.49) 

Customer is HF/PTF/PE (0/1) -0.0141 -0.0717 0.152 

(-0.26) (-1.19) (1.47) 

Customer is bank/broker (0/1) 0.0348 -0.0825 0.294 ∗∗

(0.59) (-1.27) (2.76) 

Customer is dealer (0/1) -0.0129 -0.191 ∗ 0.241 

(-0.16) (-2.12) (1.95) 

Observations 8399 3854 4545 

Pseudo ( R 2 ) 0.2936 0.3151 0.2933 
• A dummy variable equal to one if the session was in the 

last four hours of active trading, and zero otherwise. 

Presumably, toward the end of the main trading hours, 

traders become more anxious to finish intended trans- 

actions to avoid keeping undesired inventory overnight. 

Therefore, this dummy could be viewed as a proxy for 

λ (inventory cost) in the model. 

• A dummy variable equal to one if the customer is buy- 

ing protection, and zero otherwise. 

• A dummy variable equal to one if the customer is an 

asset manager, and zero otherwise. 

• A dummy variable equal to one if the customer is a 

hedge fund/proprietary trading firm/private equity firm, 

and zero otherwise. 

• A dummy variable equal to one if the customer is a 

bank or broker (but not a market maker), and zero oth- 

erwise. 

• A dummy variable equal to one if the customer is a 

dealer (market maker) itself, and zero otherwise. 

• A dummy variable for each of the trading days of the 

month. 

• A dummy variable for each of the MAT contracts. 

• A dummy variable for Bloomberg SEF. 

Many of the dummy variables can be interpreted as 

control variables that absorb some heterogeneity in the 

data on which our model sheds little light. For example, 

different types of customers may have different reservation 

values, but we have no prior on the sign of the coefficients 

of these dummy variables. 

Table 5 reports the results of regression (24) . Column 

1 pools all contracts, while column (2) and (3) examine IG 

and HY indices separately. All reported results are marginal 

effects, i.e., ∂P (y itm 

= 1 | X itm 

) /∂x itm 

. In all regressions in 

this paper, robust standard errors are clustered by day to 
account for correlations of errors among trades on the 

same day. Point estimates of the contract, day, and SEF 

fixed effects are omitted from the tables. 

The coefficient on quantity is negative and significant 

in the pooled regression. The estimated marginal effect 

of notional quantity of −0 . 00177 means that a $22 mil- 

lion increase in notional quantity, which is approximately 

one standard deviation of notional quantities in the sample 

(see Table 3 ), reduces the probability of initiating an RFQ 

by 3.9% ( = 0 . 00177 × 22 ). A comparison between columns 

2 and 3 suggests that this effect of quantity mainly comes 

from IG, whereas the coefficient for HY is statistically in- 

significant. 

The regression also shows that standard notional sizes 

are less likely to be executed by RFQ than RFS. By Col- 

umn 1, if a customer inquiry has a standard notional size, 

the probability of using RFQ declines by 18.3%, which is 

large statistically and economically. As discussed above, a 

possible interpretation is that standard sizes are less likely 

to be submitted by customers with idiosyncratic hedging 

needs, so gains from trade between customers and dealers 

are smaller from the outset. Since the winner’s curse prob- 

lem is more severe on these trades (see Proposition 3 ), the 

customer internalizes it and chooses RFS more often. A re- 

lated yet different interpretation is that it is more difficult 

for customers to estimate prices for nonstandard sizes, so 

it is more useful to request a few more quotes for those 

trades through RFQ. 

The coefficients on notional size and standardized size 

are consistent with the observation from Table 3 that RFQs 

are smaller and are less likely to have standardized sizes, 

compared to the full sample with both RFQ and RFS. 

The number of streaming quotes and the time of day 

do not seem to be significant determinants for the choice 

between RFQ and RFS. That said, for IG, customers are 
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Table 6 

Number of dealers requested in RFQs, fitted to a Poisson distribution. 

Reported estimates are marginal effects. t -statistics are in parentheses ( ∗ for 

p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001, where p is the p -value). The 

data sample is described in Table 3 , restricted to RFQs. The right-hand variables 

are defined right after Eq. (24) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD -0.0214 ∗∗∗ -0.0182 ∗∗∗ -0.0518 ∗∗∗

(-7.79) (-7.30) (-5.45) 

Quantity is standardized (0/1) 0.0680 0.538 ∗∗∗ -0.139 

(0.63) (3.65) (-1.00) 

# Streaming quotes -0.00342 -0.0161 -0.00115 

(-0.59) (-1.37) (-0.18) 

Last 4 hours of trading (0/1) 0.223 ∗∗ 0.451 ∗∗∗ 0.0521 

(2.69) (4.04) (0.50) 

Customer is buyer (0/1) -0.0195 -0.102 -0.00497 

(-0.19) (-0.86) (-0.04) 

Customer is asset manager (0/1) 1.376 ∗ 0.862 2.169 ∗∗

(2.32) (1.55) (3.11) 

Customer is HF/PTF/PE (0/1) 0.406 0.135 1.039 

(0.67) (0.24) (1.37) 

Customer is bank/broker (0/1) 0.986 -0.119 2.102 ∗∗

(1.41) (-0.16) (2.83) 

Customer is dealer (0/1) 2.233 ∗∗∗ 1.446 ∗∗ 3.116 ∗∗∗

(3.82) (2.93) (4.05) 

Observations 3028 1425 1603 

Pseudo ( R 2 ) 0.1535 0.1578 0.1675 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

marginally more likely to choose RFQ in the last four hours

of active trading. As discussed above, the last four hours of

active trading may be associated with a higher λ, or higher

inventory cost. In this situation, dealers are less strategic

in interdealer trading (see Proposition 1 ), so the winning

dealer has an easier time offloading his position to other

dealers, which implies a less severe winner’s curse. This in

turn encourages the customer to use RFQ. 

Across customer types, asset managers are significantly

more likely to choose RFQ, relative to the omitted cate-

gory “Other” (which consists of pensions, insurance com-

panies, sovereign wealth funds, and nonfinancial corpora-

tions, among others). The point estimate on this coefficient

in the pooled regression is 37.1%, which is very large eco-

nomically. The estimate for IG is 22.0% and the estimate for

HY is 64.2%. Since the overall probability of choosing RFQ

over RFS is about 36% for both IG and HY, these magni-

tudes are very large. One possible explanation is that asset

managers are essentially intermediaries and they have a

fiduciary duty of delivering best execution for their clients.

None of the other customer types have a clear-cut prefer-

ence for RFQ or RFS, at least in the pooled regression. 

6.2. How many dealers to select in an RFQ? 

Our next step is to analyze how many dealers are se-

lected in an RFQ, conditional on the customer choosing

RFQ rather than RFS. The trade-off here is similar to that in

the previous section—selecting an additional dealer brings

in more competition but also increases the winner’s curse

problem. We therefore use the same right-hand-side vari-

ables and expect qualitatively similar results to the RFQ

versus RFS choice. 
Because the left-hand-side variable is an integer, we use

a Poisson regression to estimate the effect of the variables

of interest on the number of requests sent. In addition, due

to the “minimum three” requirement on MAT contracts, we

fit the number of dealers requested in an RFQ to a Pois-

son distribution left-truncated at three. Specifically, let y itm
be the number of selected dealers in an RFQ, which is at

least three in all RFQ sessions in our sample. Then, the

conditional probability of observing y itm 

events given that

y itm 

≥ 3 is given by the following equation: 

P (Y = y itm 

| Y ≥ 3 , X itm 

) = 

e −λλy itm 

y itm 

! 
· 1 

P (Y ≥ 3 | X itm 

) 
, 

(25)

where λ is the mean of the Poisson distribution without

truncating. The log-likelihood function is derived from the

conditional probability. Again, X itm 

is the same vector of

covariates as in the previous section. As before, we convert

all estimates into marginal effects, that is, the number of

additional dealers selected if a covariate increases by one

unit. 

Table 6 reports marginal effects from fitting the trun-

cated Poisson model (25) . Column (1) shows the pooled

regression with all indices, whereas columns (2) and (3)

provide the results for IG and HY separately. 

As is the case with the choice between RFQ and RFS in

the previous section, a customer wishing to trade a larger

notional quantity exposes his order to fewer dealers. In

column (1), the point estimate of the marginal effect is

−0 . 0214 . A $21 million increase in the notional size—one

standard deviation of notional size conditional on RFQ—

reduces the number of dealers requested by about 0.45,

which is economically significant since the average num-

ber of dealers queried in RFQs is just over 4. 
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Table 7 

Customers’ choice of dealers in RFQs. 

Statistical significance: ∗ for p < 0.05, ∗∗ for 

p < 0.01, and ∗∗∗ for p < 0.001, where p is 

the p -value. The data sample is described in 

Table 3 , restricted to RFQs. CM c,d is equal to 

one if customer c ’s clearing member is affiliated 

with dealer d , and zero otherwise. DealerShare c,d 

is the fraction of customer c ’s trading volume 

in all index CDS that is attributable to dealer d 

from January to April 2016. 

Estimate t -stat 

CM c,d 0.019 ∗∗∗ 4.12 

DealerShare c,d 0.217 ∗∗∗ 18.49 

Observations 4003 

R 2 0.341 
Conditional on using RFQ, customers contact 0.22 addi- 

tional dealers on average if the RFQ is sent in the last four 

hours of active trading. Again, the intuition is that deal- 

ers are less strategic toward the end of the day, which re- 

duces the winner’s curse problem. Standardized quantity, 

however, is not statistically significant for the full sample. 

Also consistent with the RFQ versus RFS regression, as- 

set managers prefer more competitors for their business, 

selecting 1.4 additional dealers on average relative to the 

“Other” category, and this effect mainly comes from HY. In 

addition, market makers select about 2.2 additional deal- 

ers when acting as quote seekers, and the effect for HY is 

about twice as large as IG. 

Summarizing, Tables 5 and 6 reveal that customers tend 

to expose their orders to fewer dealers if the trade size is 

larger (for both regressions), if the trade size is standard 

(only for the RFQ versus RFS regression), or if it is early in 

the trading day (only for the number of dealers selected in 

RFQs). 

6.3. Which dealers to select in an RFQ? 

We conclude this section by conducting a simple test of 

how customer-dealer relationships affect a customer’s like- 

lihood of selecting a dealer in an RFQ. The left-hand vari- 

able is denoted N c,d , the total number of RFQ sessions in 

which customer c contacts dealer d throughout our sam- 

ple, for all pairs ( c, d ). On the right-hand side, we use two 

proxies for relationship, as described in the data section. 

The first proxy is a dummy variable, CM c,d , which is equal 

to one if customer c ’s clearing member is affiliated with 

dealer d . The second proxy, denoted by DealerShare c,d , is 

the fraction of customer c ’s trading volume in all index 

CDS that is attributable to dealer d from January to April 

2016, calculated from transactions reported to swap data 

repositories. Both proxies capture how important a dealer 

is for a customer, either for clearing or revealed by past 

transactions. 

We then run the following regression: 

N c,d ∑ 

d ′ N c,d ′ 
= δd + β1 · CM c,d + β2 · DealerShare c,d + εc,d . 

(26) 

where δd is the dealer fixed effect, which controls for dif- 

ferences between dealers that may cause customers gen- 

erally to prefer certain dealers over others. Therefore, the 

two coefficients β1 and β2 capture the effect of relation- 

ship above and beyond the general “attractiveness” of each 

dealer. 

Table 7 shows the result of this regression, where we 

suppressed the estimates of the dealer fixed effects. As 

expected, both proxies of relationship are highly signifi- 

cant and positive. Customers are more likely to seek quotes 

from dealers affiliated with their clearing members, as well 

as from dealers who account for a larger fraction of their 

past trading volume. For example, fixing a dealer, if the 

dealer is affiliated with the customer’s clearing member, 

then this dealer has a 1.9% higher “RFQ share.” This mag- 

nitude is not trivial compared to the unconditional mean 

of “RFQ share” of 5%, since there are 20 dealers. Likewise, 

fixing a dealer, if the dealer accounts for say 5% of cus- 
tomer A’s past trading volume but 15% of customer B’s 

past trading volume, then customer B is more likely to 

send RFQs to the dealer than customer A is, by about 2.2% 

( = 0 . 217 × 10% ). 

7. Dealers’ response rates in RFQs 

Having analyzed the customers’ choices, we now turn 

to dealers’ response rates in RFQs. As outlined in the dis- 

cussion of empirical strategy in Section 5 , we can now de- 

rive the model’s implications for dealers’ response rates 

by combining the theory-implied partial derivatives ∂z ∗
∂• in 

Proposition 3 and the empirical sign of ∂k 
∂• in Section 6 . In 

particular, Table 6 of Section 6.2 shows that, in the data, 

∂k 

∂y 
< 0 , 

∂k 

∂| v − p | ≤ 0 , 
∂k 

∂n 

≤ 0 , 
∂k 

∂λ
> 0 , (27) 

where the second term is labeled “ ≤ 0” because the esti- 

mate on standardized dummy is significant only for IG (re- 

call standardized size means lower gains from trade), and 

the third item is labeled as “ ≤ 0” because the coefficient 

on the number of streaming quotes is negative but not sta- 

tistically significant. 

By combining the inequalities in (19) and (27) , we can 

sign the total derivatives: 

dz ∗

dy 
= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂y ︸︷︷︸ 
< 0 , in data 

+ 

∂z ∗

∂y ︸︷︷︸ 
> 0 , in theory 

> 0 , (28) 

dz ∗

d| v − p | = 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂| v − p | ︸ ︷︷ ︸ 
≤ 0 , in data 

+ 

∂z ∗

∂| v − p | ︸ ︷︷ ︸ 
> 0 , in theory 

> 0 , (29) 

dz ∗

dn 

= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂n ︸︷︷︸ 
≤ 0 , in data 

+ 

∂z ∗

∂n ︸︷︷︸ 
> 0 , in theory 

> 0 , (30) 

dz ∗

dλ
= 

∂z ∗

∂k ︸︷︷︸ 
< 0 , in theory 

∂k 

∂λ︸︷︷︸ 
> 0 , in data 

+ 

∂z ∗

∂λ︸︷︷︸ 
< 0 , in theory 

< 0 , (31) 
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Table 8 

Logistic regression on whether a dealer responds to an RFQ or not. 

Reported estimates are marginal effects. t -statistics are in parentheses ( ∗ for p < 0.05, ∗∗ for 

p < 0.01, and ∗∗∗ for p < 0.001, where p is the p -value). The data sample is described in Table 3 , 

restricted to RFQs. The right-hand variables are defined right after Eqs. (24) and (32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD 0.000676 ∗∗ 0.000596 ∗∗ 0.00102 

(2.82) (2.78) (1.55) 

Quantity is standardized (0/1) -0.00762 0.000580 -0.00550 

(-0.82) (0.05) (-0.38) 

# Streaming quotes 0.00230 ∗∗∗ 0.00338 ∗ 0.00172 ∗∗

(3.71) (2.55) (2.76) 

Last 4 hours of trading (0/1) -0.00987 -0.00962 -0.000120 

(-1.32) (-1.04) (-0.01) 

Customer is buyer (0/1) 0.00866 0.00155 0.00876 

(1.52) (0.19) (1.02) 

Dealer is customer’s clearing member 0.0322 ∗∗∗ 0.0295 ∗∗ 0.0355 ∗∗

(3.76) (2.93) (2.88) 

Customer share of dealer’s 4-month volume 0.363 0.567 0.147 

(1.42) (1.23) (0.68) 

Customer is asset manager (0/1) 0.0318 ∗ 0.0462 ∗∗ 0.0167 

(2.01) (2.79) (0.53) 

Customer is hedge fund (0/1) 0.0334 0.0258 0.0394 

(1.91) (1.43) (1.22) 

Customer is bank/broker (0/1) -0.0103 -0.0238 0.0270 

(-0.36) (-0.97) (0.61) 

Customer is dealer (0/1) 0.0123 -0.000543 0.0213 

(0.53) (-0.02) (0.65) 

# Dealers queried, residual -0.00856 ∗∗∗ -0.0199 ∗∗∗ 0.0000916 

(-5.12) (-6.43) (0.03) 

Observations 12431 5713 6715 

Pseudo ( R 2 ) 0.0533 0.0961 0.0471 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where “in theory” refers to Eq. (19) and “in data” refers to

Eq. (27) . These total derivatives take into account the in-

direct effect through endogenous changes in k and allow

us to empirically test the theory in light of this additional

information. In addition, as discussed in Section 4 , to the

extent that the observed k contains an idiosyncratic com-

ponent that is not explained by other primitive model pa-

rameters, ∂ z ∗/ ∂ k < 0 can also be directly tested in the data.

To test these predictions, we run a logistic regression of

the binary choice of responding or not responding: 

P (y d,itm 

= 1) = 

e β
′ [ X itm ,k 

res 
itm 

,C M c,d ,C ustomerShare d,itm ,δd ] 

1 + e β
′ [ X itm ,k 

res 
itm 

,C M c,d ,C ustomerShare d,itm ,δd ] 
, (32)

where y d,itm 

= 1 if dealer d responds to the RFQ session

itm , and zero otherwise. The vector of right-hand-side vari-

ables consists of the following: 

• X itm 

, as defined in Section 6.1 . 

• k res 
itm 

, defined as the residual from running an ordinary

least square (OLS) regression of the number of dealers

requested in the RFQ, k itm 

, on X itm 

. We take the residual

to ensure that k res 
itm 

is orthogonal to the other explana-

tory variables. 

• CM c,d , which is a dummy variable equal to one if dealer

d is affiliated with customer c ’s clearing member, and

zero otherwise. 

• CustomerShare d,itm 

, defined as the fraction of dealer d ’s

total trading volume in index CDS that is attributable

to this particular customer from January to April 2016.

Like DealerShare c,d in regression (26) , CustomerShare d,itm 
is calculated from trade repository data using all index

CDS trades. 

• δd , the dealer fixed effect. In this regression, δd controls

for the average response probability of each dealer. 

Table 8 reports the results, pooled across all indices in

Column 1 and separately for IG and HY in Columns 2 and

3. 

As predicted by (28) , we find that a larger trade is

more likely to generate dealer response for RFQs. For ex-

ample, by Column 1, a $21 million increase in the notional

size—one standard deviation of notional sizes conditional

on RFQ—increases an average dealer’s response probability

by about 1.4% ( = 0 . 0 0 0676 × 21 ). This effect is driven en-

tirely by IG, whereas the coefficient in the HY regression is

statistically insignificant. 

As predicted by (30) , a higher number of streaming

quotes (interpreted as a larger n in the model) is more

likely to generate dealer response in RFQs. The estimate of

0.0023 in the pooled regression implies that it takes about

four additional dealers streaming quotes to increase the re-

sponse probability by 1%. This effect is about twice as large

in IG than in HY. The intuition from the model is that as

more dealers are actively trading a contract, the price im-

pact cost of offloading positions in the interdealer SEF is

smaller. Thus, dealers are more likely to respond to cus-

tomers’ requests when n is larger. 

Although the coefficient on the standardized dummy is

negative as predicted in Eq. (29) (recall standardized trades

mean smaller gain from trade | v − p | in our interpretation),
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Table 9 

Dealers’ response rate in RFQs, OLS. 

t -statistics are in parentheses ( ∗ for p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for 

p < 0.001, where p is the p -value). The data sample is described in Table 3 , 

restricted to RFQs. The right-hand variables are defined right after Eqs. (24) and 

(32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD 0.000504 ∗ 0.000578 ∗∗ 0.000600 

(2.48) (2.95) (0.93) 

Quantity is standardized (0/1) -0.0116 -0.00557 -0.0116 

(-1.10) (-0.44) (-0.70) 

# Streaming quotes 0.00204 ∗ 0.00332 ∗ 0.00143 

(2.79) (2.09) (1.80) 

Last 4 hours of trading (0/1) -0.00666 -0.0169 0.00845 

(-0.77) (-1.33) (0.69) 

Customer is buyer (0/1) 0.0114 0.00302 0.0144 

(1.92) (0.29) (1.53) 

Customer is asset manager (0/1) 0.0263 0.0472 ∗ 0.0138 

(1.23) (2.29) (0.27) 

Customer is HF/PTF/PE (0/1) 0.0357 0.0354 0.0437 

(1.52) (1.59) (0.89) 

Customer is bank/broker (0/1) -0.0249 -0.0560 0.0354 

(-0.57) (-1.31) (0.57) 

Customer is dealer (0/1) 0.0225 0.0142 0.0374 

(0.75) (0.44) (0.74) 

# Dealers queried, residual -0.00842 ∗∗ -0.0291 ∗∗∗ 0.00131 

(-3.37) (-8.54) (0.34) 

Observations 3028 1425 1603 

Adjusted ( R 2 ) 0.022 0.081 0.010 
the estimate is not statistically significant. The same can be 

said about the dummy variable for the last four hours of 

active trading, which we use as a proxy for inventory cost 

λ. 

The number of dealers selected (as a regression 

residual) has a negative coefficient, as predicted by 

Proposition 3 . Selecting more dealers than expected in the 

RFQ reduces a dealer’s response probability by about 0.9%. 

The intuition is that the winner’s curse problem is more 

severe if the customer selects more dealers. Again, since 

the optimal k ∗ is endogenous, we have assumed that resid- 

ual variation in k that is not captured by the right-hand- 

side variables X itm 

is a result of customer-specific and id- 

iosyncratic considerations that are orthogonal to the win- 

ner’s curse problem faced by dealers. One extreme exam- 

ple of such considerations would be an institutional in- 

vestor’s compliance office requiring the trading desk to re- 

quest as many quotes as possible. In this case, we would 

expect the observed k to be higher than the optimal k ∗ and 

the investor to receive a lower response rate. 

Separately from winner’s curse, the customer-dealer 

clearing relationship is strongly associated with a higher 

response rate, by about 3.2%. Past trading relationship, 

however, is not statistically significant. 

Across customer types, asset managers receive a higher 

response rate, relative to the omitted “Other” cate- 

gory, by about 3.2%. The same is true for the hedge 

fund/proprietary trading firm/private equity category, al- 

beit with weaker statistical significance. 

Table 9 reports the results of a closely related regres- 

sion at the session level: 

y itm 

= β ′ [ X itm 

, k res ] + εitm 

, (33) 
itm 
where y itm 

∈ [0, 1] is the dealers’ response rate in the 

RFQ session itm . This regression is at the session level, so 

it does not include the relationship measures ( CM or Cus- 

tomerShare ) or dealer fixed effects. As expected, the results 

are very similar to those in Table 8 . Response rates are 

higher if orders are larger, if more dealers are making mar- 

kets, or if the customer selects fewer dealers in the RFQ. 

We conclude this section by examining under what 

conditions an RFQ session results, or does not result, in a 

transaction. 

We run the following logistic regression: 

P (y itm 

= 1) = 

e β
′ [ X itm ,k 

res 
itm 

] 

1 + e β
′ [ X itm ,k 

res 
itm 

] 
, (34) 

where y itm 

takes the value of one if the RFQ session itm 

results in a trade, and zero otherwise. 

Table 10 reports the results. The only variables that are 

significant are notional quantity and the standardized size 

dummy. In Column 1, a $21 million increase in the order 

size increases the transaction probability by about 1.7% ( = 

0 . 0 0 082 × 21 ), but standard-sized orders reduce the trans- 

action probability by about 3.9%. To the extent that larger 

or nonstandard-sized orders tend to imply larger gains 

from trade, a higher transaction probability on those or- 

ders seems rather intuitive. 

8. Dealers’ pricing behavior in RFQs 

The previous section investigates dealers’ response rates 

in RFQs. Another important dimension of the equilibrium 

outcome is dealers’ pricing behavior, which we study in 

this section. Let us emphasize that the model does not 
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Table 10 

Logistic regression on whether a trade happens in RFQs. 

Reported estimates are marginal effects. t -statistics are in parentheses ( ∗ for 

p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001, where p is the p -value). The data 

sample is described in Table 3 , restricted to RFQs. The right-hand variables are de- 

fined right after Eqs. (24) and (32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD 0.000820 ∗∗ 0.000894 ∗∗∗ -0.000716 

(3.07) (3.44) (-1.40) 

Quantity is standardized (0/1) -0.0388 ∗∗∗ -0.00740 -0.0602 ∗∗∗

(-3.88) (-0.44) (-6.33) 

# Streaming quotes 0.00120 0.000829 0.000940 

(1.05) (0.42) (0.94) 

Last 4 hours of trading (0/1) 0.00528 0.0117 -0.00146 

(0.44) (0.57) (-0.13) 

Customer is buyer (0/1) 0.00314 -0.00263 0.00744 

(0.27) (-0.18) (0.46) 

Customer is asset manager (0/1) -0.0714 -0.0848 -0.0544 

(-1.61) (-1.29) (-1.18) 

Customer is HF/PTF/PE (0/1) -0.0484 -0.0725 -0.0308 

(-1.04) (-0.96) (-0.65) 

Customer is bank/broker (0/1) -0.0909 -0.124 -0.0675 

(-1.78) (-1.57) (-1.45) 

Customer is dealer (0/1) 0.000212 -0.0192 0.00796 

(0.00) (-0.21) (0.13) 

# Dealers queried, residual 0.00162 -0.0119 0.00784 

(0.37) (-1.94) (1.79) 

Observations 3008 1405 1553 

Pseudo ( R 2 ) 0.0547 0.0826 0.0841 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

make unambiguous theoretical predictions about the com-

parative statics of quoted prices with respect to primitive

model parameters. Nevertheless, the results are useful in

revealing which factors affect pricing in the data and in

what ways. Moreover, our model is capable of matching

the magnitude of empirically observed transaction costs

for certain parameter values, as shown in Appendix B . 

We begin by measuring customer’s trading costs. To do

so, we need to define the benchmark price for comparison.

For a given RFQ session itm , the benchmark price we use

is the most recent trade (RFQ or RFS) for the same con-

tract and on the opposite side, denoted p −
itm 

. If session itm

results in a trade, we denote the transaction price by p itm
and calculate the customer’s round-trip transaction cost as

c itm 

= 

{
p itm 

− p −
itm 

, if the customer buys protection 

p −
itm 

− p itm 

, if the customer sells protection 

. 

(35)

The cost is in basis points. 18 Intuitively, the customer’s

round-trip transaction cost measures dealers’ profit for in-

termediating buyers and sellers who arrive relatively close

to each other. Note that we do not need to infer the direc-

tion of the trade for the customer (buy or sell) since it is

observed in our data. 

Table 11 reports the quantity-weighted mean, standard

deviation, and certain percentiles of the distribution of

transaction costs in RFQs, all in bps. Overall, transaction
18 In our data set, three of the four CDS indices are quoted in spread 

(i.e., essentially a premium), and one (CDX.NA.HY) is quoted in (bond 

equivalent) price. We convert the latter to spread, in basis points. 

 

 

 

 

costs appear small; the transaction costs of on-the-run

CDX.NA.IG and iTraxx Europe have a mean of around 0.2

bps and a standard deviation of 1.4 bps. For on-the-run

CDX.NA.HY and iTraxx Crossover, the average costs are

larger, at about 0.5 and 1.1 bps, but again not significant

compared to their standard deviations of about 2.6 and 3.5

bps. The first off-the-run contracts have comparable aver-

age transaction costs but a much higher standard devia-

tion due to the relatively small number of trades in these

contracts. 

We also find that RFS transactions have very similar

transaction cost measures—the mean is generally within 1

bp and the standard deviation is 1–3 bps. Those statistics

on RFS are not reported but available upon request. 

We should caution that our estimates of transaction

costs are likely noisy. By construction, the round-trip trans-

action cost defined in Eq. (35) contains the change in the

fair value of CDS indices between the two consecutive cus-

tomer trades. The price changes could be positive or neg-

ative, and these two outcomes are equally likely if CDS

prices are martingales. Perhaps for this reason, even for

the on-the-run indices, between 10% and 25% of the trades

have a negative calculated trading cost. It could take a long

sample period to wash out this noise, and our sample of

one month may not be long enough. On the other hand, at

least 75% of the trades have a positive measured cost, sug-

gesting that noise is not the only reason why the average

transaction cost is low in our sample. 

The magnitude of our transaction cost estimates is close

to that reported by Collin-Dufresne et al. (2018) . From Oc-

tober 2013 to October 2015, they find that the effective

half-spreads for D2C trades in CDX.NA.IG and CDX.NA.HY

are 0.14 bps and 0.68 bps, respectively, which correspond
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Table 11 

Summary statics of quantity-weighted spread in RFQ trades, unit in bps. 

The spread on a particular customer buy RFQ trade is measured as the RFQ transaction price minus the price of the 

last customer sell trade (RFQ or RFS). The spread on a particular customer sell RFQ trade is measured as the price of 

the last customer buy trade (RFQ or RFS) minus the current RFQ transaction price. The data sample is described in 

Table 3 . 

Contract N Mean Std dev 10th Pct 25th Pct 50th Pct 75th Pct 90th Pct 

CDX.NA.IG ON 948 0.17 1.35 -0.10 0.05 0.16 0.29 0.47 

CDX.NA.HY ON 1030 0.47 2.57 -0.44 0.00 0.40 0.89 1.44 

iTraxx Europe ON 270 0.21 1.45 -0.06 0.04 0.18 0.35 0.50 

iTraxx Crossover ON 332 1.08 3.49 -0.25 0.32 0.99 1.63 2.63 

CDX.NA.IG OFF 63 0.14 6.41 -2.25 0.11 0.44 0.77 1.20 

CDX.NA.HY OFF 110 0.32 11.75 -3.29 -0.50 0.78 2.20 3.74 

iTraxx Europe OFF 19 -0.04 14.81 -5.75 0.14 0.51 0.92 1.84 

iTraxx Crossover OFF 15 2.40 17.57 -3.78 -1.15 1.10 5.60 12.13 

Table 12 

Individual dealers’ quoted spread in RFQs in bps, measured relative to the last transaction 

price on the same contract and the opposite side. 

t -statistics are in parentheses ( ∗ for p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001, where p 

is the p -value). The data sample is described in Table 3 , restricted to RFQs. The right-hand 

variables are defined right after Eqs. (24) and (32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD 0.00112 ∗ 0.000809 0.00702 

(2.38) (1.54) (1.26) 

Quantity is standardized (0/1) 0.0549 0.0384 0.0459 

(1.41) (1.62) (0.48) 

# Streaming quotes -0.00376 -0.00462 ∗∗ -0.00270 

(-1.04) (-3.55) (-0.51) 

Last 4 hours of trading (0/1) 0.0224 -0.0382 0.0890 

(0.42) (-1.60) (0.96) 

Customer is buyer (0/1) 0.0111 -0.0312 0.0631 

(0.13) (-0.81) (0.50) 

Dealer is customer’s clearing member -0.0496 -0.0326 ∗ -0.0470 

(-1.72) (-2.15) (-0.96) 

Customer share of dealer’s 4-month volume -1.737 -0.880 -2.225 

(-1.72) (-1.53) (-1.29) 

Customer is asset manager (0/1) 0.113 0.0268 0.236 

(0.67) (0.26) (0.51) 

Customer is HF/PTF/PE (0/1) 0.0303 0.0703 0.0211 

(0.16) (0.73) (0.04) 

Customer is bank/broker (0/1) -0.0405 -0.0344 -0.0161 

(-0.20) (-0.28) (-0.03) 

Customer is dealer (0/1) 0.428 ∗ 0.0273 0.713 

(2.45) (0.31) (1.57) 

# Dealers queried, residual 0.0329 0.0337 0.0439 

(1.58) (1.95) (1.26) 

Observations 11128 5138 5990 

Adjusted ( R 2 ) 0.164 0.047 0.094 
to 0.28 bps and 1.36 bps round-trip costs. Because they use 

a much longer data sample, their estimates of transaction 

costs have more statistical power than ours. In addition, 

Collin-Dufresne et al. (2018) find that the transaction costs 

in D2D SEFs are even lower than those in D2C SEFs, sug- 

gesting that there may still be scope in further reductions 

in customer transaction costs. 

The average transaction cost may not fully capture the 

pricing behavior of dealers because it is already conditional 

on the customer taking the best quote. To get a more gran- 

ular view, we construct two additional measures of dealers’ 

pricing behavior. 

The first additional measure is individual dealer’s 

quoted spread in bps. Denote dealer d ’s response price in 
RFQ session itm by p d,itm 

. Then dealer d ’s quoted spread is 

c d,itm 

= 

{
p d,itm 

− p −
itm 

, if the customer buys protection 

p −
itm 

− p d,itm 

, if the customer sells protection 

. 

(36) 

The second additional measure of dealers’ pricing behav- 

ior is the competitiveness of quotes in bps, defined as the 

absolute difference between the best dealer quote and the 

second-best dealer quote in the RFQ session itm . We la- 

bel it Competitive itm 

. The smaller is Competitive itm 

, the more 

competitive are dealers’ quotes. 

Table 12 , Table 13 , and Table 14 , respectively report re- 

sults of the following three regressions: 
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Table 13 

Competitiveness of bids in RFQs in bps, measured by the absolute difference be- 

tween the best quote and the second-best quote (smaller values mean more com- 

petitive). 

t -statistics are in parentheses ( ∗ for p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001, 

where p is the p -value). The data sample is described in Table 3 , restricted to RFQs. 

The right-hand variables are defined right after Eqs. (24) and (32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD -0.0000504 -0.0000756 -0.000376 

(-0.50) (-0.89) (-0.63) 

Quantity is standardized (0/1) 0.0160 0.00932 0.0216 

(1.99) (1.52) (1.42) 

# Streaming quotes -0.000967 ∗ -0.00115 ∗ -0.000885 

(-2.31) (-2.39) (-1.61) 

Last 4 hours of trading (0/1) 0.00198 0.00174 -0.00255 

(0.26) (0.28) (-0.18) 

Customer is buyer (0/1) 0.000985 -0.00978 0.0146 

(0.19) (-1.63) (1.73) 

Customer is asset manager (0/1) -0.00447 -0.0162 0.00955 

(-0.36) (-0.79) (0.52) 

Customer is HF/PTF/PE (0/1) -0.00737 -0.00316 -0.0106 

(-0.50) (-0.17) (-0.60) 

Customer is bank/broker (0/1) -0.0111 -0.0314 0.0172 

(-0.90) (-1.29) (0.49) 

Customer is dealer (0/1) -0.0525 ∗ -0.0346 -0.0678 ∗

(-2.32) (-1.38) (-2.15) 

# Dealers queried, residual -0.00865 ∗∗ -0.00834 ∗∗ -0.00898 ∗

(-3.79) (-3.11) (-2.72) 

Observations 2918 1385 1533 

Adjusted ( R 2 ) 0.334 0.041 0.395 

Table 14 

Transaction cost of customers in RFQs in bps, measured relative to the last 

transaction price on the same contract and the opposite side. 

t -statistics are in parentheses ( ∗ for p < 0.05, ∗∗ for p < 0.01, and ∗∗∗ for 

p < 0.001, where p is the p -value). The data sample is described in Table 3 , 

restricted to RFQs. The right-hand variables are defined right after Eqs. (24) 

and (32) . 

(1) (2) (3) 

ALL IG HY 

Quantity in millions USD 0.00103 0.000957 0.00552 

(1.84) (1.62) (1.09) 

Quantity is standardized (0/1) 0.0333 0.0189 0.0323 

(0.90) (0.69) (0.38) 

# Streaming quotes 0.000224 -0.00182 0.00206 

(0.07) (-1.30) (0.40) 

Last 4 hours of trading (0/1) -0.0159 -0.0555 ∗ 0.0190 

(-0.35) (-2.19) (0.25) 

Customer is buyer (0/1) -0.00989 -0.0325 0.0337 

(-0.11) (-0.76) (0.28) 

Customer is asset manager (0/1) 0.0503 -0.0264 0.144 

(0.29) (-0.32) (0.31) 

Customer is HF/PTF/PE (0/1) -0.0467 0.0205 -0.101 

(-0.26) (0.32) (-0.20) 

Customer is bank/broker (0/1) -0.0538 -0.0518 -0.0412 

(-0.28) (-0.51) (-0.08) 

Customer is dealer (0/1) 0.359 -0.0350 0.586 

(1.92) (-0.58) (1.23) 

# Dealers queried, residual 0.00887 0.0223 0.00696 

(0.54) (1.43) (0.26) 

Observations 2787 1300 1487 

Adjusted ( R 2 ) 0.069 0.026 0.042 
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C

c d,itm 

= β ′ [ X itm 

, k res 
itm 

, C M c,d , C ustomerShare d,itm 

, δd ] + εd,itm 

, 

(37) 

ompet it v e itm 

= β ′ [ X itm 

, k res 
itm 

] + εitm 

, (38) 

c itm 

= β ′ [ X itm 

, k res 
itm 

] + εitm 

. (39) 

Reading across all three tables, we observe the follow- 

ing: 

• Larger trades have higher quoted spreads (statistically 

significant) and higher transaction costs (statistically in- 

significant), but the magnitude of the estimate is very 

small, around 0.001 in both Tables 12 and 14 . Notional 

quantity is not a significant determinant of the compet- 

itiveness of quotes. 

• A higher number of streaming quotes (as a proxy of the 

number of dealers actively marking markets) and the 

number of dealers selected in RFQs both increase com- 

petition, as expected. There is some evidence that, for 

IG, a higher number of streaming quotes also reduce 

dealers’ quoted spread. That said, the magnitude of all 

these estimates is very small. 

• When dealers act as quote seekers, they tend to receive 

wider spreads from the other dealers, but the quotes 

from these other dealers are also more competitive. In 

the end, dealers incur slightly higher transaction costs 

of up to 0.6 bps on HY, but the estimate is not statisti- 

cally significant. 19 

• None of the other variables seem to be significant de- 

terminants of pricing behavior. 

The overall takeaway from this section is that index CDS 

transaction costs are fairly low. There is some evidence of 

dealers’ strategic pricing behavior in the individual quotes 

data, albeit with small economic magnitude. 

9. Concluding remarks 

The Dodd-Frank Act introduced a formal regulatory 

framework for the OTC derivatives markets. An important 

aspect of Dodd-Frank for the trading of OTC derivatives is 

the MAT mandate, which requires that trades in certain 

liquid and standardized swaps be executed on swap exe- 

cution facilities (SEFs). In this paper, we analyze message- 

level data of orders and transactions for index CDS that 

are subject to these rules. Our data are obtained from 

Bloomberg SEF and Tradeweb SEF for May 2016. These two 
19 Using more than two years of transaction data in three CDS indices 

on Bloomberg SEF, Haynes and McPhail (2019) find qualitatively similar 

results, that is, dealer-to-dealer trades have higher price impacts than 

dealer-to-customer trades. One interpretation is that dealers who trade on 

dealer-to-customer SEFs have found it difficult to execute trades on inter- 

dealer SEFs such as GFI. Collin-Dufresne et al. (2018) find that over 70% of 

CDX IG and CDX HY trades on GFI are executed by “workups” or “match- 

ing sessions.” As shown by Duffie and Zhu (2017) , these mechanisms gen- 

erally facilitate larger trades but do not clear the market, that is, some 

orders are left unexecuted. Therefore, dealers who self-select to trade on 

D2C SEFs like Bloomberg could be attempting to execute these leftover 

orders, which tend to move prices and hence receive higher transaction 

costs. 
SEFs represent about 85% of all SEF trading activities in in- 

dex CDS in our sample period. 

Bloomberg and Tradeweb offer various mechanisms for 

trading. After receiving indicative streaming quotes from 

dealers, customers may use the limit order book, run an 

auction with multiple dealers by RFQ, or contact one of the 

dealers streaming indicative quotes (RFS). In our sample, 

the order book has little activity. Between RFQ and RFS, 

RFS accounts for over 60% of customers’ trading activity. 

Conditional on using RFQs, customers on average only re- 

quest quotes from about four dealers. Data also show that 

wider exposure of orders reduces dealers’ response rates in 

RFQs. 

We propose a theoretical model of SEF trading that 

aims to organize these facts about customer and dealer 

behavior. What prevents customers from seeking quotes 

from as many dealers as possible? We propose two chan- 

nels that reduce the benefits of increasing the number 

of competitors. The first is winner’s curse that arises 

from the winning dealer’s need to offload part of the ac- 

quired position in interdealer SEFs. The winning dealer be- 

comes increasingly pessimistic about the expected inter- 

dealer price as the number of losing dealers in the cus- 

tomer’s RFQ rises. The second channel is customer-dealer 

relationships, which we model as an explicit cost of adding 

non-relationship dealers in the RFQ. The relationship chan- 

nel generates an interior optimal number of dealers re- 

quested, whereas all other comparative statics are derived 

from the winner’s curse channel. Overall, the model pro- 

vides empirically testable predictions regarding customers’ 

and dealers’ strategic behaviors, especially the response 

rate of dealers to RFQs. 

Consistent with the model, further empirical tests show 

that order size, market conditions, the number of competi- 

tors, and customer-dealer relationships are all important 

determinants of strategies and outcomes in this market. 

Customers expose the order to fewer dealers if the order 

is larger or if it is early in the trading day. Dealers’ re- 

sponse rates increase in order size, number of streaming 

quotes, and the clearing relationship with the customer, 

but response rates decrease in the number of dealers who 

compete in the RFQ. Dealers’ quoted prices have mild vari- 

ations with order size and the level of competition, but 

the magnitude of the estimates is not large. Heterogeneous 

customer types demonstrate different behavior, especially 

asset managers. 

Judged from our evidence, SEF-traded index CDS mar- 

ket seems to be working well after Dodd-Frank—dealers’ 

response rates are high, the vast majority of customer or- 

ders result in trades, and customers’ transaction costs are 

low. That said, it remains relevant to ask whether SEF mar- 

kets can be further improved. 

Collin-Dufresne et al. (2018) find that interdealer trades 

of index CDS receive narrower spreads than D2C trades 

do. Interdealer SEFs typically use a combination of order 

book and “size discovery” mechanisms such as workups 

and matching sessions (see Collin-Dufresne et al., 2018 ; 

and Duffie and Zhu, 2017 ) which lead to lower transac- 

tion costs. A possible market design is to offer similar 

mechanisms on D2C SEFs as well. That said, the effec- 

tive use of order book and size discovery mechanisms like 
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those found on D2D SEFs likely requires that customers

have the technological and operational capacity to dynam-

ically manage trading strategies. For example, customers

need to dynamically place and split orders and to decide

how much of the order should be executed by size discov-

ery. For active customers such as large asset managers, it

could make sense to undertake the investment required to

implement these strategies. However, for customers who

trade infrequently, the current D2C mechanisms may be

sufficient. 20 A careful counterfactual analysis on how dif-

ferent customers would react to the availability of other

trading mechanisms is beyond the scope of this paper be-

cause it requires information on customer-specific costs of

acquiring trading technology. 

Another possible market design is to add a “divisible

RFQ” protocol in which the customer can split the order

among multiple dealers who participate in the RFQ, in-

stead of giving the entire order to a single dealer. In a di-

visible RFQ, dealers would submit demand schedules (i.e.,

price-quantity pairs), and a customer can split his order

among responding dealers according to the quoted prices.

Because the winner’s curse in our model stems from the

winning dealer’s need to offload part of his position in

the interdealer SEF, the customer could reduce the win-

ner’s curse problem by using a divisible RFQ. This design is

more likely to be helpful for large orders, although a prac-

tical challenge is how dealers can efficiently enter price-

quantity pairs in their quotes (RFQ responses). 

Overall, by providing insight into the decision-making

process of market participants, our study contributes to the

understanding of SEF trading after Dodd-Frank. In partic-

ular, we find that a complex nexus of competition, win-

ner’s curse, and relationship drives a customers’ choice of

trading mechanisms and dealers’ liquidity provision in the

course of executing a trade. Our results could be used not

only to improve on existing market designs for OTC deriva-

tives such as CDS and interest rate swaps, but also to in-

form the design of other fixed-income markets that are un-

dergoing similar transitions toward multilateral electronic

trading, such as Treasury securities, corporate bonds, and

foreign exchange. 

Appendix A. Proof of Proposition 3 

Dealers’ probability of responding to the RFQ. 

By Proposition 2 , a dealer’s response probability to the

RFQ is F ( z ∗). Using the implicit function theorem, we can

show that 

∂z ∗

∂k 
= − ∂ �/∂ k 

∂ �/∂ z ∗
< 0 , (40)
20 If a customer simply wishes to use a single market order to complete 

a transaction, Viswanathan and Wang (2004) show theoretically that, as 

long as the customer’s order is not driven by private information about 

fundamentals, a sequential market as in current practice—a customer runs 

an indivisible auction with dealers and the winning dealer subsequently 

redistributes it to other dealers—tends to be more efficient than an order 

book mechanism. If the customer order is too informative about the fun- 

damental value of traded asset, Viswanathan and Wang (2004) show that 

the sequential market could break down and the order book mechanism 

is more robust. 

 

 

 

 

 

 

using the fact that A 2 , B, C , and E [ z j | z j > z ∗] are all posi-

tive (recall that E[ z j ] = 0 by assumption). This comparative

static implies that the response probability of each con-

tacted dealer is lower if more dealers are selected in the

RFQ. 

Similarly, we have 

∂z ∗

∂y 
= − ∂ �/∂ y 

∂ �/∂ z ∗
. (41)

We know ∂ �/ ∂ z ∗ < 0. And 

∂�

∂y 
= 

∂(A 1 /y ) 

∂y 
− ∂ p 

∂y 
= − λ

rn 

(1 + 0 . 5 C(n − 2)) ︸ ︷︷ ︸ 
< 0 , dealer’s decreasing value 

− ∂ p 

∂y ︸︷︷︸ 
< 0 , customer’s decreasing reservation value 

. (42)

Thus, ∂z ∗
∂y 

> 0 if and only if ∂�
∂y 

> 0 , which has the intu-

itive interpretation that the customer’s reservation value

decreases faster in quality than a dealer’s value does. 

Finally, we compute the comparative statics of z ∗ with

respect to primitive model parameters, n, λ, and p . We will

focus on the case of � = 0 , i.e., the market is open con-

tinuously, which is realistic. In this case, C = 1 / (n − 1) and

Eq. (13) simplifies to: 

� = v − λ

r 

3 n − 4 

2 n (n − 1) 
y 

− λ

r 

n − 2 

n (n − 1) 
(k − 1) E[ z j | z j > z ∗] − λ

r 

2 

n 

z ∗ − p . (43)

Clearly, � is increasing in n but decreasing in λ and p ; and

hence z ∗ is likewise increasing in n but decreasing in λ and

p . 

Dealers’ response prices, conditional on responding to the

RFQ. Conditional on responding to the RFQ, a dealer’s re-

sponse price is given by Eq. (15) . Note that z ∗ is endoge-

nous and needs to be taken into account in computing the

comparative statics of β( z i ). 

We directly calculate: 

∂β(z i ) 

∂k 
= −(A 2 + B ) 

×

⎡ 

⎢ ⎢ ⎣ 

(1 − F (z ∗)) k −1 ∂z ∗
∂k 

(1 − F (z i )) k −1 ︸ ︷︷ ︸ 
< 0 , as ∂ z ∗/∂ k < 0 

+ 

∫ z ∗

u = z i 

∂ 

∂k 

(
1 − F (u ) 

1 − F (z i ) 

)k −1 

du ︸ ︷︷ ︸ 
< 0 

⎤ 

⎥ ⎥ ⎦ 

− A 2 E[ z j | z j > z i ] ︸ ︷︷ ︸ 
> 0 

. (44)

As before, the above expression illustrates the trade-off be-

tween competition and winner’s curse. The two terms in

the square brackets show that dealer i ’s market power de-

creases as k increases. But the last term shows that dealer

i ’s winner’s curse problem becomes more severe as k in-

creases. The net effect is ambiguous. 

Similarly, 

∂β(z i ) 

∂y 
= 

d(A/y ) 

dy ︸ ︷︷ ︸ 
< 0 

−(A 2 + B ) 
(1 − F (z ∗)) k −1 

(1 − F (z i )) k −1 

∂z ∗

∂y 
. (45)
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Table 15 

Model calibration, separately for IG and HY. 

IG HY Source 

Set parameters 

Fundamental value ( v ) 0.01 0.05 Market practice 

Discount rate ( r ) 1 1 Normalization 

Number of dealers in the market ( n ) 16 18 Table 3 

Trade size ( y ) 29 9 Table 3 

Calibrated parameters 

λ 0.018 bps 0.098 bps 

δ, where p = v − δy 0.031 bps 0.457 bps 

c 0.001 bps 0.018 bps 

Empirical moments 

# dealers requested 4.02 4.18 Table 3 

Response rate 0.9 0.88 Table 3 

Average transaction cost (half-spread) 0.09 bps 0.24 bps Table 11 

Fitted moments 

# dealers requested 4.02 4.21 

Response rate 0.9 0.88 

Average transaction cost (half-spread) 0.09 bps 0.24 bps 

 

 

 

 

Clearly, since A / y is decreasing in y , a sufficient condi- 

tion for 
∂β(z i ) 

∂y 
< 0 is that ∂z ∗

∂y 
> 0 , which is implied by 

∂ �/ ∂ y > 0. 

The comparative statics of β( z i ) with respect to other 

parameters are not obvious. Again, take � = 0 and rewrite 

Eq. (15) as: 

β(z i ) = v −λ

r 

3 n − 4 

2 n (n −1) 
y −λ

r 

2 

n 

( 

z i + 

∫ z ∗
u = z i (1 −F (u )) k −1 du 

(1 −F (z i )) k −1 

)

− λ

r 

n − 2 

n (n − 1) 
(k − 1) E[ z j | z j > z i ] . (46)

Because z ∗ is increasing in n , the sign of ∂ β( z i )/ ∂ n is not

obvious. The same indeterminacy applies to λ. 

Appendix B. Numerical comparative statics for the 

model of Section 4 

In this appendix we illustrate the numerical solution for 

the model of Section 4 . The objective of this appendix is 

to illustrate that the model is able to match the qualita- 

tive nature key summary statistics and comparative statics, 

but it is not meant to be a structural calibration. The lat- 

ter likely requires a much richer dynamic model, in which 

multiple customers arrive sequentially. 

Table 15 below calibrates the model to a few empirical 

moments, separately for IG and HY. The level of fundamen- 

tal value v is inconsequential for equilibrium outcomes as 

all prices are relative to v . The interest rate r and the de- 

lay cost λ are not separately identified from the model be- 

cause they appear in pairs, λ/ r , so we normalize r = 1 . The 

number of dealers n and average order size are set to the 

mean value as in Table 3 . Three parameters need to be cal- 

ibrated, ( λ, δ, c ), where λ is the inventory cost parameter, 

the customer’s reservation price is p = v − δy, and adding 

one more dealer to the RFQ incurs a cost of cy for the cus- 

tomer. Finally, dealers’ inventory sizes { z i } are assumed to 

have a normal distribution with mean zero and standard 

deviation of $100 million notional. 
We target to match three empirical moments: the num- 

ber of dealers requested, the average response rate, and the 

average transaction cost (half-spread). Because the num- 

ber of dealers requested is not an integer at the mean, in 

the calibration we allow k to be any real number (instead 

of an integer). With three free parameters, we can match 

the three empirical moments well. Note that c need not be 

very large to generate an interior optimal number of deal- 

ers selected, k ∗. 

Figs. 5 and 6 illustrate the numerical comparative stat- 

ics of the model for IG and HY indices, respectively. The 

baseline parameters in each figure are taken from Table 15 , 

shown as dot-dashed lines. At those baseline parameters, 

we perturb, one at a time, trade size y , dealer inventory 

cost λ, and the number of dealers n . The variables of in- 

terest are the optimal number of dealers selected and the 

response rate. In these calculations the optimal number of 

dealers selected, k ∗, is chosen to be the optimal one (with 

the constraint that it is an integer). The dot-dashed lines 

indicate the change in k ∗ as a primitive parameter changes. 

The two left subplots of each figure show that a larger 

order size y reduces the optimal number of dealers re- 

quested (consistent with Table 6 ) but increases their re- 

sponse rate (consistent with Tables 8 and 9 ). The middle 

two subplots of each figure show that a higher inventory 

cost (proxy for last four hours of the trading day) increases 

the optimal number of dealers requested (consistent with 

Table 6 ) and reduces their response rate ( Tables 8 and 

9 show negative coefficients but they are not statistically 

significant). 

The right two subplots of each figure show that the 

model-implied comparative statics with respect to n are 

generally non-monotone. The optimal k ∗ is equal to the 

number of dealers n if n is small, but an interior optimal 

k ∗ is obtained if n is sufficiently large. The average num- 

ber of dealers in the data is sufficiently large that k ∗ ob- 

tains an interior solution. In that region, the model pre- 

dicts that k ∗ is decreasing in n but response rate is in- 

creasing in n . In Table 6 , the coefficient on n is negative

but statistically insignificant. Tables 8 and 9 show that RFQ 
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Fig. 5. Numerical comparative statics for IG indices. Parameters: dealer inventories are normally distributed with mean zero and standard deviation of 

$100 million; v = 0 . 01 (100 bps), λ = 0 . 018 bps; customer reservation price is v − 0 . 0 0 031 y ; and the cost of choosing an additional dealer per million of 

notional is 0.001 bp. 

Fig. 6. Numerical comparative statics for HY indices. Parameters: dealer inventories are normally distributed with mean zero and standard deviation of 

$100 million; v = 0 . 05 (500 bps), λ = 0 . 098 bps; customer reservation price is v − 0 . 00457 y ; and the cost of choosing an additional dealer per million of 

notional is 0.018 bp. 

 

 

 

 

 

 

 

 

 

 

 

response rate is indeed higher if more dealers are making

markets. 

While our simple model can match key summary statis-

tics and comparative statics of the data, it has limita-

tions. One limitation is that all dealers treat the customer

in the same manner and hence have symmetric quoting
strategies. Therefore, the model misses the empirical pat-

tern that a customer’s clearing member responds to RFQs

more often than other dealers on average. Building in

this asymmetry requires a two-way relationship, that is, a

clearing member derives some benefit from responding to

RFQs sent by his customers. This point seems conceptually
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Table 16 

Direction of trades by dealers in D2C and D2D trades (only CDX). 

Panel A: All days Panel B: Large days 

Contract Sign Count Contract Sign Count 

HY.25 -1 11 9.6% HY.25 -1 5 7.9% 

HY.25 0 93 HY.25 0 51 

HY.25 1 11 HY.25 1 7 

HY.26 -1 97 35.3% HY.26 -1 41 38.0% 

HY.26 0 76 HY.26 0 33 

HY.26 1 102 HY.26 1 34 

IG.25 -1 6 7.2% IG.25 -1 4 7.4% 

IG.25 0 65 IG.25 0 43 

IG.25 1 12 IG.25 1 7 

IG.26 -1 90 34.4% IG.26 -1 46 39.0% 

IG.26 0 93 IG.26 0 37 

IG.26 1 79 IG.26 1 35 

21 One possible reason is that European dealers trade with each other 

on European venues that are outside the jurisdiction of the CFTC. 
straightforward but the resulting model would no longer 

have closed-form, intuitive strategies. 

Appendix C. D2C trades versus D2D trades 

Our primary data set consists of D2C trades. This ap- 

pendix briefly describes the connection between dealers’ 

D2C trades and their D2D trades. This connection helps 

motivate our model based on winner’s curse. 

We complement our message-level data in the two D2C 

SEFs with data on all of the transactions taking place dur- 

ing the same period, collected from the trade repositories. 

We label Bloomberg and Tradeweb as D2C SEFs and la- 

bel all other SEFs as D2D SEFs. Note that the D2D data 

include only transactions but not orders. Collin-Dufresne 

et al. (2018) provide a detailed analysis of D2D trading of 

index CDS. 

We are primarily interested in whether a dealer’s D2C 

trades and D2D trades are in the same or opposite direc- 

tions. If trades happen in opposite directions, then this pat- 

tern indicates that dealers may be offloading D2C trades in 

D2D SEFs. Table 16 below provides evidence on the rela- 

tionship between a dealer’s D2D and D2C net trades. We 

use the term net trade to refer to the change in a trader’s 

position over the course of a day. For example, a trader 

who took the long side of a $30 million trade in an index, 

and the short side of a $40 million trade in that same in- 

dex on the same day would have a net trade of - $10 mil- 

lion on that date. The statistics shown in Table 16 are the 

counts of the signs of the correlations between a dealer’s 

D2C and D2D daily net trades. Specifically, if a dealer is 

a net CDS buyer (negative net trades) on D2C SEFs on a 

given day and a net CDS seller on D2D SEFs on the same 

day, or the other way around, then we denote the sign of 

the correlation of their net trades as −1 . If a dealer’s net 

trades in the two types of SEFs are in the same direction, 

then the correlation is 1. If a dealer has a zero net trade on 

a contract on either D2C SEFs or D2D SEFs, but not both, 

then the correlation is set to zero. If a dealer has a zero net 

trade on a contract on both D2C SEFs and D2D SEFs, then 

we drop the dealer-day observation. This procedure pro- 

duces, for each CDS index, a single number ( −1 , 0, or 1) for 
each dealer-day pair. In the trade repository data collected 

by the CFTC, there are not many D2D trades on iTraxx in- 

dices, so we focus on CDX in this exercise. 21 Panel A shows 

the statistics for the full sample (labeled “All days”). Panel 

B focuses on days on which the absolute value of a dealer’s 

D2C net trade for each particular CDS index is larger than 

the average of her absolute D2C trade in that CDS index in 

our sample (labeled “Large days”). 

In Panel A, for the two on-the-run indices (IG.26 and 

HY.26), 34–35% of the dealer-day observations have oppo- 

site trade directions between the D2C segment and the 

D2D segment, and about the same fraction of observa- 

tions have the same trade directions in the two segments. 

Again, these numbers exclude dealer-day observations for 

which a dealer makes zero net trades in both D2C SEFs 

and D2D SEFs on a day. In Panel B, on days when dealers 

make larger-than-average D2C trades, about 38 and 39% of 

the dealer-day observations have opposite directions be- 

tween the two market segments. This evidence suggests 

that offloading part of a D2C trade in the D2D segment 

or the other way around is a realistic feature and hap- 

pens with significant frequency, especially on days when 

the D2C trades are large. 

Appendix D. Front-running concerns 

A salient feature of the data is that customers limit 

their order exposure to only a few dealers. We have pro- 

posed winner’s curse as a possible channel that partially 

offsets the benefit of competition. While an explicit cost 

seems important in generating an interior optimal number 

of dealers requested, all comparative statics are derived us- 

ing the winner’s curse channel and they fit the data quite 

well. 

In this appendix, we discuss an alternative explana- 

tion for why customers limit their order exposure: front- 

running. That is, customers worry that a dealer who re- 

ceives an RFQ may rush to trade in the same direction as 

the customer in other venues before the customer’s RFQ 
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Table 17 

Intraday switch statistics between D2D and D2C SEFs. 

Panel A: Switch from D2C to D2D Panel B: Switch from D2D to D2C 

60 Min or less 60 Min or less 

Count Sign Avg time between switches Count Sign Avg time between switches 

370 -1 0:17:30 391 -1 0:16:53 

388 1 0:16:44 304 1 0:18:38 

15 Min or less 15 Min or less 

Count Sign Avg time between switches Count Sign Avg time between switches 

200 -1 0:05:48 224 -1 0:05:52 

215 1 0:05:44 153 1 0:05:48 

5 Min or less 5 Min or less 

Count Sign Avg time between switches Count Sign Avg time between switches 

92 -1 0:02:03 111 -1 0:02:14 

111 1 0:02:18 80 1 0:02:08 

2 Min or less 2 Min or less 

Count Sign Avg time between switches Count Sign Avg time between switches 

51 -1 0:00:56 57 -1 0:00:57 

49 1 0:00:55 41 1 0:00:57 

1 Min or less 1 Min or less 

Count Sign Avg time between switches Count Sign Avg time between switches 

29 -1 0:00:31 29 -1 0:00:27 

23 1 0:00:25 21 1 0:00:28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is filled. Because an auction typically remains open for a

short period of time (within a minute), the front-running

hypothesis predicts that there should be D2C trades and

D2D trades close to each other in time. Note that once a

trade happens and is reported, it becomes public informa-

tion and hence there would be no front-running concerns. 

To evaluate the front-running possibility, Table 17 be-

low shows some simple statistics on the time delays be-

tween D2C trades and D2D trades. We look for situations

in which a dealer accumulates a net position on a D2C SEF

and then switches to trading on a D2D SEF, or the other

way around. The accumulation is the total change in posi-

tion resulting from a series of trades on one type of venue.

For example, if a dealer buys $20 million on a D2C SEF,

then buys $30 million on a D2C SEF, and then sells $40

million on a D2D SEF, then the first two trades are part of

a single accumulation, and there is one switch. The “sign”

is −1 in this case because the cumulative D2C trades and

the cumulative D2D trades are in opposite directions. If the

sequence of trades is buying $20 million on a D2C SEF, sell-

ing $40 million on a D2D SEF, and then buying $30 million

on a D2C SEF, then there are two switches, and both signs

are −1 . If a dealer buys $20 million on a D2D SEF and then

buys $30 million on a D2C SEF, then there is one switch

with a sign of 1. 

Table 17 reports the number of switches and the av-

erage time between these switches from the last trade of

the first series to the first trade of the second series, condi-

tional on a trade within a fixed time interval (e.g., 60 min).

For example, the first row of Panel A shows the 370 in-

stances in which a dealer switches from D2C SEFs to D2D

SEFs within one hour, with opposite trading directions.

Within this set, the average delay between the last D2C

trade and the first D2D trade is 17.3 minutes. The premise

of the front-running hypothesis is that if dealers’ front-

running happened frequently, there would be many short-

 

delayed switches with the sign of −1 . But Table 17 shows

that there are very few short-delayed switches. For exam-

ple, there are only 29 instances in which a dealer switches

from D2D SEFs to D2C SEFs within a minute and their

trades are in opposite directions; and likewise for switches

from D2C SEFs to D2D SEFs. The evidence therefore sug-

gests that front-running is not a salient feature of the data.
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