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Abstract

We explore the implications of introducing a central bank digital currency (CBDC)

through commercial banks that differ in size. We focus on two design features of

CBDCs: the interest rate and payment convenience. These features correspond to

the “store of value” and “medium of exchange” properties of currencies. Payment

convenience is an under-explored aspect of CBDC design which may substitute for or

complement the monetary benefits of interest payments. Recognition of the broader

aspects of CBDC design are important, not only for understanding consumer adoption

of CBDC, but also its effects on broader market outcomes.
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“If all a CBDC did was to substitute for cash – if it bore no interest and came

without any of the extra services we get with bank accounts – people would

probably still want to keep most of their money in commercial banks.”

—Ben Broadbent, Deputy Governor of the Bank of England, in a 2016 speech

1 Introduction

A central bank digital currency (CBDC) “is a digital payment instrument, denominated

in the national unit of account, that is a direct liability of the central bank” (BIS 2020).

In recent years, central banks and the broader market have increasingly viewed CBDCs as

a potentially helpful innovation that can improve the payment system, promote financial

inclusion, enhance monetary policy transmission, and reduce systemic risk (BIS 2020). But

what design features would help the CBDC achieve these objectives?

In this paper, we explore the implications of introducing a CBDC that has two salient

features: interest-bearing and payment convenience. Interest-bearing is related to the “store

of value” property of currencies, and payment convenience is related to the “medium of

exchange” property. These two dimensions are aptly reflected in the quote above by Ben

Broadbent in 2016 and also cover most of the features proposed by the Committee on Pay-

ments and Market Infrastructures (CPMI, 2018).1

If the CBDC is meant to offer a solution, then it is useful to first identify the problems.

There are at least two market imperfections that a CBDC may help mitigate. The first is that

interest rate pass-through in the economy is far from complete. Drechsler, Savov, and Schnabl

(2017) find that “[f]or every 100 bps increase in the Fed funds rate, the spread between the

Fed funds rate and the deposit rate increases by 54 bps.” Duffie and Krishnamurthy (2016)

document a sizable dispersion of a broad range of money market interest rates, which widened

as the Fed raised its interest on reserves. Both papers point out that imperfect competition

in the U.S. deposit market is partially responsible. If the CBDC is accessible to households

and pays interest directly, interest rate pass-through in the economy could be improved.

Hence, we consider the interest-bearing feature.

A second area where a CBDC can lead to improvements is the payment system. The

ability to pay is a fundamental need of citizens and underlies almost all economic activity.

A publicly provided CBDC could be less expensive to use and more widely accessible than

existing, privately offered payment methods, and it could offer access to new platforms. This

1They are 24/7 availability, anonymity, transfer mechanism, interest-bearing, and limits or caps.
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could be the case, for example, if the CBDC was programmable and allowed consumers to

purchase goods or services on permissioned DLT platforms. A CBDC could also provide

privacy. Policy makers have argued that the central bank is specially positioned to provide

privacy in payments because the central bank does not have a profit motive to exploit

consumer payment data (See Lagarde, 2018). For these reasons we consider the convenience

value feature.

In our model, the CBDC is offered through commercial banks. While CBDC balances

are the direct liability of the central bank, we envision that commercial banks will act

as the central bank’s agents to conduct KYC (Know Your Customer) and AML (Anti-

Money Laundering) as well as offering various payment services such as money transfer.

This “tiered” design of CBDC is consistent with the recent pilot of E-Krona in Sweden, the

CBDC experiment in China, and the Banking for All Act in the United States.2 Even within

the tiered design framework we are considering, the central bank could implement schemes

to protect user privacy in ways that differentiate CBDC from other electronic payments.3

A key contribution of our analysis is to provide a framework for the evaluation of CBDC

that captures salient aspects of the U.S. banking system. Banks engage in deposit creation

to make loans. There are a large amount of reserves in the banking system and the central

bank pays interest rate on reserves (IOR), denoted f , to commercial banks.4 Banks differ in

terms of size and this impacts the desirability of their deposit accounts and their customer

demand for loans. More specifically, the commercial banking sector in our model consists

of a large bank and a small bank. The large bank’s deposit offers a higher convenience

value than the small bank’s deposit. For example, a large bank could have a more expansive

network of branches and ATMs, a better mobile App, or a wider range of other (unmodeled)

services. We normalize the small bank’s convenience value to be zero, and model the large

bank’s convenience value as a nonnegative random variable, with a probability distribution

across a continuum of agents who deposit in either bank. The higher convenience value of

its deposit gives the large bank an advantage in the deposit market. As a result, the large

bank offers a lower deposit interest rate than the small bank in equilibrium and yet has a

2The Act argues that Digital Dollar Wallets should provide a number of auxiliary services including debit
cards, online account access, automatic bill-pay and mobile banking. These features (in particular mobile
banking which could give access to a variety of platforms that customers of a particular bank might otherwise
not have access to) could result in a CBDC with its own convenience value.

3A programmable CBDC could employ zero-knowledge proofs.
4In the United States, IOR has been paid since October 2008. Since the financial crisis of 2008-09, interest

on excess reserves (IOER) has become the Federal Reserve’s main policy tool to adjust interest rate. In July
2021, the Federal Reserve renamed IOER to interest on reserve balances (IORB), as required reserves are
currently zero. For simplicity, we will use the term interest on reserves.
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larger market share.

Deposit market share is important not only because it determines profits on deposits,

but also because it impacts the cost of lending. The two commercial banks in our model

lend to entrepreneurs who take on risky projects that differ in their quality (i.e., expected

returns). When a loan is made by either bank, the bank creates a new deposit in the name

of the entrepreneur as a new liability, which is exactly balanced by the new loan as a new

asset. The entrepreneur immediately pays a randomly selected worker, and the deposit

may flow out of the original bank to the other. For example, if the entrepreneur originally

takes a loan from the small bank but the worker she hired has a high enough value for

the convenience of the large bank, the deposit flows from the small bank to the large one,

resulting in a flow of central bank reserves in the same direction. Because the large bank

has an inherent advantage in the deposit market, the large bank’s newly created deposit in

the lending process has a high probability of staying at the large bank, meaning the creation

of the loan as no associated loss of reserves. In contrast, the small bank is likely to lose the

newly created deposit and the associated interest on the accompanying reserves. Holding

fixed the quality of the entrepreneur’s project, the greater ability to retain reserves means

the large bank earns a higher total profit by lending than the small bank, and hence the large

bank is willing to lend to lower-quality projects due to the higher expected profit of earning

interest on reserves. This is a mechanism in which a deposit market advantage translates

into a lending market advantage.

To analyze the impact of the CBDC, we perform multiple comparative static exercises.

First, we increase the CBDC interest rate while holding the interest rate on reserves and the

CBDC convenience value fixed. This analysis mimics the type of testing that was done with

Overnight Reverse Repurchase rates when that facility was first introduced by the Federal

Reserve in 2013. Under certain conditions, an increase in the CBDC interest rate raises the

deposit interest rates of both banks and also their weighted average, that is, monetary policy

is enhanced. Setting the CBDC interest rate equal to the interest rate on reserves would

imply full monetary policy pass-through. However, by forcing both banks to raise interest

rates, a higher CBDC interest rate makes it more difficult for the small bank to compete

with the large bank by offering higher deposit interest rate. Thus, a higher CBDC interest

rate reduces the market share of the small bank in deposit and lending markets, further

widening the large bank-small bank gap.

Second, we vary the CBDC convenience value, holding the IOR rate and CBDC interest

rate constant. Making the CBDC more convenient weakens the market power of the large
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bank by narrowing the convenience gap between the two banks. For example, by hosting a

convenient CBDC, a small community bank partially “catches up” with large global banks

in offering payment functionalities. The most immediate implication is that a convenient

CBDC results in a lower deposit rate at the small bank, because the small bank does not have

to compensate depositors as much for forgoing the large bank’s convenience. At the same

time, deposit interest rates at the large bank may remain unchanged or increase, depending

on whether the the equilibrium is constrained or not. In the range of low convenience

values, increasing convenience weakens the transmission of monetary policy through IOR to

the deposit market. However, once the convenience value of the CBDC reaches a certain

level that the large bank’s interest rate is no longer at the lower bound, a further increase

in CBDC convenience increases monetary policy transmission by increasing the weighted

average deposit interest rate.

In terms of market composition, the overall impact of increasing CBDC convenience is

that the deposit interest rates, deposit market shares, lending standards, and loan volume

of the small bank and the large bank start to converge. In other words, a convenient CBDC

“levels the playing field” for bank competition by chipping away the convenience advantage

of the large bank.

Our final contribution is to examine various combinations of CBDC interest rates and

convenience values. Rather than assuming a central bank objective function, we rank the

interest rate-convenience value combinations from the perspectives of banks (collectively)

and depositors (collectively). We show that a higher CBDC interest rate benefits depositors

but reduces total bank profits; that is, depositors and banks cannot agree on the CBDC

interest rate. However, in the constrained equilibrium, where the large bank’s deposit interest

rate is equal to the CBDC interest rate, both depositors and banks prefer a higher CBDC

convenience value.5 This analysis enables us to identify a set of Pareto-dominated points

in interest rate-convenience space. By focusing on the boundary of this set we can evaluate

a variety of monetary policy and financial stability objectives solely in terms of the CBDC

interest rate choice.

2 Literature

Our work builds on previous literature that has modelled deposit and lending markets in the

current regime of large excess reserves. In Martin, McAndrews and Skeie (2013), a loan is

5This agreement about convenience value does not arise in the unconstrained equilibrium.
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made if its return exceeds the marginal opportunity cost of reserves, which can be either the

federal funds rate or the IOR rate, depending on the regime. Our model differs in that we

have multiple banks and hence lent money may return to the same bank as new deposits.

Hence, our opportunity cost of lending is lower. Nevertheless, we share the conclusion that

the aggregate level of bank reserves does not determine the level of bank lending.

There is now a growing literature that seeks to examine the impact of CBDC on deposit

and lending markets. The conclusions vary and depend upon the level of competition, the

interest rate on the CBDC, and other features (e.g., liquidity properties of CBDC and reserve

requirements). Keister and Sanches (2020) consider a competitive banking environment in

which deposit interest rates are determined jointly by the transactions demand for deposits

and the supply of investment projects. If the CBDC serves as a substitute for bank deposits,

then its introduction causes deposit interest rates to rise, and the levels of deposits and bank

lending to fall.

In contrast, if banks have market power in the deposit market, the introduction of a

CBDC does not disintermediate banks, as banks can prevent consumers from holding the

CBDC by matching its interest rate. This lowers their profit margin, but does not lower the

level of deposits, and may even increase it. This is true in the model proposed by Andolfatto

(2020), where the bank is a monopolist. In that paper, an interest bearing CBDC causes

deposit interest rates to rise and the level of deposits to increase. Likewise, in that paper,

banks have monopoly power in the lending market, and, as in Martin, McAndrews and Skeie

(2013), lending is not tied directly to the level of deposits, Hence, a CBDC does not impact

the interest rate on bank lending or the level of investment.

Chiu et al. (2019) also consider banks with market power and show that an interest-

bearing CBDC can lead to more, fewer or no change in deposits, depending on the level of

the CBDC interest rate. In an intermediate range of rates, the CBDC impacts the deposit

market in a manner similar to Andolfatto (2020) in that banks offer higher deposit interest

rates and increase deposits. Since, similar to Keister and Sanches (2020), lending is tied to

the level of deposits, adding the CBDC results in increased lending.

Our work is closest to Andolfatto (2020). We do not specify the overlapping generations

framework that he uses to make money essential. However, like Andolfatto (2020), in our

model, reserves are abundant, lending is determined by a performance threshold, and banks

have monopoly power in lending market. Hence, lending is determined not by deposit levels,

but instead by the opportunity cost of funds. In our model, this opportunity cost is lower than

the IOR rate, since we allow for the realistic feature that reserves come back to the lending
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bank with a probability that depends on the deposit market share. Unlike Andolfato (2020),

and the other works mentioned above, we incorporate two key design aspects of CBDC,

interest rate and convenience value, and we examine the combined impact these features

have on market outcomes in an environment with heterogeneous banks.

The impact of adding a CBDC can be richer in the presence of other frictions. In a

model with real goods and competitive banks, Piazzesi and Schneider (2020) find that the

introduction of CBDC is beneficial if all payments are made through deposits and the central

bank has a lower cost in offering deposits. However, they also find that the CBDC can be

harmful if the payer prefers to use a commercial bank credit line, but the receiver prefers

central bank money. Parlour, Rajan, and Walden (2021) argue that a wholesale CBDC

that enhances the efficiency of interbank settlement system could exacerbate the asymmetry

between banks if the CBDC does not distinguish net-paying and net-receiving banks. Agur et

al. (2019) consider an environment where households suffer disutility from using a payment

instrument that is not commonly used. They examine trade-offs faced by the central bank

in preserving variety in payment instruments and show that the adverse effects of CBDC on

financial intermediation are harder to overcome with a non-interest-bearing CBDC.

Fernández-Villaverde et al. (2020) extend the analysis of CBDC to a Diamond and

Dybvig (1983) environment in which banks are prone to bank runs. In this setting, the

fact that the central bank may offer more rigid deposit contracts allows it to prevent runs.

Since commercial banks cannot commit to the same contract, the central bank becomes a

deposit monopolist. Provided that the central bank does not exploit this monopoly power,

the first-best amount of maturity transformation in the economy is still achieved.

Brunnermeier and Niepelt (2019) and Fernández-Villaverde et al. (2020) derive conditions

under which the addition of a CBDC does not affect equilibrium outcomes. Key to their

result is the central bank’s active role in providing funding to commercial banks in order to

neutralize the CBDC’s impact on their deposits.

3 Model and Equilibrium

3.1 Setup

The economy has a large bank (L) and a small bank (S). There are X = XS + XL reserves

in the banking system, where XS denotes the reserve holding of the small bank and XL

7



denotes the reserve holding of the large bank.6 For simplicity, the banks start off holding

reserves as their only asset, balanced by exactly the same amount of deposits. Following

Martin, McAndrews and Skeie (2013), we assume that the level of reserves X is exogenously

determined by the central bank and is assumed to be large. The central bank pays the two

commercial banks an exogenously determined interest rate f on their reserve holdings, which

is called interest on reserves (IOR). The large and small banks pay depositors endogenously

determined deposit interest rates rL and rS, respectively. Thus, if nothing else happens,

bank j’s total profit would be Xj(f − rj).
Commercial bank deposits are valuable not just for the interest they pay, but also for

payment convenience such as direct debit and deposit. The convenience value of the small

bank’s deposits is normalized to be zero, the convenience value of the large bank’s deposits

is a random variable δ ≥ 0 that has the cumulative distribution function G that is twice

differentiable. As we discuss shortly, each depositor in the economy draws their large-bank

convenience value δ independently from the distribution G.

The central bank offers a “retail” CBDC that is universally available. The CBDC has

two features: it pays an interest rate of s to depositors who use it and it provides a per-dollar

convenience value v ≥ 0 to users that is the same across all depositors. The convenience

value can be interpreted as a benefit that depositors receive from transacting using central

bank money. This benefit can include access to platforms on which CBDC can be spent,

aspects of the mobile user interface (app features) or any other account services that are

associated with central bank accounts. We assume that the CBDC is offered via commercial

banks, so that money can be transferred seamlessly between a depositor’s deposit account

at a commercial bank and their CBDC account offered via the commercial bank. Therefore,

a depositor who has an account at the large bank can use the deposit account or CBDC

account, whichever has the greater convenience value. That is, the depositor of the large

bank receives the convenience value max(δ, v), and a depositor who has an account at the

small bank receives convenience value max(0, v) = v. Here, we used max(·) to capture the

general idea that the CBDC’s convenience value is more useful for small bank depositors

than large bank depositors.

There is a unit mass of agents, and each potentially plays three roles: entrepreneur (bor-

rower), worker, and depositor. The main heterogeneity among the agents is their convenience

value for large bank deposits.

6We normalize the size of an individual loan to be $1, so reserves are in units of the standard loan size. For
example, if a loan size is $1 million and the actual reserve is $1 trillion, then in our model, X is interpreted
as $1 trillion/$1million = 106.
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The model has four periods. At t = 0, the commercial banks set the deposit interest rates

rL and rS. The central bank sets the interest on reserves rate f , the CBDC interest rate s,

and the CBDC convenience value v. In the model, f, s, and v are exogenous, and rL and rS

are endogenous. At the start of the model, a fraction mL of agents have existing deposits

at the large bank and a fraction mS = 1−mL of agents have existing deposits at the small

bank. The amount of deposits per capita across agents is identical. This means mL = XL/X

and mS = XS/X. As discussed above, because the CBDC is offered via commercial banks, a

CBDC account offered via a commercial bank has the same convenience value as the deposit

account of that commercial bank. For this reason, the CBDC interest rate s is a lower bound

on banks’ deposit interest rates, i.e., rL ≥ s and rS ≥ s.

At t = 1, the agents act as entrepreneurs and workers. Each agent is endowed with

a project, and each project requires $1 of investment and pays A > 1 with probability qi

and zero with probability of 1 − qi, where qi has the distribution function Q and A is a

commonly known constant. The expected payoff per dollar invested is thus qiA. Each agent

can only borrow from the bank where she keeps her deposit (the “relationship” bank). The

bank prices the loan as a monopolist. If the loan is granted, the entrepreneur pays $1 to

a randomly selected agent from the same population. The selected agent plays the role as

a worker and completes the project. The main point of introducing workers is to generate

some money flow in the economy.

At t = 2, agents play the role as depositors. Workers who receive wages choose where

to deposit the wage. The depositor can pick either the large bank or the small bank, and

within a bank, the depositor can pick either the bank’s own deposit account or the CBDC

account. These choices are made after considering the depositor’s own convenience value for

large bank deposits, the convenience value of the CBDC, and all relevant interest rates.

At t = 3, the projects succeeds or fails.The banks earn interest on reserves and pays

depositors according to their deposit holdings and the deposit interest rates.

3.2 Bank deposit creation

For the purpose of illustration it is convenient to illustrate the deposit creation process by

considering a discrete set-up, in which we characterize the bank’s decision to make a single

loan. The condition on bank lending that we derive will be applicable to the continuum

model in which borrowers (i.e., the entrepreneurs) are infinitesimal.

The tables below show the sequence of changes in the large bank’s balance sheet in the

loan process. The changes in the small bank’s balance sheet in the loan process are entirely
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analogous.

1. Before lending, the large bank starts with XL reserves. Its balance sheet looks like:

Asset Liability

Reserves XL Deposits XL

2. If the large bank makes a loan of $1, it immediately creates deposit of $1 in the name

of the entrepreneur. The balance sheet of the bank becomes:

Asset Liability

Reserves XL Deposits XL

Loans 1 New Deposits 1

3. Eventually, the entrepreneur will spend her money to pay a worker. The large bank

anticipates that, in expectation, a fraction αS of the $1 new deposit will be transferred

to the small bank, leading to a reduction of reserves by the same amount. The fraction

αL remains in the bank because the worker has an account with the same bank. The

bank’s balance sheet becomes:

Asset Liability

Reserves XL − αS Deposits XL

Loans 1 New Deposits αL

If the large bank makes the $1 loan to entrepreneur i, and charges interest rate Ri, its

total expected profit, by counting all items in the balance sheet, will be

(XL − αS)f︸ ︷︷ ︸
Interest on reserves

+ [qi(1 +Ri)− 1]︸ ︷︷ ︸
Gross profit on the loan

− (XL + αL)rL︸ ︷︷ ︸
Cost of deposits

. (1)

If the large bank does not make the loan, then its total profit will be

XL(f − rL). (2)

The large bank’s marginal profit from making the loan, compared to not making it, is

πi = qi(1 +Ri)− (1 + f)︸ ︷︷ ︸
Net profit on the loan

+ αL(f − rL).︸ ︷︷ ︸
Profit on deposit

(3)
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In the expression of πi, the net profit on the loan reflects the true opportunity cost of

capital. Besides the usual profit on the loan, the large bank makes an additional profit equal

to αL(f − rL). This is because each $1 lent out stays with the large bank with probability

αL and earns the bank the IOR-deposit spread of f − rL. The corresponding term for the

small bank’s marginal profit of lending is αS(f − rS). In the equilibrium we characterize,

it will be the case that αL(f − rL) > αS(f − rS), i.e., the large bank’s convenience value

of deposits translates into an advantage in the lending market. Such feature would not be

present if banks were homogeneous.

3.3 Equilibrium

We solve the model backward in time.

Deposit market at t = 2. A depositor with a large-bank convenience value of δ faces

four choices:

Large bank Small bank

Deposit CBDC Deposit CBDC

Convenience value max(δ, v) max(δ, v) v v

Interest rate rL s rS s

Obviously, the small bank attracts no depositors if rS < rL. So rS ≥ rL in equilibrium.

For technical simplicity, whenever a depositor is indifference between two choices, their

preference is the small bank, the large bank, and finally the CBDC, in this order.7

We will characterize parameter conditions under which rS > rL. This implies that a

depositor with convenience value δ chooses the large bank if and only if

δ > v and rL + δ > rS + v ⇒ δ > rS − rL + v. (4)

Therefore, the eventual market shares of the banks in the newly created deposits are

αL = 1−G(rS − rL + v), (5)

αS = G(rS − rL + v). (6)

7The tie-breaking rule between commercial banks and the CBDC is without loss of generality because
a commercial bank can always offer ε above s so that depositors strictly prefer commercial bank deposits
to the CBDC. The tie-breaking rule also preserves continuity in the fractions of depositors as parameters
change to make depositors indifferent.
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Loan market at t = 1. In the previous section we derived the marginal profit of a bank

from making a loan. While the entrepreneur is infinitesimal here, expression (3) still applies.

The monopolist position of each bank in the lending market implies that a bank can make

a take-it-or-leave-it offer to the entrepreneur. The bank’s optimal interest rate quote would

be Ri = A − 1 (or just tiny amount below), and the entrepreneur, who has no alternative

source of funds, would accept. The lending bank takes the full surplus.

Hence, the large bank makes the loan if and only if

qiA− (1 + f) + αL(f − rL) > 0, (7)

or

qi > q∗L =
1 + f − αL(f − rL)

A
. (8)

Exactly the same calculation for the small bank yields the comparable investment threshold

q∗S =
1 + f − αS(f − rS)

A
. (9)

Choice of deposit interest rates at t = 0. Again, we start with the large bank. The

large bank makes profits in two ways. Because the large bank is a monopolist when lending

to its customers, its first source of profit is on the loans, mL

∫
q∗l

(qA − 1 − f)dQ(q). The

second source of the large bank’s profit is on the interest rate spread. The existing deposit

in the banking sytem is X = XL +XS. As discussed above, the lending process also creates

new deposits. The amount of new deposit created by the large bank is mL(1 − Q(q∗L)), by

the normalization that each loan is of $1. Likewise, the small bank creates new deposit

mS(1−Q(q∗S)). When the two banks compete for depositors by setting the deposit interest

rates rL and rS, we already show above that a fraction αL = 1 − G(rS − rL + v) of total

deposits end up with the large bank, enabling the large bank to collect a spread of f − rL
per unit of deposit held.

Adding up the two components, we can write the large bank’s total profit as

ΠL = mL

∫ 1

q∗L

(qA− 1− f)dQ(q) + [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))]αL(f − rL)

= mL

∫ 1

q∗L

[qA− (1 + f) + αL(f − rL)]dQ(q) + [XL +XS +mS(1−Q(q∗S))]αL(f − rL).

(10)
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Likewise, the small bank’s total profit is

ΠS = mS

∫ 1

q∗S

[qA− (1 + f) + αS(f − rS)]dQ(q) + [XL +XS +mL(1−Q(q∗L))]αS(f − rS).

(11)

As discussed before, the CBDC interest rate puts a lower bound on commercial banks’

deposit interest rates, i.e., rL ≥ s, and rS ≥ s. There are two cases. The first is that rL > s,

so that the CBDC interest rate does not constrain the commercial banks’ deposit interest

rates. We call the first case the unconstrained equilibrium. The second case is that rL = s,

i.e., the CBDC interest rate binds the large bank’s deposit interest rate. We call the second

case the constrained equilibrium.

Unconstrained equilibrium. Assuming that ΠL is strictly quasi-concave in rL, the suf-

ficient condition for a unique maximum of the function ΠL with respect to rL is

dΠL

drL
= mL(1−Q(q∗L))

d[αL(f − rL)]

drL
−mL [q∗LA− (1 + f) + αL(f − rL)]︸ ︷︷ ︸

=0

dq∗L
drL

+ [XL +XS +mS(1−Q(q∗S))]
d[αL(f − rL)]

drL
−mSαL(f − rL)Q′(q∗S)

dq∗S
drL

= [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))] · [(f − rL)G′(rS − rL + v)− 1 +G(rS − rL + v)]

−mSαL(f − rL)Q′(q∗S)
(f − rS)G′(rS − rL + v)

A
. (12)

Likewise, the first-order condition of the small bank is

dΠS

drS
= [XL +XS +mL(1−Q(q∗L)) +mS(1−Q(q∗S))] · [(f − rS)G′(rS − rL + v)−G(rS − rL + v)]

−mLαS(f − rS)Q′(q∗L)
(f − rL)G′(rS − rL + v)

A
. (13)

For simplicity, let Q(·) be the uniform distribution on [0, 1]. And further impose a

“stationarity” condition that the market shares of deposit {αj} are identical to the starting
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market share {mj}. The first-order conditions are simplified to

0 =
dΠL

drL
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rL)G′(rS − rL + v)− 1 +G(rS − rL + v)]

− 1

A
αSαL(f − rL)(f − rS)G′(rS − rL + v), (14)

0 =
dΠS

drS
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − rL + v)−G(rS − rL + v)]

− 1

A
αLαS(f − rL)(f − rS)G′(rS − rL + v). (15)

From the above conditions we derive

(rS − rL)G′(rS − rL + v) + 2G(rS − rL + v) = 1. (16)

Proposition 1. Suppose that the profit function Πj is quasi-concave in rj, j ∈ {L, S}. Also

suppose that G(v) < 0.5. Let rL and rS solve equations (14)–(15). If rL > s and rS > s,

then it is an unconstrained equilibrium that the banks set rL and rS as their deposit interest

rates. In this equilibrium:

1. The large bank sets a lower deposit interest rate (rL < rS < f) and has a larger market

share (αL > αS) than the small bank.

2. The large bank uses a looser lending standard than the small bank does (q∗L < q∗S).

Proofs are in the Appendix.

The condition G(v) < 0.5 ensures that the CBDC does not increase the market share of

the small bank so much that it fully eliminates the large bank’s convenience value advantage

in its deposits. The small bank still needs to compete by offering a higher deposit interest

rate than the large bank.

Further intuition of the equilibrium may be gained by considering an example. Suppose

that G(δ) = δ/∆, where δ ∈ [0,∆] for a sufficiently large ∆. Then G′(·) = 1/∆. The two

first-order conditions reduce to

f − rL
∆

= 1− rS − rL + v

∆
+B, (17)

f − rS
∆

=
rS − rL + v

∆
+B, (18)
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where

B ≡
1
A∆
αLαS(f − rL)(f − rS)

X + αL(1− q∗L) + αS(1− q∗S)
> 0. (19)

As the total reserve X becomes large, B becomes close to zero. So the equilibrium deposit

interest rates of the two banks become approximately rL ≈ f− 2
3
∆+ 1

3
v and rS ≈ f− 1

3
∆− 1

3
v.

This shows directly how an increase in convenience reduces the spread between deposit rates.

Constrained equilibrium. The second case of the equilibrium is if the CBDC interest

rate s becomes binding for the large bank. Recall the tie-breaking rule that at rL = s,

depositors use the large bank.

The small bank’s profit function and first-order condition are as before:

0 =
dΠS

drS
= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s+ v)−G(rS − s+ v)]

− 1

A
αLαS(f − s)(f − rS)G′(rS − s+ v). (20)

By contrast, the large bank’s first order condition takes an inequality because the con-

jectured optimal solution is at the left corner:

0 >
dΠL

drL

∣∣∣
rL↓s

= [X + αL(1− q∗L) + αS(1− q∗S)] · [(f − s)G′(rS − s+ v)− 1 +G(rS − s+ v)]

− 1

A
αSαL(f − s)(f − rS)G′(rS − s+ v). (21)

Proposition 2. Suppose that the profit function Πj is quasi-concave in rj, j ∈ {L, S}.
Suppose that v < v̄ for some v̄ that may depend on f and s. Let rS solve equation (20). If,

at rS, equation (21) also holds, then it is a constrained equilibrium that the large bank sets s

and the small bank sets rS as their deposit interest rates. In this equilibrium:

1. The large bank sets a lower deposit interest rate (s < rS) and has a larger market share

(αL > αS) than the small bank.

2. The large bank uses a looser lending standard than the small bank does (q∗L < q∗S).

Like Proposition 1, the condition that v cannot be too high guarantees that the small

bank still wishes to compete by offering a higher deposit interest rate.

Parlour, Rajan, and Walden (2021) also analyze asymmetries in the banking sector and

their consequences. In their model, a bank that is a net payer incurs an additional settlement

cost and hence reduces lending, compared to net-receiving bank. In this sense, the net payer
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bank in their model looks like the small bank in ours. Despite similar predictions on lending,

the two models are driven by different mechanisms. In our model, there is no exogenous

cost associated with interbank settlement; rather, the main advantage of the large bank in

lending is a higher likelihood that a lent dollar stays with the large bank and earns interest

on reserves from the central bank. Moreover, the size of the large bank’s advantage depends

on the interest rate paid on reserves and the CBDC design, including its interest rate and

convenience value, as we see in the next section.

Using confidential FedWire transaction data, Li and Li (2021) calculate the volatility of

daily net payments as a fraction of daily gross payments for various banks. They find that

banks with higher payment volatility pay a higher deposit interest rate and have lower loan

volume growth, controlling for a set of observables. While our model does not have payment

volatility, our predictions are consistent with the negative cross-sectional correlation they

compute between the deposit interest rate and lending.

4 Impact of CBDC Interest Rate and Convenience Value

In this section, we begin to discuss the consequences of varying the CBDC interest rate s

and convenience value v. We start off by looking at the implications of varying each variable

in isolation, holding the other constant. The results are characterized in Propositions 3 and

4.

4.1 Impact of CBDC interest rate s

When the federal reserve introduced the overnight reverse repo program (ON RRP) as a

temporary facility to support its IOR policy, it began by testing the facility by varying the

ONRRP rate between 1 basis point and 10 basis points, while holding the IOR rate fixed at

25 basis points. Here we examine how market outcomes change as s varies from a rate of 0

to f , while holding f fixed.

We focus on the case where, given a fixed value of v, f is sufficiently low that the con-

strained equilibrium applies. This case is most relevant to the current economic environment

in the United States. (In the unconstrained equilibrium, market outcomes are invariant to

the CBDC interest rate s by definition.)

Before a formal statement of comparative statics, it is useful to illustrate the impact of

CBDC interest rate s in an example. The top row of Figure 1 plots the behavior in the

deposit markets as the CBDC interest rate rises from 0 to f = 2%. The charts are computed
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numerically using a uniform distribution for G and a zero CBDC convenience value (v = 0).

As we see in the top left plot, raising the CBDC interest rate increases the deposit interest

rates of both banks as well as the weighted average deposit interest rates. The top right

plot shows the corresponding changes in deposit market shares αj, j = L, S, which are easily

computed from (5) and (6). Since the large bank’s deposit rate rises faster than the small

bank’s, the large bank gains market share from the small bank. Intuitively, the small bank

competes with the large bank primarily by offering a higher deposit interest rate. As s

increases, the maximum spread f − s shrinks, limiting the small bank’s ability to compete

with its interest rate choice. Once the deposit rates are equal at f , the large bank obtains

the entire market share of depositors, given the higher convenience value of its deposits.

The bottom row of Figure 1 illustrates the impact raising the CBDC interest rate has on

the lending market. Raising the CBDC interest rate changes the incentives to make loans

via the expected profit on the interest rate spread, αj(f − rj). Because, as shown above,

both αS and f − rS decrease in s, so does αS(f − rS). Thus, the small bank’s loan quality

threshold, q∗S = 1+f−αS(f−rS)
A

, increases in s, and its loan volume, αS(1− q∗S), decreases in s.

In this example, the large bank’s loan quality threshold, q∗L = 1+f−αL(f−rL)
A

, increases in s,

and its loan volume αL(1−q∗L), also increases due to its larger market share. In this example,

the total loan volume declines in s.

The following proposition characterizes the impact of CBDC interest rate s on the deposit

and lending markets in more general cases.

Proposition 3. Suppose that G′′(δ) < G′(δ)/f for any δ ∈ [0, f − s + v]. Then, for a

sufficiently large X, increasing the CBDC interest rate in a constrained equilibrium has the

following impact on the deposit and lending markets:

As s increases

Large Small

Deposit interest rates rL and rS ↑ ↑
Deposit market shares αL and αS ↑ ↓
Weighted average deposit interest rate ↑

Loan quality thresholds q∗L and q∗S ↑ ↑
Loan volume αL(1−Q(q∗L)) and αS(1−Q(q∗S)) unclear ↓
Total loan volume, i.e., total deposit created ↓ if G′′ ≤ 0

Most of the numerical results illustrated in Figure 1 turn out to be analytically proven

in Proposition 3 under some conditions. The only theoretically ambiguous result is that the
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Figure 1: Impact of CBDC interest rate on deposit and lending markets. Parameters:
G(δ) = δ/0.035, A = 1.5, X = 10, f = 0.02, v = 0.

large bank’s loan quality threshold may go up or down in s. The condition that G′′(·) is

not too large puts a bound on the mass of agents who value large bank’s deposits highly,

and ensures the small bank will compete to win additional depositors when s rises by raising

its deposit interest rate. That is, the condition on G′′(·) implies that drS/ds > 0. Recall

that the main advantage of the large bank in the lending market is the spillover from the

deposit market, that is, lent money stays with the large bank with a higher probability.

The condition that the total deposit X is sufficiently large guarantees that the total profits

earned from interest rate spread are large enough and thus heterogeneous enough between

the two banks.
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4.2 Impact of CBDC convenient value v

A convenient CBDC reduces the large bank’s convenience advantage and hence has an impact

even if its interest rate is zero. We illustrate the impact of a convenient CBDC by considering

this polar case in Figure 2. The top row shows the outcomes in the deposit market. As v

rises, the inconvenience disadvantage of the small bank shrinks. As long as the large bank’s

deposit interest rate remains at the floor rate, the small bank can afford to lower its interest

rate and still capture a growing market share. Once v get large enough, the large bank

responds by raising its interest rate; however, the small bank can still afford to continue

lowering its deposit interest rate for the same reason that the convenience gap between

the two banks continues to shrink. Throughout this process the large bank loses market

share and the small bank gains market share, albeit at a slower rate once the large bank is

no longer constrained. The overall impact of increasing the CBDC convenience value is a

“convergence” of the two banks in terms of deposit interest rates and market shares. Note

that in Propositions 1 and 2, as long as v is not too high, we have rS > rL.

One interesting implication is that a modest CBDC convenience value is enough to fully

level the playing field. Under the uniform distribution of large-bank preference δ, when v

rises to the point v = ∆/2, depositors with δ > ∆/2 strictly prefer the large bank, and

depositors with δ < ∆/2 strictly prefers the small bank. That is, deposit market shares

become equal. So do the deposit interest rates, loan quality thresholds, and loan volume.

Another interesting observation is that the CBDC convenience value has a nuanced im-

pact on the transmission of monetary policy. In a constrained equilibrium, a higher v results

in a lower weighted average deposit interest rate when the large bank’s deposit interest rate

is at the lower bound, that is, a convenient CBDC weakens the transmission of monetary

policy to the deposit market through IOR. Once the economy transitions to an unconstrained

equilibrium with a sufficiently high v, however, a higher CBDC convenience value increases

the average deposit interest rate, speeding up the transition of monetary policy.

The bottom row of Figure 2 shows the outcomes in the lending market. Because the two

deposit interest rates and the deposit market shares get closer to each other as v rises, it

is unsurprising that the loan quality thresholds and loan volume of the two banks are also

getting closer to each other. In this example, the total loan volume is almost invariant to v,

and the most salient effect is the reallocation of loans from the large bank to the small one.

Figure 3 below further exploits the impact of CBDC convenience value on loan volume,

using a different parametrization of f = 3% and s = 1.25%. These parameters lead to only

constrained equilibrium, with rL = s. In this example, the total lending volume (left axis) is
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Figure 2: Impact of CBDC convenience value on deposit and lending markets. Parameters:
G(δ) = δ/0.035, A = 1.5, X = 10, f = 0.02, s = 0.

first decreasing in v and then increasing in v. The magnitude of the axes suggests that the

more salient action is, again, the shift of lending from the large bank to the small one.

The next proposition summarizes the comparative statics with respect to v.

Proposition 4. Suppose that G satisfies −G′(δ)/f < G′′(δ) < G′(δ)/f for any δ ∈ [0, f −
s+ v]. For a sufficiently large X, the impact of increasing v is given in the following table:
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Figure 3: CBDC convenience value and loan volume. Total loan volume in on left axis.
Loan volume of the two banks are on right axis. Parameters: G(δ) = δ/0.035, A = 1.5, X =
10, f = 0.03, s = 0.0125.

As v increases Constrained Unconstrained

Large Small Large Small

Deposit interest rates rL and rS Flat(=s) ↓ ↑ ↓
Deposit market shares αL and αS ↓ ↑ ↓ ↑
Weighted average deposit interest rate ↓ if G′′ ≤ 0 ↑ if G′′ ≥ 0

Loan quality thresholds q∗L and q∗S ↑ ↓ ↑ ↓
Loan volume αL(1− q∗L) and αS(1− q∗S) ↓ ↑ ↓ ↑
Total loan volume, i.e., total deposit created unclear ↓ if G′′ ≥ 0

As before, most of the comparative statics illustrated in Figure 2 are proven analytically

in Proposition 4 under some conditions. Here, the sufficient condition requires that G(·)
cannot be too convex or too concave. The intuition is that as long as there is not too much

mass of agents with very high or low large-bank convenience values, both banks would prefer

competing with each other to specializing in serving distinct subsets of the population.

The impact on the weighted average interest rate, αSrS + αLrL, is nuanced. An increase

in v shifts market share to the small bank and reduces the small bank’s deposit interest

rate, but the small bank has a higher deposit interest rate to start with, so the overall effect

can be ambiguous. In the constrained equilibrium, a concave G means that relatively more

depositors have a weak (but still positive) preference for large bank’s deposits, so a higher

v quickly eliminates the large bank’s advantage. As a result, the small bank can afford to
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reduce its deposit interest rate quickly, leading to a lower weighted average αSrS + αLrL.

In the unconstrained equilibrium, rL increases in v. A convex G means that relative more

depositors have a strong (but still positive) preference for large bank’s deposits, so the large

bank raises rL aggressively compared to the reduction in rS, leading to a higher αSrS+αLrL.

Finally, total loan volume decreases in v in the unconstrained equilibrium if G is weakly

convex. Intuitively, the weighted average deposit interest rate increases in v, so the IOR-

deposit interest rate spread is compressed, which discourages lending. But in the constrained

equilibrium, the impact of v on total lending can be negative or positive, as shown in Figure

3.

5 The Trade-off Between Interest and Convenience

Central banks must evaluate how the introduction of the CBDC might affect various stake-

holders. In our model, there are two groups of stakeholders: households and banks. House-

holds in the model acts as entrepreneurs and depositors. Because we have assumed that

the banks take all of the surplus in the loan market, household welfare in the model is only

about depositor welfare, including the interest income received on deposits and the payment

convenience value of deposits. The banks, collectively, make profits by taking the profits in

the lending market and paying depositors interest rate that is below the interest on reserves.

We start this analysis by studying the impact of a higher interest rate s and a higher

convenience value v on depositors’ welfare. Their utility, per dollar of deposit, is:

W = αSrS + αLrL + vG(rS − rL + v) +

∫ ∞
δ=rS−rL+v

δdG(δ). (22)

Because the existing stock of deposit is X and the newly created deposit is α∗L(1 − q∗L) +

αS(1 − q∗S), the total welfare of depositors would be W scaled by the total deposits. For a

sufficiently large X, the welfare received from the stock of existing deposits dominates that

from the newly created deposits. Therefore, performing comparative statics with respect to

W is almost without loss of generality.

The following result shows that, unsurprisingly, depositors in the economy prefer a higher

CBDC interest rate and a higher CBDC convenience value.

Proposition 5. For a sufficiently large X:

1. W increases in s in the constrained equilibrium if −G′(δ)/f < G′′(δ) < G′(δ)/f for

any δ ∈ [0, f − s+ v];
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2. W increases in v in the constrained equilibrium if −G′(δ)/f < G′′(δ) < G′(δ)/f for

any δ ∈ [0, f − s+ v]; and

3. W increases in v in the unconstrained equilibrium if 0 ≤ G′′(δ) < G′(δ)/f for any

δ ∈ [0, f − s+ v].

The conditions on primitive model parameters such as G mirror those in Propositions 3

and 4. These conditions primarily ensure that the two banks want to compete with each

other for depositors. The implications for depositor welfare largely follows the weighted

average interest rate.

An intuitive way to illustrate the depositor welfare result—and the trade-off between the

CBDC interest rate and convenience value—is to plot the indifference curves of depositors.

Figure 4, shows depositor indifference curves assuming a uniform distribution for G. Green

dots represents the unconstrained equilibrium (rL > s) and blue dots represents the con-

strained one (rL = s). Recall that the equilibrium we characterized have rS > rL, guaranteed

by the condition that v is not too high.8 The CBDC interest rate has no impact on depositor

welfare in the unconstrained equilibrium, hence the indifference curves are flat in this region.

In the unconstrained equilibrium, the indifference curves generally have a downward slope.

Consistent with Proposition 5, depositor welfare increases in the northeast direction.

Next, we study the impact of a higher CBDC interest rate s and a higher convenience

value v on bank profits. Each bank’s profit comes from two sources: loans and interest-rate

spread. They sum up to

ΠL = αL

[
A

2
(1− q∗2L )− (1 + f)(1− q∗L)

]
+ [X + αL(1− q∗L) + αS(1− q∗S)]αL(f − rL),

(23)

ΠS = αS

[
A

2
(1− q∗2S )− (1 + f)(1− q∗S)

]
+ [X + αL(1− q∗L) + αS(1− q∗S)]αS(f − rS).

(24)

In both expressions, the term αj[
A
2
(1− q∗2j )− (1 + f)(1− q∗j )] is the profit on loans, and the

other term is the profit from the interest-rate spread.

The following proposition summarizes how bank profits vary in s and v.

8Numerically, if a (s, v) pair produces a solution rL ≤ rS in the equations of Proposition 1 or Proposition
2, we do not plot that point.
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Figure 4: Interest rate-convenience indifference curves for depositors. Parameters: G(δ) =
δ/0.035, A = 1.5, X = 10, f = 0.02.

Proposition 6. Suppose that −G′(δ)/f < G′′(δ) < G′(δ)/f for any δ ∈ [0, f −s+v]. Then,

for a sufficiently large X, increasing the CBDC interest rate or convenience value has the

following impact on bank profits:

As s increases As v increases

Constrained Constrained Unconstrained

Total profit of both banks ↓ ↑ if G′′ ≤ 0 ↓ if G′′ ≥ 0

Small bank’s profit ΠS ↓ ↑ ↑
Large bank’s profit ΠL ↓ ↓ ↓

Moreover, the small bank’s total profit is lower than the large bank’s, i.e., ΠS < ΠL.

Proposition 6 shows that both banks prefer a lower CBDC interest rate, but they differ

in their preference regarding CBDC convenience value. The small bank’s profit increases in

v, whereas the large bank’s profit decreases in v. Moreover, we are focusing on the situation

with large reserves X, which means that the impact on interest rate spread is the dominant

determinant of bank profits. If G is concave, total bank profit increases in CBDC convenience

value v in the constrained equilibrium. This seemingly counter-intuitive result maps directly
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to the earlier result in Proposition 4 that the weighted average interest rate decreases in v

in the constrained equilibrium under the same condition.

Figure 5 illustrates the indifference curves of the banking sector over (s, v) pairs that can

sustain an equilibrium. For our purposes, it is reasonable to think about the banking sector

as a whole because the higher total profit could be shared between the large bank and the

small bank through other arrangements. As mentioned, an intriguing result is that the total

profit of the two banks increases in v in the constrained equilibrium, whereas it declines in v

in the unconstrained equilibrium. Therefore, in the constrained region, bank profit increase

in the northwest direction. Moreover, while the more profitable bank (the large one) suffers

from a higher v, the less profitable bank (the small one) benefits from it. Hence, financial

stability, as measured by profit level of the least profitable bank, is enhanced.
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Figure 5: The interest rate-convenience trade-off for banks. Each curve represents a level
of total profit of both banks. Parameters: G(δ) = δ/0.035, A = 1.5, X = 10, f = 0.02.

An immediate implication of Proposition 5 and Proposition 6 is that under the general

conditions of the Propositions, and focusing on the case whereG is weakly concave, increasing

v in the constrained equilibrium is a Pareto improvement for depositors and banks—if we

view all depositors collectively as one party and the two banks collectively as the other.

Pareto improvements continue up to the boundary of the constrained equilibrium. Figure 6
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graphically illustrates the locations of Pareto-dominated pairs of (s, v) for uniform G; any

point below the orange boundary is dominated by a point on the boundary.
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Figure 6: The interest rate-convenience value trade-off for CBDC design. Depositors’ indif-
ference curves in red increase in northeast direction (↗), and banks’ iso-profit lines increase
in northwest (↖). Any point below the boundary (the orange line) is dominated by a point
on the boundary for banks and households. Indifference curves of depositors are in red. Indif-
ference curves of banks are in blue. Parameters: G(δ) = δ/0.035, A = 1.5, X = 10, f = 0.02.

Above the orange boundary in Figure 6 there are two regions to consider. At (s, v) pairs

above and to the left of the orange boundary, but below the gray line, the equilibrium is

unconstrained and the surpluses of banks and depositors move in opposite directions. Hence,

there is no Pareto ranking of these points. At (s, v) pairs above the upper envelope created

by the orange boundary and the gray line, we are not able to characterize the equilibrium,

although we can show that there does not exist a pure strategy equilibrium.9

Exactly which point in the design space the central bank should pick will depend on

its broader monetary policy and financial stability objectives. We illustrate the trade-offs

9We know that rS < rL cannot be an equilibrium as the small bank would have zero market share. So any
pure strategy equilibrium must have rL = rS . If rL = rL < f , then for a sufficiently large CBDC convenience
value v, a significant fraction of households would choose a bank based only on the deposit interest rates,
which encourages the two banks to beat each other’s interest rate by a tiny amount. If rL = rL = f , then
the banks make zero interest rate spread, and the large bank would deviate by reducing the deposit interest
rate by a tiny amount to make a positive profit on a fraction 1−G(v) of depositors.
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by considering movements along the undominated points on the design boundary shown

in Figure 6. Figure 7 plots five possible central bank objectives as functions of s, along

the design boundary. That is, the v used for every s is taken from the boundary of the

constrained equilibrium. As shown in the left plot, a central bank that wishes to maximize

monetary policy pass-through or depositor welfare would set s = f and v = 0. In contrast,

a central bank that wishes to maximize total commercial bank profit would set, in this

numerical example, s = 0 and v ≈ 0.01. While setting s = f to maximize monetary policy

pass-through barely needs a model, setting a nonzero v to maximize total bank profit does

require a modeling framework like ours.

Other central bank objectives lead to subtler and possibly more interesting choices, as

shown in the right plot of Figure 7. The objective of leveling playing field can be interpreted

as maximizing the small bank’s market share, and it has an interior solution. In this example

with G(δ) = δ/0.035 and f = 2%, the optimal design has s ≈ 0.0025 and v ≈ 0.0175, which

corresponds to the “tip” of the boundary. This CBDC pays a small interest rate of 25 bps

and delivers a fairly high convenience value that is equivalent to 1.75% annual interest rate.

The same design also delivers the highest profit to the small bank and, to the extent that

the small bank is the “weakest link” of the economy, it can be interpreted as maximizing

financial stability.
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Figure 7: Central bank objectives along the CBDC design boundary. The five outcomes are
plotted as functions of s, using the value of v on the boundary of the constrained equilibrium.
Parameters: G(δ) = δ/0.035, A = 1.5, X = 10, f = 0.02.

27



6 Concluding Remarks

Our objective in this study is to understand how CBDC designs impact deposit and lending

markets. Our institutional setup is most suited for the current environment in the United

States, where there are large quantities of excess reserves and an administered rate, the in-

terest on reserves, that determines banks’ opportunity cost of lending. We construct a model

that describes how banks set deposit interest rates and decide on the project quality threshold

for lending. In this regard we believe it is crucial to consider multiple, heterogeneous banks.

Heterogeneous banks are required to capture differences in depositor preferences for banks

of different sizes, where size is proxy for an array of preferred services and economies of scale

provided by larger banks. It turns out that this modelling feature is key to understanding

the impact of CBDCs on the competition and composition of the banking sector.

A CBDC could be designed to carry an interest rate and a convenience value, such as

payment functionalities. These design features fit the CBDC proposals or proofs-of-concept

in various countries, including the Banking for All Act that was introduced into the U.S.

Senate in March of 2020. Here we identified an interesting trade-off. A higher interest rate

on the CBDC enhances the pass-through of monetary policy to deposit interest rates, but it

shrinks the market share of small banks. By contrast, a higher CBDC convenience value levels

the playing field for competition between banks, but in doing so can weaken the transmission

of monetary policy through the interest rate on reserves. Somewhat surprisingly, a convenient

CBDC can strengthen the transmission of monetary policy if the CBDC convenience value

is sufficiently high. Building on this analysis, we consider a two-dimensional design space in

which we are able to identify the direction of improvement of CBDC design configurations

and hence, the set of dominated designs.

An interesting aspect of our results is that the provision of CBDC impacts equilibrium

outcomes even though the currency is not held in equilibrium. This is also true in Chiu

et al. (2019) and Garratt and Lee (2020), where the option to use CBDC changes the

equilibrium outcome even it is not exercised. An exception is Keister and Sanches (2020),

where the CBDC has specific liquidity benefits that leads to its use. The idea that a central

bank introduces a program to influence market rates by increasing the bargaining power of

lenders is not new. Early descriptions of the overnight reverse repurchase agreement facility

that the Federal Reserve Bank of New York began testing in September 2013 indicated that

“the option to invest in ON RRPs [Overnight Reverse Repurchase Agreement Facility] also

would provide bargaining power to investors in their negotiations with borrowers in money

markets, so even if actual ON RRP take-up is not very large, such a facility would help
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provide a floor on short-term interest rates...” (Frost et al. 2015, p.7).

The results of our paper could be extended in multiple directions. One possible extension

is to add short-term investment vehicles such as money market mutual funds and repurchase

agreements that typically pay higher interest rates than bank deposits but cannot be easily

used for processing payments. If the CBDC pays a sufficiently high interest rate, it is

possible that money would flow out of these short-term investment vehicles into the CBDC,

i.e., investors would earn returns from the Fed rather than short-term Treasury Bills. This

additional channel is unlikely to affect lending because money market investors do not make

loans anyway. Another possibility is to consider heterogeneous CBDC interest rates paid

to banks of different sizes, which adds yet another degree of freedom in the central bank’s

toolkit. In particular, the central bank could use heterogenous CBDC interest rates to fine-

tune the competitive positions of large and small banks. These extensions are left for future

research.

Appendix: Proofs

Proof of Proposition 1

Taking the difference of the two FOCs, we have (rS−rL)G′(rS−rL+v) = 1−2G(rS−rL+v). If

rS ≤ rL, then the left-hand side is non-positive but the right-hand side is 1−2G(rS−rL+v) ≥
1 − 2G(v) > 0, a contradiction. So rS > rL. This implies that G(rS − rL + v) < 0.5 in

equilibrium, i.e., αL > αS.

Let

B ≡
1
A
αLαS(f − rL)(f − rS)G′(rS − rL + v)

X + αL(1− q∗L) + αS(1− q∗S)
> 0. (25)

The two FOCs are separately written as

(f − rL)G′(rS − rL + v) = αL +B, (26)

(f − rS)G′(rS − rL + v) = αS +B. (27)

So both rL and rS are below f . Take the ratio:

f − rL
f − rS

=
αL +B

αS +B
> 1 >

αS
αL
. (28)

Hence, (f − rL)αL > (f − rS)αS, and q∗L < q∗S.
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Proof of Proposition 2

By the assumption that the function ΠS is well behaved to admit a unique global maximum,

the derivative dΠS/drS should be strictly decreasing in rS. To show that rS > s, it is

sufficient that the right-hand side of (20) is positive at rS = s, i.e.,

[X+αL(1−q∗L)+αS(1−q∗S)][(f−s)G′(v)−G(v)]− 1

A
G(v)(1−G(v))(f−s)2G′(v) > 0. (29)

Clearly, the above equation holds at v = 0. By continuity, it also holds if v is below a cutoff,

say v̄. If v ∈ [0, v̄), we have rS > s = rL.

Let B ≡
1
A
αLαS(f−s)(f−rS)G′(rS−s+v)

X+αL(1−q∗L)+αS(1−q∗S)
> 0. The two FOCs are separately written as

(f − s)G′(rS − s+ v) < αL +B, (30)

(f − rS)G′(rS − s+ v) = αS +B. (31)

Since B > 0, G′(rS − s + v) > 0 , we know rS < f . Take the difference, we have 0 <

(rS − s)G′(rS − s+ v) < αL− αS. That is, αL > αS. It follows that (f − s)αL > (f − rS)αS

and q∗L < q∗S.

Proof of Proposition 3

Since the large bank is constrained by the lower bound, its deposit rate rises in step with the

CBDC interest rate s. Meanwhile, the small bank adjusts its equilibrium deposit interest

rate at a slower pace, continuing to balance its ability to maintain depositors while its profit

margin shrinks. To see how rS is affected by s, let ΓS = dΠS/drS, ΓL = dΠL/drL, and start

with the expression

0 =
∂ΓS
∂s

+
∂ΓS
∂rS

drS
ds

. (32)

Because ∂ΓS/∂rS < 0, a sufficient condition for drS/ds > 0 is ∂ΓS/∂s > 0. Writing total

loan volume as V = αL(1− q∗L) + αS(1− q∗S), we have

∂ΓS
∂s

=
(
−αL

αL
A

)
[(f − rS)G′(rS − s+ v)−G(rS − s+ v)]

+ (X + V )[−(f − rS)G′′(rS − s+ v) +G′(rS − s+ v)]

+
1

A
(f − rS)

∂

∂s
[αLαS(f − s)G′(rS − s+ v)]. (33)
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On any closed region of f and s, the first and third term are bounded, by G being twice-

differentiable. So if X is sufficiently large, the second term dominates. Under the assumption

that G′′(δ) < G′(δ)/f for δ ∈ [0, f−s+v], we have −(f−rS)G′′(rS−s+v)+G′(rS−s+v) > 0,

so a sufficiently large X would imply that ∂ΓS/∂s > 0, and so is drS/ds.

Next, we show that rS − s decreases in s. We have

∂ΓS
∂rS

= X
∂

∂rS
[(f − rS)G′(rS − s+ v)−G(rS − s+ v)]

+
∂Γs
∂rS
{[αL(1− q∗L) + αS(1− q∗S)] · [(f − rS)G′(rS − s+ v)−G(rS − s+ v)]}

− ∂Γs
∂rS

[
1

A
αLαS(f − s)(f − rS)G′(rS − s+ v)

]
. (34)

The second and the third term are bounded on any closed region of rS. The first term equals

X[(f − rS)G′′(rS − s+ v)− 2G(rS − s+ v)]. Hence,

drS
ds

= − ∂ΓS/∂s

∂ΓS/∂rS
→ (f − rS)G′′(rS − s+ v)−G′(rS − s+ v)

(f − rS)G′′(rS − s+ v)− 2G′(rS − s+ v)
, (35)

asX becomes sufficiently large. We also have d(rS−s)/ds = drS/ds−1 = G′(rS−s+v)
(f−rS)G′′(rS−s+v)−2G′(rS−s+v)

,

whose denomintor is negative under the condition that G′′(δ) < G′(δ)/f Hence, d(rS −
s)/ds < 0. This implies that αS = G(rS− s+ v) is decreasing in s, and αL is increasing in s.

The weighted average interest rate is αSrS + αLs. Its derivative with respect to s is

d(αSrS + αLs)

ds
=
dαS
ds

rS+αS
drS
ds

+
dαL
ds

s+αL = [(rS−s)G′(rS−s+v)+αS]

(
drS
ds
− 1

)
+1.

(36)

By the calculation earlier, as X becomes large, drS
ds
− 1 → G′(rS−s)

(f−rS)G′′(rS−s+v)−2G′(rS−s+v)
>

− f
f+rS

, where the inequality follows from G′′(δ) < G′(δ)/f for any δ ∈ [0, f − s+ v]. So, as

X becomes large,

d(αSrS + αLs)

ds
> 1− f

f + rS
[(rS − s)G′(rS − s+ v) + αS] ≥ 1− f

f + rS
> 0, (37)

where the second last inequality follows from the large bank’s FOC that, limX→∞(f −
s)G′(rS − s+ v) +G(rS − s+ v) ≤ 1.

Now we turn to loan market outcomes. Since αS decreases in s and rS increases in

s, αS(f − rS) is decreasing in s and q∗S is increasing in s. The small bank’s loan volume,

αS(1− q∗S), is then decreasing in s.
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For the large bank’s loan quality q∗L, we have

dq∗L
ds

= − 1

A

[
G′(rS − s+ v)(1− drS

ds
)(f − s)− 1 +G(rS − s+ v)

]
. (38)

For the first term in the brackets, we know that G′(rS − s + v)(1 − drS
ds

)(f − s) < (f −
s)G′(rS − s+ v), since drS/ds > 0. Also, from the large bank’s optimality condition, as X is

sufficiently large, we know that (f − s)G′(rS − s+ v)− 1 +G(rS − s+ v) ≤ 0. That means

dq∗L/ds > 0 and q∗L is increasing in s. However, the impact of s on the large bank’s loan

volume αL(1− q∗L) is ambiguous.

The total loan volume is αL(1− q∗L) + αS(1− q∗S). Its derivative with respect to s is

1

A
[2αS(f − rS)− 2αL(f − s)]G′(rS − s+ v)

(
drS
ds
− 1

)
− 1

A
α2
L −

1

A
α2
S

drS
ds

. (39)

While the first term is positive, the last two terms are negative. It is, however, possible to

show that this derivative is negative if G′′(δ) ≤ 0 and X is sufficiently large. As X becomes

large, the two first-order conditions imply that

lim
X→∞

(f − s)G′(rS − s+ v)− (1−G(rS − s+ v))︸ ︷︷ ︸
αL

≤ 0,

lim
X→∞

(f − rS)G′(rS − s+ v)−G(rS − s+ v)︸ ︷︷ ︸
αS

= 0. (40)

Multiplying αL to the first equation and αS to the second equation, we have

lim
X→∞

αL(f − s)G′(rS − s+ v)− α2
L ≤ 0,

lim
X→∞

αS(f − rS)G′(rS − s+ v)− α2
S = 0. (41)

Plugging these in Equation (39), we have, as X becomes large,

lim
X→∞

d

ds
(αL(1− q∗L) + αS(1− q∗S)) ≤ 1

A
(2α2

L − 2α2
S)

(
1− drS

ds

)
− 1

A
α2
L −

1

A
α2
S

drS
ds

=
1

A

[(
1− 2

drS
ds

)
α2
L +

(
drS
ds
− 2

)
α2
S

]
, (42)

Because drS
ds

< 1, (drS
ds
− 2)α2

S < 0. If G′′(δ) ≤ 0 and X is sufficiently large, we know from

the expression of drS
ds

above that drS
ds
≥ 1

2
. That means (1− 2drS

ds
)α2

L ≤ 0 as well. So the total
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loan is decreasing in s in the limit. Because the limit is strictly negative, it is also negative

for finite but large enough X.

Proof of Proposition 4

First we consider the unconstrained equilibrium and then the constrained one.

The unconstrained equilibrium

We know that rL < rS < f , and αS <
1
2
< αL. Let ΓS = dΠS/drS, ΓL = dΠL/drL. To

calculate how rL and rS are affected by v, we take derivative of ΓL and ΓS at the equilibrium

values and obtain

0 =
∂ΓL
∂v

+
∂ΓL
∂rL

drL
dv

, (43)

0 =
∂ΓS
∂v

+
∂ΓS
∂rS

drS
dv

. (44)

The second-order condition implies that ∂Γj/∂rj < 0. When X is sufficiently large,

the term X[(f − rL)G′′(rS − rL + v) + G′(rS − rL + v)] dominates ∂ΓL

∂v
. And the term

X[(f−rS)G′′(rS−rL+v)−G′(rS−rL+v)] dominates ∂ΓS

∂v
. Since−G′(δ)/f < G′′(δ) < G′(δ)/f ,

(f − rL)G′′(rS − rL + v) +G′(rS − rL + v) is positive, so drL
dv

> 0. Also, (f − rS)G′′(rS − rL +

v)−G′(rS − rL + v) is negative, so drS
dv

< 0. So rL is increasing and rS is decreasing in v.

For deposit market share αS = G(rS − rL + v), we take the difference of the two FOCs,

and have

(rS − rL)G′(rS − rL + v) + 2G(rS − rL + v) = 1. (45)

Write y = rS − rL + v, and take derivative of the above equation with respect to v, then we

have

[3G′(y) + (rS − rL)G′′(y)]
dy

dv
−G′(y) = 0 (46)

Since −G′(δ)/f < G′′(δ) < G′(δ)/f , we know that 3G′(y)+(rS−rL)G′′(y) > 0, hence dy
dv
> 0.

So αS is increasing in v, and αL is decreasing in v.

The weighted average deposit interest rate is αSrS + αLrL = αS(rS − rL) + rL. Its
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derivative with respect to v is

d(αSrS + αLrL)

dv
=
dαS
dv

(rS − rL) + αS
d(rS − rL)

dv
+
drL
dv

(47)

>
dαS
dv

(rS − rL) +
1

2

d(rS − rL)

dv
+
drL
dv

=
dαS
dv︸︷︷︸
>0

(rS − rL) +
1

2

d(rL + rS)

dv
,

where the inequality follows from αS <
1
2

and rS − rL decreasing in v. As X becomes large,

d(rS + rL)

dv
→ (f − rL)G′′(y) +G′(y)

(f − rL)G′′(y) + 2G′(y)
− (f − rS)G′′(y)−G′(y)

(f − rS)G′′(y)− 2G′(y)

=
(rL + rS − 2f)G′′(y)G′(y)

[(f − rL)G′′(y) + 2G′(y)][(f − rS)G′′(y)− 2G′(y)]
. (48)

The denominator is negative as −G′(δ)/f < G′′(δ) < G′(δ)/f , and rL + rS − 2f < 0. So if

G′′(δ) ≥ 0, we have d(rL+rS)
dv

≥ 0, and hence αSrS + αLrL increases in v.

For loan quality thresholds, since αL is decreasing in v and rL is increasing in v, q∗L is

increasing in v. Since αS is increasing in v and rS is decreasing in v, q∗S decreasing in v.

For loan volumes, αL(1−q∗L) is decreasing in v, since αL is decreasing and q∗L is increasing.

Similarly, αS(1− q∗S) is increasing in v.

Total loan volume equals αL(1 − q∗L) + αS(1 − q∗S) = 1 − 1+f
A

+
α2
L(f−rL)+α2

S(f−rS)

A
. Its

derivative with respect to v is

1

A

{
[2αS(f − rS)− 2αL(f − rL)]

dαS
dv
− α2

L

drL
dv
− α2

S

drS
dv

}
. (49)

where 2αS(f − rS) − 2αL(f − rL) < 0, dαS

dv
> 0, drL

dv
> 0, and drS

dv
< 0. We know −α2

L
drL
dv
−

α2
S
drS
dv

< −α2
S
d(rL+rS)

dv
. If G′′(δ) ≥ 0, we know from above that d(rL+rS)

dv
≥ 0, so −α2

L
drL
dv
−

α2
S
drS
dv
≤ 0, and so Equation (49) is negative. If G′′(δ) < 0, however, the sign of the equation

is ambiguous.

The constrained equilibrium

To calculate how rS is affected by v, we take derivative of ΓS at the equilibrium values and

obtain

0 =
∂ΓS
∂v

+
∂ΓS
∂rS

drS
dv

. (50)
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When X is sufficiently large, the term X[(f − s)G′′(rS − s+ v)−G′(rS − s+ v)] dominates
∂ΓS

∂v
. Since −G′(δ)/f < G′′(δ) < G′(δ)/f , we know that ∂ΓS

∂v
< 0. The second-order condition

implies that ∂ΓS/∂rS < 0. Hence drS
dv

< 0, i.e., rS is decreasing in v.

For deposit market share αS = G(rS − s + v), when X becomes sufficiently large, we

have

drS
dv

= −∂ΓS
∂v

/
∂ΓS
∂rS
→ − (f − rS)G′′(rS − s+ v)−G′(rS − s+ v)

(f − rS)G′′(rS − s+ v)− 2G′(rS − s+ v)
. (51)

Hence,

d(rS − s+ v)

dv
=
drS
dv

+ 1 =
−G′(rS − s+ v)

(f − rS)G′′(rS − s+ v)− 2G′(rs − s+ v)
, (52)

where the numerator and the denominator are both negative. So d(rS−s+v)
dv

> 0, i.e., αS is

increasing in v and αL is decreasing in v.

For weighted average deposit interest rate, take derivative with respect to v:

d

dv
(αLs+ αSrS) =

dαS
dv

(rS − s) + αS
drS
dv

=
(f − s)drS/dv + rS − s

f − rS
αS (53)

where the second equality uses dαS/dv → αS

(f−rS)
(drS/dv + 1), implied by the small bank’s

FOC when X is sufficiently large. The derivative is negative if and only if (f−s)drS/dv+rS−
s < 0. Write y = rS−rL+v. Plugging in drS

dv
= − (f−rS)G′′(y)−G′(y)

(f−rS)G′′(y)−2G′(y)
, the derivative is negative if

and only if G′′(rS−s+v) ≤ f+s−2rS
(f−rS)2

G′(rS−s+v). We now show that f+s−2rS ≥ 0. We know

that rS is decreasing in v. So we only need to show, given s, f +s−2rS ≥ 0 when v = 0. Let

l(x) = (f−x)G′(x−s)−G(x−s), then l(rS) = 0, and dl(x)
dx

= (f−x)G′′(x−s)−2G′(x−s) < 0

under the condition that −G′(δ)/f < G′′(δ) < G′(δ)/f for any δ ∈ [0, f − s + v]. To show

that f + s − 2rS ≥ 0, we only need l(1
2
(f + s)) ≤ 0. That is, f−s

2
G′(f−s

2
) − G(f−s

2
) ≤ 0.

This is true because if we let m(x) = xG′(x) − G(x), then dm(x)
dx

= xG′′(x) ≤ 0. And since

m(0) = 0, we have m(f−s
2

) ≤ 0.

For loan quality thresholds and individual banks’ loan volumes, the same proofs for the

unconstrained equilibrium apply and are omitted.

Total loan volume equals αL(1−q∗L)+αS(1−q∗S) = 1− 1 + f

A
+
α2
L(f − s) + α2

S(f − rS)

A
.
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Its derivative with respect to v is

1

A

{
[2αS(f − rS)− 2αL(f − s)]dαS

dv
− α2

S

drS
dv

}
. (54)

Its sign is ambiguous because while the first term in the brackets is negative, the second

term is positive.

Proof of Proposition 5

We know from Proposition 3 that weighted average deposit interest rate (αSrS + αLs) is

increasing in s. To show that welfare W is increasing in s, we only need to show that

vG(rS − s+ v) +
∫∞
δ=rS−rL+v

δdG(δ) is increasing in s. Take its derivative with respect to s,

we have

vG′(rS − s+ v)
d(rS − s)

ds
− (rS − s+ v)G′(rS − s+ v)

d(rS − s)
ds

= (rS − s)G′(rS − s+ v)(1− drS
ds

) (55)

For a sufficiently large X, and for G that satisfies −G′(δ)/f < G′′(δ) < G′(δ)/f for any

δ ∈ [0, f − s+ v], we have 1− drS/ds > 0. Since rS − s > 0, the derivative is positive.

In the constrained equilibrium, write y = rS − s+ v. Take derivative of W with respect

to v:

dW

dv
=
d(αSy)

dv
+

d

dv

∫ ∞
δ=rS−rL+v

δdG(δ)

= G′(y)
dy

dv
y + αS

dy

dv
− yG′dy

dv
= αS

dy

dv
. (56)

From Proposition 4 we know that dy/dv > 0. So dW/dv > 0, and welfare W is increasing

in v.

In the unconstrained equilibrium, write y = rS − rL + v. Take derivative of W with

respect to v:

dW

dv
=
d(αSrS + αLrL)

dv
+G(y) + vG′(y)

dy

dv
− yG′(y)

dy

dv
. (57)

Since αS <
1
2
< αL, and d(rS − rL)/dv < 0 (because rS is decreasing in v and rL is increas-
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ing), we have

d(αSrS + αLrL)

dv
=
dαS
dv

(rS − rL) + αS
d(rS − rL)

dv
+
drL
dv

>
dαS
dv

(rS − rL) +
1

2

d(rL + rS)

dv
≥ dαS

dv
(rS − rL). (58)

The last inequality holds because we know from Proposition 4 that d(rL + rS)/dv ≥ 0 as X

is sufficiently large and 0 ≤ G′′(δ) < G′(δ)/f for any δ ∈ [0, f − s+ v]. That means

dW

dv
≥ dαS

dv
(rS − rL) + (v − y)G′(y)

dy

dv
+G(y)

= G′(y)
dy

dv
(rS − rL + v − y) +G(y) = G(y) > 0. (59)

Proof of Proposition 6

We proved that αS(f − rS) and αL(f − s) are both decreasing in s in the constrained

equilibrium in Proposition 3. The two banks’ profits ΠS and ΠL are dominated by XαS(f −
rS) and XαL(f − rL), respectively, if X is sufficiently large. So both banks’ profits are

decreasing in s, and so is the total profit.

To establish the comparative statics with respect to v, we start with the unconstrained

equilibrium and then consider the constrained one.

The unconstrained equilibrium

In Proposition 4, we proved that αL(f − rL) is decreasing in v, and αS(f − rS) is increas-

ing. When X is sufficiently large, this means large bank’s profit on interest rate spread is

decreasing, and the small bank’s is increasing in v. When X is sufficiently large, each bank’s

total profit is dominantly determined by profit on interest rate spread. So large bank’s total

profit is decreasing and small bank’s total profit is increasing in v .

Total profit of both banks is dominantly determined by X[αL(f − rL) + αS(f − rS)] =

X[f − αLrL − αSrS] when X is large. Therefore, the impact of v on total bank profit is

the opposite of its impact on weighted average deposit interest rate. The rest follows from

Propostion 4.

37



The constrained equilibrium

Same as the unconstrained case, large bank’s profit on interest rate spread and total profit

are decreasing, and small bank’s profit on interest rate spread and total profit are increasing

in v. The proof is omitted.

When X is sufficiently large, we know from Proposition 4 that the weighted average

interest rate is decreasing in v, so the total bank profit is increasing in v.

Finally, we show that ΠS < ΠL. In the unconstrained equilibrium, taking the difference

of the two FOCs, we have (rS − rL)G′(rS − rL + v) = 1 − 2G(rS − rL + v). So X does

not affect the spread rS − rL, and consequently αS and αL. Since we know αL > αS in

the unconstrained equilibrium, there exists a constant c such that αL − αS > c for any X.

Denote:

ML = αL

[
A

2
(1− q∗2L )− (1 + f)(1− q∗L)

]
+ [αL(1− q∗L) + αS(1− q∗S)]αL(f − rL) (60)

MS = αS

[
A

2
(1− q∗2S )− (1 + f)(1− q∗S)

]
+ [αL(1− q∗L) + αS(1− q∗S)]αS(f − rS) (61)

Then, take the difference of the two banks’ profits:

ΠL − ΠS = X[αL(f − rL)− αS(f − rS)] +ML −MS (62)

Further, let

B(X) ≡
1
A
αLαS(f − rL)(f − rS)G′(rS − rL + v)

X + αL(1− q∗L) + αS(1− q∗S)
> 0. (63)

Then from the FOCs of the two banks, we have αL(f − rS)−αS(f − rS) = (αL−αS)(1+B(X))
G′(rS−rL+v)

>
c

G′(rS−rL+v)
. As 0 < ML < A

2
+ f , 0 < MS < A

2
+ f , (that is, both are bounded), when

X > (A
2

+ f)G
′(rS−rL+v)

c
, we have ΠL − ΠS > 0.

In the constrained equilibrium, let l(x) = (f − x)G′(x − s + v) − G(x − s + v), then

we have dl(x)
dx

= (f − x)G′′(x − s + v) − 2G′(x − s + v) < 0 under the condition that

−G′(δ)/f < G′′(δ) < G′(δ)/f . We know from the small bank’s FOC that l(rS) = B(X),

where B(X) ≡
1
A
αLαS(f−s)(f−rS)G′(rS−rL+v)

X+αL(1−q∗L)+αS(1−q∗S)
> 0. That means, when B(X) decreases, rS

increases.

We know that rS > s for any given X. So when X = X1, there exists a constant c such

that rS − s > c. There must exist an X2, such that for any X > X2, B(X) < B(X1), and
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hence rS − s > c. Take the difference of the banks’ total profits:

ΠL − ΠS = X[αL(f − s)− αS(f − rS)] +ML −MS

> X[(αL − αS)(f − rS) + αLc]− (
A

2
+ f) (64)

> X
c

2
− (

A

2
+ f) (65)

So when X > max(X2, (A+ 2f)/c), we have ΠL − ΠS > 0.
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