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Benchmarks in Search Markets
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ABSTRACT

We characterize the role of benchmarks in price transparency of over-the-counter
markets. A benchmark can raise social surplus by increasing the volume of benefi-
cial trade, facilitating more efficient matching between dealers and customers, and
reducing search costs. Although the market transparency promoted by benchmarks
reduces dealers’ profit margins, dealers may nonetheless introduce a benchmark to
encourage greater market participation by investors. Low-cost dealers may also in-
troduce a benchmark to increase their market share relative to high-cost dealers. We
construct a revelation mechanism that maximizes welfare subject to search frictions,
and show conditions under which it coincides with announcing the benchmark.

AN ENORMOUS QUANTITY OF OVER-THE-COUNTER (OTC) trades are negotiated by
counterparties who rely on the observation of benchmark prices. In this paper
we explain how benchmarks affect pricing and trading behavior by reducing
market opacity, we characterize the welfare impact of benchmarks, and we
show how the incentives of regulators and dealers to support benchmarks
depend on market structure.

Trillions of dollars in loans are negotiated at a spread over LIBOR or EURI-
BOR, benchmark interbank borrowing rates. LIBOR is the London Interbank
Offered Rate. EURIBOR is the Euro Interbank Offered Rate. For U.S. dollar
LIBOR alone, the Market Participants Group (MPG) on Reference Rate Re-
form (2014) (chaired by one of the authors of this paper) reports that over
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3 trillion dollars in syndicated loans and over 1 trillion dollars in variable-rate
bonds are negotiated relative to LIBOR. The report of the Market Participants
Group lists many other fixed-income products that are negotiated at a spread
over the “interbank offered rates” known as LIBOR, EURIBOR, and TIBOR,
across five major currencies. As of the end of 2013, the Bank for Interna-
tional Settlements (2014) reports a total notional outstanding of interest rate
derivatives of 583 trillion U.S. dollars, the vast majority of which reference
LIBOR or EURIBOR. These swap contracts and many other derivatives refer-
ence benchmarks but are not themselves benchmark products. Other extremely
popular benchmarks for overnight interest rates include SONIA, the Sterling
OverNight Index Average, and EONIA, the Euro OverNight Index Average.
The WM/Reuters daily fixings are the dominant benchmarks in the foreign
exchange market, which covers over $5 trillion per day in transactions.1 There
are also popular benchmarks for a range of commodities including silver, gold,
oil, and natural gas, among others.2 Benchmarks are additionally used to pro-
vide price transparency for manufactured products such as pharmaceuticals
and automobiles.3

Among other roles, benchmarks mitigate search frictions by lowering the
informational asymmetry between dealers and their “buy-side” customers. We
consider a market for an asset in which dealers offer price quotes to customers
who are relatively uninformed about the typical cost to dealers of providing the
asset. We provide conditions under which adding a benchmark to an opaque
OTC market can improve efficiency by encouraging entry by customers, im-
proving matching efficiency, and reducing total search costs.

Recent major scandals over the manipulation of benchmarks for interest
rates, foreign currencies, commodities, and other assets have made the robust-
ness of benchmarks a major concern of international investigators and policy
makers. This paper offers a theoretical foundation for the public policy support
of transparent financial benchmarks. In Section IV we discuss the manipula-
tion of benchmarks in more detail.

Our model works roughly as follows. In an OTC market with a finite number
of dealers and a continuum of investors that we call “traders,” the cost to a
dealer of providing the asset to a trader is the sum of a dealer-specific (idiosyn-
cratic) component and a component that is common to all dealers. (In practice
the clients of financial intermediaries may be buying or selling the asset. We
consider the case in which traders wish to buy. The opposite case is effectively
the same, up to sign changes.) The existence of a benchmark is taken to mean

1 See Foreign Exchange Benchmark Group (2014), which reports that 160 currencies are covered
by the WM/Reuters benchmarks. These benchmarks are fixed at least daily and by currency pair
within the 21 major “trade” currencies.

2 The London Bullion Market Association provides benchmarks for gold and silver. Platts pro-
vides benchmarks for oil, refined fuels, and iron ore (IODEX). Another major oil price benchmark
is ICE Brent. ICIS Heren provides a widely used price benchmark for natural gas.

3 For a discussion of the Average Wholesale Price (AWP) drug price benchmarks, see Gencarelli
(2005). The Kelly Blue Book publishes the “Fair Purchase Price” of automobiles based on the
average transaction price by model and location.
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that the common cost component is publicly announced. Each trader privately
observes whether her search cost is high or low. Traders are searching for a
good price, and dealers offer them price quotes that depend endogenously on
the presence of a benchmark. Each dealer posts an offer price, which is avail-
able for execution by any trader, anonymously. Traders, who have a commonly
known value for acquiring the asset, contact the dealers sequentially, expend-
ing a costly search effort or costly delay with each successive dealer contacted.
At each point in time, the trader, given all of the information available to her
at that time (including past price offers and, if published, the benchmark),
decides whether to buy, continue searching, or exit the market. All market
participants maximize their conditional expected net payoffs, at all times, in a
perfect Bayesian equilibrium.

Under natural parameter assumptions, which vary with the specific result,
we show that publishing the benchmark is socially efficient because of three
types of effects.

First, publication of the benchmark encourages efficient entry by traders,
thus increasing the realized gains from trade. The benchmark improves the
information available to traders about the likely price terms they will face.
This assists traders in deciding whether to participate in the market, based on
whether there is a sufficiently large conditional expected gain from trade. The
increased transparency of prices created by the benchmark induces dealers
to compete more aggressively in their quotes. In this sense, publication of
the benchmark mitigates the hold-up problem caused by dealers’ incentives to
quote less attractive prices once the search costs of traders have been sunk.

Second, benchmarks improve matching efficiency, which leads to a higher
market share for low-cost dealers. When the benchmark is not observed by
traders, high-cost dealers exploit the ignorance of traders about the cost of
providing the asset and may conduct sales despite the presence of more efficient
competitors. The benchmark allows traders to decompose a price offer into a
common-cost component and a dealer-specific component for cost and profit
margin. As a result, if search costs are sufficiently small, customers trade with
the most efficient dealers.

Finally, benchmarks reduce wasteful search by (i) alerting traders that gains
from trade are too small to justify entry, and (ii) helping traders infer whether
they should stop searching because they have likely encountered a low-cost
dealer.

We also characterize cases in which the introduction of a benchmark low-
ers welfare. This can happen when the market is already relatively efficient
without the benchmark.4

We embed the price transparency problem—add a benchmark or not—into
a broader design framework by characterizing a socially optimal revelation
mechanism. Here, we take the case in which dealers have the same costs.
We show that whenever the gain from trade between a dealer and a trader

4 This finding is consistent with the insight of Asriyan, Fuchs, and Green (2015) (in a very
different model) that welfare can be nonmonotone in the degree of transparency.



1986 The Journal of Finance R©

is lower than an endogenous threshold, an optimal mechanism reveals the
benchmark. However, when the gain from trade is above the threshold, the
optimal mechanism reveals only this fact, without informing traders about
the exact level of the gain. Going further, we derive conditions under which the
optimal mechanism coincides with disclosing the benchmark. In broad terms,
publishing the benchmark approximates the optimal mechanism whenever an
opaque market (with no information about costs available to investors) would
generate low participation by traders.

A related question is: Who implements a benchmark? Perhaps surprisingly,
dealers often have sufficiently strong incentives to add a benchmark. What
matters is whether the resulting reduction in dealer profit margin is more
than offset by the increased volume of trade. This helps explain why almost
all existing benchmarks have been introduced by dealers without regulatory
pressure. On the other hand, there are cases in which benchmarks would en-
hance welfare but dealers lack the incentives to introduce them. Thus, there is
scope for regulators to improve market efficiency by promoting benchmarks or
other forms of price transparency. The introduction by the Financial Industry
Regulatory Authority (FINRA) of post-trade transparency in the U.S. corporate
bond markets is a case in point. Recently, in succession, the United Kingdom,
Japan, and the European Union have introduced legislation in support of fi-
nancial benchmarks. As of this writing, the United States has no benchmark
legislation.

When dealers have heterogeneous costs for providing the asset, we show
that the most efficient dealers can use a benchmark as a “price transparency
weapon” that drives inefficient competitors out of the market and draws trades
to dealers in the “benchmark club.” This may help explain why benchmarks
such as LIBOR were first introduced into the Eurodollar loan market by large
London-based banks.5

Our results are consistent with a significant body of empirical literature
on the impact of adding post-trade transparency to the U.S. corporate bond
market with the introduction of TRACE in 2003. Bid-ask spreads were usually
(although not always) lowered by TRACE, as shown by Bessembinder, Maxwell,
and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), Goldstein,
Hotchkiss, and Sirri (2007), and Asquith, Covert, and Pathak (2013). However,
Asquith, Covert, and Pathak (2013) also show that TRACE lowered transaction
volumes in some less liquid segments of the market. They speculate that some
dealers may have reduced their commitment of capital to the market because
the additional price transparency reduced their intermediation rents.6 Consis-
tent with this view, we show that improved price transparency squeezes the
market share and profit of less efficient dealers.

Our analysis draws upon techniques first used in search-based models of
labor markets, in a literature surveyed by Rogerson, Shimer, and Wright

5 See Hou and Skeie (2013).
6 Additional arguments for and against greater price transparency in the corporate bond market

are discussed by Bessembinder and Maxwell (2008).
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(2005). The framework that we consider features mixed strategies in pricing, as
modeled by Varian (1980), Burdett and Judd (1983), and Stahl (1989), among
others, and uncertainty about the distribution of prices, as in Rothschild
(1974). Our model builds on that of Janssen, Pichler, and Weidenholzer (2011),
with two important differences that allow us to study welfare implications.
First, we introduce endogenous entry to study efficient participation in the
market.7 With endogenous entry, we show that the result of Janssen, Pichler,
and Weidenholzer (2011)—that sellers never wish to disclose their costs to the
market—may fail. Indeed, in our model setting, the fact that dealers often wish
to publish a benchmark is consistent with the historical emergence of dealer-
supported financial benchmarks. Second, we permit heterogeneity in dealers’
costs. We show that benchmarks promote trade with more efficient dealers.

Our analysis of matching efficiency is related to Benabou and Gertner (1993),
who examine the influence of inflationary uncertainty (similar in spirit to the
effect of cost uncertainty in our model) on welfare and on the split of surplus
between consumers and firms. The relationship between their approach and
ours with regard to uncertainty can be described as “local” versus “global.”
Benabou and Gertner (1993) examine the marginal effect on welfare when
uncertainty is reduced slightly, while the introduction of a benchmark in our
setting significantly reduces this source of uncertainty. A limitation of their
model is its restriction to only two sellers.

The rest of the paper is organized as follows. Section I describes the trans-
parency role of benchmarks in OTC financial markets. Section II solves a
search model in which dealers have homogeneous costs of providing an asset
to customers, with a focus on how adding a benchmark affects entry efficiency.
Section III extends the model to heterogeneous dealers’ costs, with a focus on
how adding a benchmark affects matching efficiency. Section IV briefly dis-
cusses benchmark manipulation and implementation. Section V concludes.

I. The Role of Benchmarks in Over-the-Counter Markets

A benchmark price is a measure of “the going price” of a standardized asset
at a specified time.8 Benchmarks are usually published at a daily or sometimes
higher frequency, and are used for at least three main purposes:9

7 Janssen, Moraga-González, and Wildenbeest (2005) model the entry of buyers when sellers’
cost is common knowledge but they do not focus on the effect of information disclosure about
dealers’ costs.

8 The standardized asset may actually be a composite of several closely related assets, as for
the case of the Brent oil benchmark, which is a “basket of physical oil cargoes in the North Sea—
Brent, Forties, Oseberg, and Ekofisk (BFOE).” See Bank of England (2014), which states that “a
‘benchmark’ means an index, rate or price that: (a) is determined from time to time by reference to
the state of the market; (b) is made available to the public (whether free of charge or on payment);
and (c) is used for reference for purposes that include one or more of the following: (i) determining
the interest payable, or other sums due, under loan agreements or under other contracts relating
to investments; (ii) determining the price at which investments may be bought or sold or the value
of investments; (iii) measuring the performance of investments.”

9 For more discussion of these and other roles of benchmarks, see Duffie and Stein (2015).
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(i) The settlement of contracts, such as forwards or options, whose payoffs
depend formulaically on the benchmark price of the referenced asset.

(ii) Ex post monitoring by nondealer market participants of the quality of
trade execution that they have received.

(iii) Price transparency in comparison shopping, that is, for the purpose of
comparing a quoted price to the benchmark price, which is a signal of
prices that might be available elsewhere in the market. Comparison
shoppers can then decide whether to accept the quoted price or to look
for a better one.

When discussing the benefit of regulating benchmarks, the Bank of England
(2014) refers to the price transparency role of benchmarks as one of “determin-
ing the price at which investments may be bought or sold.”

All of these roles are important. In this paper, we focus on the third role,
comparison shopping in otherwise opaque OTC markets. This role also has
some connection with the second role of execution monitoring. Suppose, for
example, that a firm normally relies on its main relationship bank to convert
its foreign currency receivables into its own currency. With the benefit of the
published WM/Reuters daily foreign exchange benchmarks, the firm can mon-
itor whether its bank has actually achieved good execution prices on the firm’s
behalf. If not, the firm would eventually ask a different bank to perform the
same service. Although this suggests a different model from that offered in this
paper, the economic impact of a benchmark on market efficiency through its
execution monitoring role is obviously closely related to its impact through its
price transparency role in a search-based market.

Benchmarks would be almost redundant, from the viewpoint of pre-trade
price transparency, if the best executable price quotes were published and
accessible to all market participants, for example, on an open central limit
order book. Markets with this high level of pre-trade transparency include
those for exchange-traded equities and derivatives. Our model is instead more
relevant to the case of an opaque OTC market, in which a high level of pre-
trade price transparency is not available. In opaque OTC markets, buy-side
investors are generally not aware of recent transaction prices, the range of
quotes that dealers might provide to them, or which dealers are providing
better quotes at a given time. These OTC markets cover standardized loans,
foreign exchange, repurchase agreements, certain OTC derivatives, and many
types of commodities.

Price transparency in some OTC markets is increased through benchmarks,
multidealer electronic trading platforms, or various forms of post-trade trans-
action reporting. For example, some types of U.S. bond markets have post-
trade transaction reporting through TRACE.10 The Dodd–Frank Act, Japanese
regulations, and the European Union’s revised Markets in Financial Instru-
ments Directive (MiFID II) mandate post-trade transaction reporting for some

10 See Bessembinder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar
(2007), Goldstein, Hotchkiss, and Sirri (2007), and Asquith, Covert, and Pathak (2013).
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classes of OTC financial products. OTC markets that have less comprehensive
transaction reporting and rely more heavily on benchmarks for price trans-
parency include those for large short-term bank loans, foreign exchange, and
commodities.

II. A Model of Benchmarks as a Transparency Tool

This section describes a search-based model of an OTC market, the equilib-
rium behavior of market participants, and its efficiency properties. The main
results compare the social surplus generated by a market that includes a bench-
mark with that of a market that does not include a benchmark but is other-
wise identical. This section addresses the case of homogeneous dealers’ costs.
Section III introduces heterogeneity in dealers’ costs, allowing for an effect of
benchmarks on matching efficiency.

A. Model Setup

This subsection introduces model primitives, which include market partici-
pants, the trading protocol, and the definition of market equilibrium. Interpre-
tation and further motivation of the model primitives are found toward the end
of this subsection.

Market participants consist of a finite number N ≥ 2 of dealers and an in-
finite set of traders distributed uniformly on [0,1]. All trades are for a unit
amount of a given asset. For concreteness, we model trader–dealer encounters
in which a dealer sells and a trader buys. The model can be equivalently formu-
lated with the buying and selling roles reversed.11 The important distinction
between the two types of agents is that dealers make markets by offering exe-
cutable price quotes, whereas traders contact dealers sequentially and accept
their quotes or not, in a manner to be described.

Any dealer can supply the asset at a per-unit cost of c, a random variable
with a cumulative distribution function G whose support is [c, c̄], for some c ≥ 0
and c < c̄ < ∞.

All traders have a known constant value v > 0 for acquiring the asset. We
consider the case v ≤ c̄, so that the gain from trade, max{v − c, 0}, is zero for
sufficiently high cost outcomes. Trader j ∈ [0, 1] incurs a search cost of sj for
making contact with a new dealer. For tractability, we suppose that sj = 0
with some probability μ in (0,1), and that sj = s with probability 1 − μ, for
some constant s > 0. Search costs are independent across almost every pair of
traders. By the exact law of large numbers of Sun (2006), μ is also the fraction
of traders with zero search cost, almost surely.12 The presence of some traders

11 In financial markets, “buy” and “sell” should not be interpreted literally as buying or selling
a good, like a car. For instance, in the market for credit default swaps, a dealer can sell protection
and the trader buys protection, with zero market value of the contract. Similarly, in a loan market,
the dealer who sells the asset may be interpreted as a bank that provides a loan.

12 We adopt Sun’s construction of the agent space and probability space, and the measur-
able subsets of the product of these two spaces, so as to allow without further comment various
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with zero search cost overcomes the usual Diamond paradox.13 Because search
costs in practice often arise from delay costs, for simplicity and concreteness
we refer to traders with zero search cost as “fast traders” and to those with
nonzero search cost as “slow traders.”

The presence of a benchmark is taken to mean the publication of the deal-
ers’ cost c. We compare two market designs: the benchmark case and the no-
benchmark case.

The game proceeds as follows. If there is a published benchmark, then c
is first revealed to all traders. Each dealer i then posts a price pi that con-
stitutes a binding offer to sell one unit of the asset at this price to any
trader. This offer price is observed only by those traders who contact the
dealer. The dealer is aware of whether a benchmark is published when quot-
ing the price pi. The dealer’s offer pi does not lapse if a trader initially de-
clines it and later returns to take the offer. This assumption is made for
tractability.14

Traders, without yet having observed the quotes of any dealers, make entry
decisions. Entry means contacting one of the dealers, chosen with equal like-
lihood across the N dealers, and observing that dealer’s offer. The entry of a
slow trader is equivalent to (first-time) search and incurs the cost s. Failure to
enter the market ends the game for the trader. If a trader enters, he may accept
the first offer or continue searching by contacting another randomly selected
dealer, again with the uniform distribution over the yet-to-be-visited dealers.
The order of dealer contacts is independent across traders. At any point, a
trader may choose to accept the offer from any previously contacted dealer, in
which case a transaction is made at the chosen dealer’s offer and the trader
leaves the market. A trader may exit the market at any point without trading,
even after having contacted all N dealers.

Dealers observe neither the price offers posted by other dealers nor the order
in which traders contact dealers. Traders observe nothing about the searches
or transactions of other traders.

A (mixed) strategy for dealer i is a measurable function mapping the dealer’s
cost c to a probability distribution over price offers. In the absence of a bench-
mark, a strategy for trader j maps the trader’s search cost sj and any prior
history of observed offers to a choice from: (i) accept one of the observed of-
fers, (ii) continue searching, or (iii) exit. (If the trader has not yet visited any
dealer, the decision to continue searching is equivalent to the decision to enter
the market.) In the presence of a benchmark, the strategy of a trader may also

applications of the exact law of large numbers for a continuum of essentially pairwise-independent
random variables.

13 The Diamond paradox (Diamond (1971)) refers to cases in which all dealers charge the
monopoly price in a unique equilibrium with no search.

14 Relaxing this “recall” assumption in Section II makes no difference to equilibrium behavior
because, as we will show, a slow trader accepts the first quote on the equilibrium path. (See also
Janssen and Parakhonyak (2013).) In Section III the recall assumption substantially simplifies the
analysis. Zhu (2012) shows that, without recall, revisiting a dealer is taken as a negative signal of
a trader’s outside option and leads to a worse quote.
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depend on the published benchmark c. The payoff of dealer i is (pi − c)Qi, where
Qi is the total quantity of sales15 by dealer i. If trader j successfully conducts
a purchase, say from dealer i, then her payoff is v − pi − sj Kj , where Kj is the
number of dealers that she contacted. If she does not purchase the asset, then
her payoff is −sj Kj .

An equilibrium is a collection of strategies for the respective agents, possibly
mixed (allowing randomization), with the property that each agent’s strat-
egy maximizes at each time that agent’s expected payoff conditional on the
information available to the agent at that time and taking as given the strate-
gies of the other agents. We focus on symmetric perfect Bayesian equilibria.
We also assume, essentially without loss of generality, that fast traders play
their weakly dominant strategy of always entering the market and contact-
ing all dealers.16 As is conventional in the literature covering search-based
markets, we restrict attention to reservation-price equilibria unless otherwise
indicated. These are equilibria in which a trader’s decision to continue search-
ing can be based at any time on a cutoff for the best offer observed up to
that point.

Our definition of the benchmark as the dealer cost c captures the essence of
benchmark practice for a range of OTC markets in which the benchmark is the
interdealer price. For example, LIBOR is the average lending rate in the inter-
bank market. (In our model, all banks have the same cost.) Banks then offer
loans to their customers at spreads over LIBOR. The LBMA Gold Price, the gold
benchmark of the London Bullion Market Association, is the market-clearing
price set in an interdealer auction that is run every day for the express purpose
of determining the daily gold benchmark. Dealers then quote gold prices to their
customers, who are aware of the previously published fixing. (The LBMA Silver
Price has a similar daily fixing.) The WM/Reuters foreign exchange benchmark
for each major currency pair is the average of transaction prices on two leading
electronic trading platforms that occur over a five-minute fixing window.17 As
with LIBOR, this implies that publishing the foreign exchange benchmark still
leaves some residual noise in customer assessments of dealer costs that does
not apply in our basic model. We consider this effect later in the paper. In gen-
eral, we avoid more complicated models of the benchmark simply for reasons
of tractability and conciseness. Section II.F provides conditions under which
publishing the dealer cost c provides the socially optimal level of pre-trade
transparency.

15 That is, Qi = ∫ 1
0 1(i, j) dj, where 1(i, j) has the outcome of one if trader j accepts the offer of

dealer i, and of zero otherwise. This integral is always well defined and, under our equilibrium
strategies, satisfies the exact law of large numbers, using the Fubini property of Sun (2006).

16 This assumption is without loss of generality in that, for every equilibrium in which fast
traders do not play this strategy, there exists a payoff-equivalent equilibrium in which they do.
The only exception is the degenerate Diamond-paradox equilibrium, in which all dealers quote the
price v, fast traders contact no more than one dealer, and slow traders do not enter.

17 The sampling window used to be one minute, but it was widened to five minutes following the
recommendation of the Foreign Exchange Benchmark Group (2014) in September 2014.
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B. The Benchmark Case

We first characterize equilibrium in the benchmark case, where c is pub-
lished before trade begins. A considerable part of the analysis here draws upon
the work of Janssen, Moraga-González, and Wildenbeest (2005) and Janssen,
Pichler, and Weidenholzer (2011).

In the event that c > v, there are no gains from trade, and in light of the
benchmark information, slow traders do not enter. There can be no trade in
equilibrium. If v − s ≤ c ≤ v, because dealers never quote prices below their
costs, slow traders still do not enter. Fast traders, however, enter and buy
from the dealer that offers the lowest price. It is easy to show that the only
equilibrium is one in which all dealers quote a price of c, amounting to Bertrand
competition among dealers. We therefore concentrate on the interesting case,
the event in which c < v − s.

We fix some candidate probability λc of entry by slow traders, to be deter-
mined in equilibrium. Conditional on entry, the optimal policy of a slow trader
is characterized by Weitzman (1979): search until she contacts a dealer whose
offer is no higher than some cutoff rc, which depends neither on the history of
received offers nor on the number of dealers that have not yet been visited.

A standard search-theoretic argument—found, for example, in Varian (1980)
and elaborated in Appendix A—implies that the only possible equilibrium re-
sponse of dealers is a mixed strategy in which offers are drawn from a contin-
uous (nonatomic) distribution whose support has rc as its maximum. Because,
in equilibrium, a dealer’s price is never worse than a slow trader’s reservation
price, a slow trader buys from the first dealer that she contacts.

Let Fc( · ) be the equilibrium cumulative distribution function of a dealer’s
price offer. Given the traders’ strategies, a contacted dealer assigns the poste-
rior probability

q(λc) = μ

μ+ 1
Nλc(1 − μ)

(1)

that the visiting trader is fast. Here, we use the property that a slow trader
enters with probability λc and visits this particular dealer with probability
1/N. Because, in equilibrium, dealers must be indifferent between all price
offers in the support [ p

c
, rc] of the distribution, we have⎡

⎢⎣ (1 − q(λc))︸ ︷︷ ︸
P(Sell to slow trader)

+ q(λc)
(
1 − Fc(p)

)N−1︸ ︷︷ ︸
P(Sell to fast trader)

⎤
⎥⎦ (p − c) = (1 − q(λc))︸ ︷︷ ︸

P(Sell to slow trader)

(rc − c). (2)

We use the fact that a slow trader accepts a price p ≤ rc for sure, but a fast
trader accepts p if and only if all other dealers offer worse prices. Thus, the
equilibrium cumulative distribution function Fc of price offers is given by

Fc(p) = 1 −
[
λc(1 − μ)

Nμ
rc − p
p − c

] 1
N−1

. (3)
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The lowest price p
c

in the support is determined by the boundary condition
Fc( p

c
) = 0.

We can now calculate the optimal reservation price r�c of slow traders. Because
traders value the asset at v, we must have r�c ≤ v. The definition of reservation
price implies that, after observing a quote of p = r�c , a trader must be indifferent
between immediately accepting the offer and continuing to search, so that

v − r�c = −s + v −
∫ r�c

p
c

p dFc(p). (4)

Substituting the solution for Fc(p) and conducting a change of variables yields18

r�c = c + 1
1 − α(λc)

s, (5)

where

α(λc) =
∫ 1

0

(
1 + Nμ

λc(1 − μ)
zN−1

)−1

dz < 1. (6)

By direct calculation, the expected offer conditional on c is∫ r�c

p
c

p dFc(p) = (1 − α(λc))c + α(λc)r�c .

Equation (5) states that the maximum price that a slow trader is willing to
accept is the cost of the asset plus a dealer profit margin equal to the trader’s
search cost s multiplied by a proportionality factor that reflects an entry ex-
ternality, represented through the function α. This entry externality arises
as follows. If the slow-trader entry probability λc is low, the market consists
mainly of fast traders, and competition among dealers pushes the expected
profit margins of dealers to zero, in that limλ→0 α(λ) = 0. That is, the trading
protocol converges to an auction run by fast traders. In contrast, if λc is close
to one, then slow traders constitute a considerable part of the market, and the
existence of search frictions allows dealers to exert their local monopoly power
and sell at prices bounded away from their costs.

To complete the description of equilibrium, we must specify the optimal entry
decisions of slow traders. Holding the entry probability λc fixed, the expected
payoff of a slow trader conditional on c and on entry is

π (λc) = v − s −
∫ r�c

p
c

p dFc(p) = v − 1
1 − α(λc)

s − c.

It can be verified that π (λc) is strictly decreasing in λc through the role of α(λc).

18 The change of variables is z = 1 − Fc(p). See Janssen, Pichler, and Weidenholzer (2011) for
details.
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If π (λc) is strictly positive at λc = 1, then the equilibrium slow-trader entry
probability λ�c must be one. Because α is maximized at λc = 1, this happens if
and only if

c ≤ v − 1
1 − ᾱ

s,

where

ᾱ = α(1) =
∫ 1

0

(
1 + Nμ

1 − μ
zN−1

)−1

dz. (7)

If the profit π (λc) is negative at λc = 0, then there is no entry by slow traders,
that is, λ�c = 0. Since α(0) = 0, this happens whenever c > v − s.

Finally, if c ∈ (v − s/(1 − ᾱ), v − s), then we have “interior entry,” in that
λ�c ∈ (0, 1) is uniquely determined by the equation

s = (
1 − α

(
λ�c
))

(v − c). (8)

We summarize these results with the following proposition.

PROPOSITION 1: In the benchmark case, the equilibrium payoffs are unique and
there exists a reservation-price equilibrium in which the following properties
hold.

1. Entry. In the event that c ≥ v − s, no slow traders enter. If

v − s
1 − ᾱ

< c < v − s,

then slow traders enter with the conditional probability λ�c ∈ (0, 1) deter-
mined by equation (8). If c ≤ v − s/(1 − ᾱ), then slow traders enter with
conditional probability equal to one.

2. Prices. In the event that c > v, dealers quote arbitrary offers no lower
than c. If c ∈ [v − s, v], then dealers quote offers equal to c. If c < v − s,
then every dealer quotes offers drawn with the conditional probability
distribution function Fc given by (3).

3. Traders’ reservation prices. In the event that c < v − s, conditional on
entry, a slow trader’s reservation price r�c is given by (5).

4. Social surplus. The conditional expected total social surplus given c is

λ�c(1 − μ) (v − c − s) + μ(v − c)+,

where (v − c)+ ≡ max{v − c,0}. The conditional expected profit of each
dealer is

λ�c(1 − μ)
N

s
1 − α

(
λ�c
) .

An immediate implication of Proposition 1 is that entry by slow traders is
inefficient. In equilibrium, if c ∈ (v − s/(1 − ᾱ), v − s), the gain from trade for
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any slow traders is larger than the search cost, but we do not observe full
entry. This inefficiency can be understood as a hold-up problem. Once traders
enter, search costs are sunk and dealers make higher-than-efficient price offers.
Taking into account this hold-up problem, slow traders enter only if gains from
trade v − c are significantly higher.

C. The No-Benchmark Case

The absence of a benchmark prevents traders from observing the com-
mon component c. In this case, traders face complicated Bayesian infer-
ences based on the observed price offers in assessing the attractiveness of
these offers. To keep the model tractable, we restrict attention to equilib-
ria in which traders, when on the equilibrium path, follow a reservation-
price strategy.19 That is, in the kth round of search a slow trader has a
reservation price of the form rk−1(p1, p2, . . . , pk−1), where (p1, p2, . . . , pk−1)
is the history of prior price offers. According to this reservation-price strat-
egy, any offer pk < rk−1(p1, p2, . . . , pk−1) is immediately accepted and any
offer pk > rk−1(p1, p2, . . . , pk−1) is not immediately accepted. An offer pk =
rk−1(p1, p2, . . . , pk−1) is accepted with some (mixing) probability that is deter-
mined in equilibrium. For simplicity, here forward we describe an offer that is
not immediately accepted as “rejected,” bearing in mind that the trader retains
the option to later accept the offer.

We first characterize reservation-price equilibria, assuming one exists. We
provide conditions under which a reservation-price equilibrium exists. The
following lemma is an important step in characterizing a reservation-price
equilibrium.

LEMMA 1: In every reservation-price equilibrium in which slow traders enter
with strictly positive probability, (i) the first-round reservation price r�0 is equal
to v and (ii) for each outcome of c strictly below v, the upper limit of the support
of the conditional distribution of price offers is v.

Without the benchmark, a trader’s ignorance of the common component c
of dealers’ costs makes it more difficult for her to evaluate the attractiveness
of price offers. Lemma 1 states that this information asymmetry causes a
slow trader to accept any price offer below her value v for the asset, in a
reservation-price equilibrium. Thus, only two things can happen if a positive
mass of slow traders enter. If c ≤ v, a slow trader buys from the first dealer
that she contacts. If c > v, then a slow trader will observe a price offer above

19 Although this restriction is standard in the literature, Janssen, Parakhonyak, and Parakho-
nyak (2014) analyze non-reservation-price equilibria in a consumer search model with two firms.
They assume that the customer’s value is sufficiently high relative to firms’ cost that there is
no issue of entry efficiency, a key focus of our model. They also assume that the two firms have
identical costs, drawn with the same outcome from a binomial distribution. This shuts down the
matching efficiency on which we focus in the next section. Because of these assumptions and
the technical difficulties in solving non-reservation-price equilibria in our setting, we follow the
more usual convention in the literature of focusing on reservation-price equilibrium.
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her value for the asset, conclude that there is no gain from trade, and exit the
market. This outcome—slow traders entering only to discover that there is no
gain from trade—is a waste of costly search that would be avoided if there
were a benchmark. With a benchmark, as seen in Proposition 1, slow traders
do not enter unless the conditional expected gain from trade exceeds the cost s
of entering the market and making contact with a dealer.

Using Lemma 1, we can describe the reservation-price equilibrium without
the benchmark, analogously with Proposition 1. We define the expected gain
from trade as

X = G(v) [v − E (c | c ≤ v)] , (9)

that is, the probability of a positive gain from trade multiplied by the expected
gain given that it is positive. Let λ� denote the equilibrium probability of entry
by slow traders.

PROPOSITION 2: In the no-benchmark case, if a reservation-price equilibrium
exists, it must satisfy the following properties:

1. Entry. If s ≥ X, no slow traders enter, that is, λ� = 0. If s ∈ ((1 − ᾱ)X, X),
the fraction λ� of entering slow traders solves

s = (1 − α(λ�))X. (10)

If s ≤ (1 − ᾱ)X, all slow traders enter with probability λ� = 1.
2. Prices. In the event that c > v, dealers quote an arbitrary price offer no

lower than c. If c ≤ v, dealers quote prices drawn from the cumulative
distribution

Fc(p) = 1 −
[
λ∗(1 − μ)

Nμ
v − p
p − c

] 1
N−1

. (11)

3. Traders’ reservation prices. Conditional on entry, a slow trader has a
reservation price of v at her first dealer contact. If this first dealer’s price
offer is no more than v, the slow trader accepts it. Otherwise the slow
trader rejects it and exits the market.

4. Surplus. The expected total social surplus is λ�(1 − μ)(X − s) + μX, and
the expected profit of each dealer is λ�(1 − μ)X/N.

The markets with and without benchmarks, characterized by Propositions 1
and 2, respectively, share some common features. In both, dealers’ strategies
depend on the realization of the benchmark c, and slow traders never contact
more than one dealer on the equilibrium path. The distribution of quoted prices
and the entry probability of slow traders are characterized by functions whose
forms, with and without a benchmark, are similar.

That said, there are two crucial differences. First, slow traders’ entry de-
cisions in the presence of the benchmark depend on the realization (through
publication of the benchmark) of the gain from trade. By contrast, without
a benchmark, entry depends only on the (unconditional) expected gain from
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trade. Second, with the benchmark, the reservation price of slow traders gen-
erally depends on the realization of the benchmark c. Absent the benchmark,
however, a slow trader’s reservation price is always v. As a consequence, an
offer of v is in the support of price offers regardless of the outcome of c.

Existence of Reservation-Price Equilibria in the No-Benchmark Case

Before comparing welfare with and without the benchmark, it remains to
characterize conditions under which a reservation-price equilibrium exists
without the benchmark. Providing general conditions for existence in this set-
ting is challenging. While significant progress on existence has been made by
Janssen, Pichler, and Weidenholzer (2011), their results do not apply in our
setting because they assume that a trader’s value v is so large that varying
its level has no effect on the equilibrium. We cannot make this assumption
because the size of gains from trade plays a key role in our analysis of entry.
Benabou and Gertner (1993) also provide partial existence results for the case
of two dealers, but in a different setting.

Appendix A provides a necessary and sufficient condition for the existence
of a reservation-price equilibrium in the case of two dealers, and an explicit
sufficient condition for existence with N > 2 dealers. The main conclusion is
summarized as follows.

PROPOSITION 3: There exists some s < X such that, for any search cost s greater
than s, a reservation-price equilibrium in the no-benchmark case exists and is
payoff-unique.

Proposition 3 states that the equilibrium described in Proposition 2 exists if
the search cost is sufficiently large. The condition s < X ensures that there ex-
ists an equilibrium with strictly positive probability of entry by slow traders. If
s ≥ X, there exists a trivial reservation-price equilibrium in which slow traders
do not enter.

D. Welfare Comparison

We now show that if search costs are high relative to the expected gain from
trade, then introducing the benchmark raises the social surplus by encouraging
the entry of slow traders.

As noted above, entry may be inefficiently low under search frictions due
to the hold-up problem and the negative externality in the entry decisions of
slow traders. Because a search cost is sunk once a slow trader has visited
a dealer, a dealer can more heavily exploit its local-monopoly pricing power.
Expecting this outcome, slow traders may refrain from entry despite the pos-
itive expected gain from trade. The hold-up problem is more severe when
more slow traders enter (because this raises the posterior belief of a dealer
that he faces a slow trader). These effects apply both with and without the
benchmark. The question is whether benchmarks alleviate or exacerbate this
situation.
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Figure 1. Conditional expected social surplus given the realized gain x from each trade.

We now state the main result of this section, giving conditions under which
adding the benchmark improves welfare by encouraging entry.

THEOREM 1: Suppose that (i) s ≥ (1 − ᾱ)(v − c) or (ii) s ≥ (1 − ψ)X holds, where
ψ ∈ (0, ᾱ) is a constant that depends only on μ and N.20 Then a reservation-
price equilibrium in the no-benchmark case (if it exists) yields a lower social
surplus than that of the equilibrium in the benchmark case. Condition (i) holds
if there are sufficiently many dealers or if the fraction μ of fast traders is small
enough.

There are two key sources of intuition behind Theorem 1. First, the presence
of a benchmark allows slow traders to make their entry decisions contingent on
additional information about the magnitude of gains from trade. In equilibrium
with the benchmark, entry is higher precisely when gains from trade are larger.
In other words, if the unconditional probability of entry were the same across
the two settings, then social surplus would be higher in the benchmark case
because, in the equilibrium with the benchmark, volume is positively correlated
with gains from trade. Second, adding the benchmark reduces the information
asymmetry between dealers and traders. Without the benchmark, a slow trader
is not sure whether an unexpectedly high price offer is due to a high outcome
for the common cost c of dealers or to an unlucky draw from the dealer’s offer
distribution. Dealers exploit this informational advantage, which exacerbates
the hold-up problem. By providing additional information about dealers’ costs,
benchmarks give more bargaining power to slow traders.

The proof of the theorem is illustrated in Figure 1, which depicts the depen-
dence of the benchmark-market social welfare function Wb(x) on the realized

20 We have ψ = 1
2 [
√

(1 − ᾱ + ᾱβ)2 + 4ᾱ(1 − ᾱ) − (1 − ᾱ + ᾱβ)], where β = Nμ/(1 − μ), and ᾱ is
defined by equation (7).
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gain from trade x = max{v − c,0}. The proof first shows that the expected so-
cial surplus in the no-benchmark case is actually equal to Wb[E(x)]. We thus
want to show that E[Wb(x)] ≥ Wb(E(x)). Because slow traders increase their
entry probability when the benchmark-implied gain from trade is large, we
can prove that Wb( · ) is convex over the set of x for which the entry probability
is interior. Condition (i) ensures the convexity of Wb( · ) on its entire domain,
allowing an application of Jensen’s Inequality. The alternative condition (ii) en-
sures that Wb( · ) is subdifferentiable at X = E(x), yielding the same comparison.
Both conditions require that the search cost s is sufficiently high.

We emphasize that Theorem 1 is neither mechanical nor trivial. In fact, one
can find conditions under which the welfare ranking in Theorem 1 is reversed.
That is, there are cases in which adding a benchmark can harm welfare. The
severity of the hold-up problem decreases with the size of gains from trade.
Without the benchmark, the expected size of gains from trade determines entry.
When the expected gains from trade are high relative to search costs, all slow
traders enter in the absence of benchmarks, overcoming the hold-up problem.
With the benchmark, however, the actual size of gains from trade determines
entry. Slow-trader entry is high when c is low and is low when c is high. For
some parameters, it is more efficient to “pool” the entry decisions without the
benchmark than to let entry depend on the realized benchmark cost.

PROPOSITION 4: Suppose that the equilibrium described by Proposition 2 exists.
If (i) (1 − ᾱ)(v − c̄) < s, (ii) s ≤ (1 − ᾱ)X, and (iii) G(v − s) is sufficiently close to
one, then the expected social surplus is strictly higher without the benchmark
than with the benchmark.

The assumptions needed for the benchmark to decrease efficiency are rel-
atively restrictive. The condition s ≤ (1 − ᾱ)X ensures that there is full entry
without the benchmark. (By Theorem 1, this condition fails if μ is small enough
or N is large enough.) The condition that s > (1 − ᾱ)(v − c̄) ensures that there
are cost realizations for which we do not have full entry with the benchmark.
Hence, search costs can be neither too high nor too low. Finally, the condition
that G(v − s) is close to one ensures that the entry of slow traders is indeed
socially desirable for nearly all cost realizations.

The conditions of Proposition 4 are easily interpreted in Figure 1. If X>
s/(1 − ᾱ) (condition (ii)) and if the region [0, s] has negligible impact on welfare
(condition (iii)), then we can place a hyperplane above the graph of Wb( · )
that is tangent to it at X. That is, we get superdifferentiability rather than
subdifferentiability, reversing the welfare inequality. Condition (i) guarantees
that the inequality is strict.

The reverse welfare ranking of Proposition 4 relies on the fact that there
is a bounded mass of slow traders. In an alternative model in which the po-
tential mass of slow traders is unbounded, “full entry” is impossible, and the
function Wb( · ) in Figure 1 is globally convex. In this unbounded-entry model,
a reservation-price equilibrium in the no-benchmark case (if one exists) yields
a lower social surplus than the equilibrium in the benchmark case. A formal
proof of this claim is omitted as it follows directly from the proof of Theorem 1.
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E. Dealers’ Incentives to Introduce a Benchmark

As we have seen so far, the introduction of a benchmark reduces the infor-
mational advantage of dealers relative to traders. It might seem that dealers
have no incentive to introduce the benchmark. In this subsection we show
that the contrary can be true. Under certain conditions dealers want to intro-
duce a benchmark in order to increase their volume of trade. We assume that
dealers are able to commit to a mechanism leading to truthful revelation of c,
so the question of whether they prefer to have the benchmark boils down to
comparing dealers’ profits with and without the benchmark. We address the
implementability of adding a benchmark in Section IV.

THEOREM 2: Suppose that (i) s ≥ (1 − ᾱ)(v − c) or (ii) s ≥ (1 − η)X, where η ∈
(0, ᾱ) is a constant that depends only on N and μ. Then, a reservation-price
equilibrium in the no-benchmark case (whenever it exists) yields a lower expected
profit for dealers than in the setting with the benchmark. Condition (i) holds if
there are sufficiently many dealers or if the fraction μ of fast traders is small
enough.

The benchmark raises the profits of dealers by encouraging the entry of slow
traders. If search costs are large relative to gains from trade (assumption (i) or
(ii) of Theorem 2), dealers benefit from the increased volume of trade arising
from the introduction of the benchmark. For dealers’ total profits to rise with
the introduction of a benchmark, entry by slow traders must be sufficiently low
without the benchmark, as otherwise the benchmark-induced gain in trade
volume does not compensate dealers for the reduction in profit margin on each
trade.

A benchmark can be viewed as a commitment device, through which dealers
promise higher expected payoffs to traders in order to encourage entry. In par-
ticular, a benchmark partially solves the hold-up problem by reducing market
opaqueness and giving traders a better bargaining position.

An interesting property of benchmarks is that whenever they are added
voluntarily by dealers, they are also guaranteed to increase efficiency in the
market.

PROPOSITION 5: If introducing the benchmark raises the expected profit of deal-
ers, then it also raises the expected social welfare.

Proposition 5 has an important policy implication. It is never optimal for
a market regulator to try to suppress a benchmark if one is introduced by
dealers. The opposite is not true. There generally exists a range of search
costs over which the benchmark raises social surplus but dealers would have
no incentive to commit to it. This is intuitive. Whenever the gain from trade
v − c exceeds the search cost s, any increase in entry probability is welfare-
enhancing. If, however, this increase is too small to compensate for the re-
duction in dealers’ profit margins, dealers would not opt to introduce the
benchmark.
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F. Under Conditions, the Benchmark Is an Optimal Mechanism

We now consider socially optimal mechanisms for reporting information
about dealer costs.21 Under conditions, among a wide class of mechanisms,
social welfare cannot be improved by doing something other than simply pub-
lishing the benchmark. Throughout this section, we assume that the mech-
anism designer knows the dealer cost c. We also assume in this subsection
that a reservation-price equilibrium exists whenever we discuss equilibrium
behavior.

Up to this point, our analysis has shown that the outcome of the market
equilibrium, with or without the benchmark, is fully efficient, conditional on
entry by slow traders. The entry decision itself, however, could be inefficient.
Thus, the mechanism design should focus on providing information to traders
before they make their entry decisions.

Formally, a revelation mechanism (	, S) consists of a signal space S and
a measurable mapping 	 from [c, c̄] to the set 
(S) of probability measures
on S. The mechanism sends traders a signal s ∈ S drawn from the conditional
probability distribution 	(c). Traders observe the signal and make their en-
try decisions. The game then proceeds according to the protocol described in
Section II.A.

We impose no restrictions on the class of signals to be sent by the mechanism
designer. Announcing the benchmark is equivalent to a revelation mechanism
given by S = [c, c̄] and 	(c) = δ{c}, the dirac delta at c, meaning full revelation.
Providing no information before traders make their entry decisions is equiva-
lent to a mechanism with a singleton signal space S = {0}. Using techniques
from the literature on Bayesian persuasion,22 we provide the following general
characterization. Recall that x = max{v − c, 0} denotes the gain from trade.

THEOREM 3: Let

y = argmin
ỹ ∈ [0, v−c ]

∣∣∣∣ E [x| x ≥ ỹ] − s
1 − ᾱ

∣∣∣∣ .
That is, y solves the equation E[x| x ≥ y] = s/(1 − ᾱ) whenever a solution exists,
and otherwise takes the boundary value of zero if E[x] > s/(1 − ᾱ), and the
boundary value of v − c if v − c < s/(1 − ᾱ). The following revelation mechanism
maximizes the expected social surplus.

1. When x < max{s, y}, announce the realization of c.
2. When x ≥ max{s, y}, announce that v − c ≥ y (but nothing else).

To gain intuition for Theorem 3, consider the case in which y is an interior
solution. Suppose that y ≥ s. We first explain why it is optimal to garble in-
formation about the gain from trade when its realization is high (point 2 in

21 A related analysis of optimal mechanisms for trade transparency in OTC markets (in a
different model) is considered by Dworczak (2016).

22 See Kamenica and Gentzkow (2011) for the formulation of the Bayesian persuasion problem,
and Dworczak and Martini (2017) for the technique that we use in the proof of our theorem.
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the theorem). By announcing that v − c ≥ y, the mechanism induces the pos-
terior belief s/(1 − ᾱ) for the expected gain from trade among slow traders.
The equilibrium of the subsequent game is that specified by Proposition 2, but
with the unconditional expected gain X from trade replaced by the conditional
expected gain from trade given by s/(1 − ᾱ). Thus, there is full entry by slow
traders whenever the realization x of the gain from trade is above y. If, in-
stead, c were to be fully revealed, for the entry probability of a slow trader
to reach one, the realization x of the gain from trade must exceed s/(1 − ᾱ).
(See Proposition 1). We conclude that conflating realizations of x above y into
one message raises the entry probability whenever the realization of x is be-
tween y and s/(1 − ᾱ). The garbling region x ≥ y is the largest possible set
of realizations of x that yields full entry by slow traders. If any additional
outcomes of x below y were conflated into one message m, together with the
event x ≥ y, then the conditional gain from trade would fall below s/(1 − ᾱ)
and the entry probability would decrease for all realizations of x leading to the
message m.

To understand why it is optimal to fully disclose the cost c whenever x is
to the left of the garbling region (point 1 of Theorem 3), we note that the
welfare function Wb(x) is convex in that domain (see Figure 1). Therefore,
the optimality of full disclosure of c follows from the same forces that give
rise to Theorem 1, that is, by disclosing the cost c, the mechanism intro-
duces a beneficial positive correlation between gains from trade and entry
probability.

Overall, the welfare-maximizing mechanism optimally trades off the bene-
fits associated with the two extreme revelation schemes that are compared in
Section II.D. For high cost realizations (those with x < y), it is optimal to fully
disclose the cost c. For low-cost realizations (those with x ≥ y), it is optimal to
“pool” slow traders’ incentives to enter by disclosing only that v − c ≥ y.

The following result is a useful special case of Theorem 3.

PROPOSITION 6: Suppose s ≥ (1 − ᾱ)(v − c) (Assumption (i) of Theorem 1). Fully
disclosing the cost c is a social-surplus-maximizing revelation mechanism. Any
optimal revelation mechanism fully discloses the cost c (almost surely) whenever
x ∈ [s, v − c].

Assumption (i) of Theorem 1 implies that the gain from trade is never above
s/(1 − ᾱ). In this case, y as defined in Theorem 3 is equal to v − c. It follows
that point 2 of Theorem 3 never applies, and thus the optimal mechanism is to
fully disclose the benchmark c.

Proposition 6 implies that a perfectly informative benchmark is an (essen-
tially unique) optimal mechanism if there are sufficiently many dealers or if
the fraction μ of slow traders is low enough; in these cases, ᾱ is sufficiently
close to one. Moreover, based on the remark at the end of Section II.D, we
can show that when there is an unbounded pool of slow traders, announcing
the perfectly informative benchmark c is an optimal mechanism even without
Assumption (i) of Theorem 1.
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G. The Socially Optimal Mechanism Is Also Optimal for Dealers

In Section II.E we show that the incentives of dealers to introduce a bench-
mark (or not) are only partially aligned with social preferences. It turns out,
however, that the socially optimal revelation mechanism fully aligns the private
preferences of dealers with social preferences. (For the purposes of this section,
as in Section II.F, we assume the existence of a reservation-price equilibrium.)

THEOREM 4: The socially optimal mechanism of Theorem 3 also maximizes the
expected profit of dealers, within the set of feasible revelation mechanisms.

Theorem 4 implies that dealers always prefer to introduce the optimal mech-
anism described in Theorem 3. Whenever the optimal mechanism coincides
with the benchmark, an even stronger conclusion applies: there is no revela-
tion scheme that dealers would prefer over the benchmark.

Why might dealers disagree with a benevolent regulator on the desirabil-
ity of having a benchmark, but always agree on the optimal mechanism? The
reason is that the optimal mechanism discloses only enough information to
induce entry by slow traders. When c is fully disclosed and there is full entry,
that is, when v − c ≥ s/(1 − ᾱ), slow traders use the information they are given
about c to negotiate constant margins over dealers’ costs (that is, the reserva-
tion price r�c changes one-to-one with c, according to formula (5)). Under the
optimal mechanism, slow traders still enter with probability one, but they are
uninformed about the exact value of c. Dealers may exploit this information
asymmetry and continue to enjoy the higher profit margins that they achieve
in the no-benchmark case.

In light of Theorem 4, one may wonder why functioning OTC markets do not
include public reporting schemes that suppress dealer cost information pre-
cisely when those costs turn out to be low enough. A possibility is that practical
settings are approximately summarized by model parameters for which the op-
timal mechanism coincides with a benchmark (full revelation of dealer costs).
It could also be the case that calculating the threshold level y for revelation of c
may be difficult in practice, and that a small error in this calculation could lead
to poor performance (especially if y is set too low). By comparison, a benchmark
mechanism is simple and more robust than the optimal mechanism.

Finally, we note that the amount of information revealed by the optimal
mechanism is increasing (in the sense of Blackwell) in the search cost s.
This implies that, as search costs decrease, dealers prefer increasingly opaque
markets.

H. An Illustrative Example

We conclude this section with a numerical example. Our goal is to illus-
trate the magnitude and direction of the modeled effects.23 A serious empirical
calibration or structural estimation is beyond our objectives.

23 In the numerical example, we assume, as before, the existence of a reservation-price equilib-
rium in the no-benchmark case.



2004 The Journal of Finance R©

Figure 2. Total expected surplus (expressed as a percentage of expected welfare associated with
a centralized-exchange market) and the probability of entry of slow traders, conditional on the
event c < v − s, where c is dealer cost, v is value, and s is search cost. (Color figure can be viewed
at wileyonlinelibrary.com)

For the sake of illustration, we assume 20 dealers. One quarter of traders
are fast. Any trader’s value v of the asset is normalized without loss of gener-
ality to one. The dealer cost c is uniformly distributed on [0.9,1.02]. Figure 2
shows how total welfare and entry vary with the search cost s for three cases:
no-benchmark, benchmark, and the optimal mechanism shown in Section II.F.
Total surplus is expressed as a percentage of expected welfare in a market with
a centralized exchange, or equivalently, for an OTC market with no search
costs.24 Figure 3 depicts expected execution prices and expected quotes of
dealers in the no-benchmark case and in the benchmark case, for three lev-
els of search costs.

Figure 2 shows that the no-benchmark case yields higher surplus than the
benchmark case only when search costs are low, consistent with Proposition 4.
However, with low search costs, the differences in expected surplus between
all mechanisms are relatively small. When search costs are larger, introducing
the benchmark enhances surplus, as predicted by Theorem 1. The gain can be
quite significant (on the order of 30% of the expected surplus associated with a
centralized exchange), especially for intermediate levels of s. The slow-trader
entry probability is higher in the no-benchmark case when search costs are
small. A higher probability of entry does not necessarily lead to higher surplus
because the benchmark induces positive correlation between entry probability
and realized gains from trade. This positive correlation is reflected by higher
price volatility in the benchmark case, as shown in Figure 3. Quotes tend to
be much lower (more attractive to traders) with a benchmark than without,
for low-cost realizations. This is due to the associated reduction in information
asymmetry, which improves the bargaining position of traders. Finally, when
search costs are large, the benchmark is seen to be an optimal mechanism,

24 This expected welfare is equal to 0.0455 under the above parameters.
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Figure 3. Expected execution prices (first row) and expected quotes of dealers (second row) as
functions of dealer cost c, for search costs s = 0.001, s = 0.005, and s = 0.01 in the benchmark
case (blue solid line) and the no-benchmark case (red dotted line). (Color figure can be viewed at
wileyonlinelibrary.com)

consistent with Proposition 6. The difference between welfare with an optimal
mechanism and with a benchmark is largest with intermediate search costs
and is driven by the higher entry probability caused by optimal information
disclosure.

III. Heterogeneous Dealer Costs and Matching Efficiency

In this section we extend the model of Section II to incorporate heterogeneous
dealers’ costs and address matching efficiency. We show that the pre-trade price
transparency afforded by a benchmark improves the matching of traders to low-
cost dealers. The beneficial impact of a benchmark on entry efficiency, shown
in Section II, continues to apply in this heterogeneous-cost setting, as shown
in the Internet Appendix.25

A. Setup

We adopt the model of Section II with one difference: dealer i has the total cost
ci = c + εi for supplying the asset to a trader, where ε1, ..., εN are independent
binomial random variables whose outcomes are zero and 
, with respective
probabilities γ ∈ (0,1) and 1 − γ . Dealer i observes c and εi, but not ε j , for
j 
= i. The published benchmark is the common dealer cost component c. As
before, we can view c as the cost to dealers for acquiring the asset in the
interdealer market. The new cost component εi is a private cost to dealer i
for supplying the asset. For instance, a dealer’s effective cost for supplying a
particular asset could naturally depend on the dealer’s current inventory and

25 The Internet Appendix is available with the online version of the article on the Journal of
Finance website.
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internal risk budget. To the extent that the heterogeneity in dealers’ costs arises
from private information of this sort, we expect that customers are unable to
distinguish, ex ante, high-cost dealers from low-cost dealers.

Throughout this section we maintain the following two assumptions.

ASSUMPTION A1: Search is socially optimal, in that s < γ
.

ASSUMPTION A2: Gains from trade exist with probability one. That is, c̄ < v −
.

Together, these conditions imply full entry by slow traders in equilibrium, in
the presence of a benchmark. This allows us to separately identify the welfare
impacts associated with matching efficiency. Assumption A1 is motivated by
the observation that finding a low-cost dealer improves social welfare only if the
search cost is lower than the potential improvement in matching efficiency.26

Assumption A2 is adopted for expositional purposes only. We give general-
ized statements (weakening Assumption A2) of the results of this section in
Appendix B. We will show that if search costs are relatively low, then adding
a benchmark raises social surplus by making it easier for traders to find the
efficient (that is, low-cost) dealers.

B. The Benchmark Case

In the presence of a benchmark, the key intuition for the equilibrium con-
struction from Section II generalizes to this heterogeneous-cost setting, but
the supporting arguments are more complicated and several cases need to be
considered. For that reason, we focus here on parameter regions that are rel-
evant for social surplus comparisons, and relegate a full characterization to
Appendix B. Figure 4 summarizes pricing schemes that arise in equilibrium as
a function of the search cost s. We begin with the following result.

PROPOSITION 7: In the presence of a benchmark, the equilibrium is payoff-unique
and slow traders use a reservation-price strategy.

Proposition 7 is not surprising given the analysis of Section II. However,
there is a subtle but important difference. Under a reservation-price strategy,
a trader is indifferent between accepting an offer and continuing to search
when the offer is equal to her reservation price. In the setting of Section II
it does not matter whether traders accept such an offer or not because this
event has zero probability. But, with idiosyncratic costs, there are parame-
ter regions in which the only equilibrium requires traders who face an offer
at their reservation price to mix between accepting and continuing to search.
The mixing probabilities are important when there is an atom in the prob-
ability distribution of offers located at a trader’s reservation price. In equi-
librium, these atoms may arise if the reservation price is equal to the high

26 Appendix B provides the supporting analysis when Assumption A1 fails. In that case, there
will be no search in the equilibrium with the benchmark. While the absence of search is socially
optimal in this case, this is not the case in which we are most interested.
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Figure 4. Price supports in different equilibrium regimes. Lines represent the nonatomic (“con-
tinuous”) portions of distributions. Dots represent atoms. Low-cost dealers are shown in blue.
High-cost dealers are shown in red. (Color figure can be viewed at wileyonlinelibrary.com)

outcome of dealer costs, as in Panel C of Figure 4. This affects the infer-
ence made by dealers when they calculate the probability of facing a fast
trader.

To account for heterogeneous dealer costs, we need to adjust the probability
that a dealer’s counterparty is fast (as opposed to slow) from that given by
equation (1). This probability now depends on both the entry probability λc and
the c-conditional probability, denoted θc, that a slow trader rejects an offer from
a high-cost dealer. As θc gets larger, slow traders search more, and the posterior
probability that a dealer is facing a fast trader falls. We denote by q(λc, θc) the
probability that a contacting trader is fast. Accordingly, the definition of the
function α(λc) from equation (6) is generalized to a two-argument function
α(λc, θc) with values in (0,1). Explicit formulas are provided by equations (B5)
and (B6) in Appendix B. The role of α(λc, θc) is analogous to that of α(λc) in
Section II. Here, α(λc, θc) is strictly increasing in both arguments. As λc and
θc increase, the probability that a counterparty is slow rises, leading dealers
to quote higher prices in equilibrium. The constant α(1,1) is an analogue of
ᾱ in Section II and bounds α(λc, θc) from above. For the sake of simplifying
upcoming expressions, we denote

α̂ = α(1,1).

We now state the main result of this section.

PROPOSITION 8: If s ≤ (1 − α̂)γ
, then the equilibrium in the benchmark case
leads to efficient matching: slow traders always enter, and all traders buy from
a low-cost dealer in the event that there is at least one such dealer present in the
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market. Additionally, if s ≥ κ(1 − α̂)γ
, where κ < 1 is a constant27 depending
only on γ , μ, and N, the equilibrium with the benchmark achieves the second-
best, in the sense that each slow trader buys from the first low-cost dealer that
she contacts, minimizing search costs subject to matching efficiency.

To understand how benchmarks lead to efficient matching and second-best
performance in the above sense, consider first the case in which the search cost
s is in the interval

(κ(1 − α̂)γ
, (1 − α̂)γ
).

This case is illustrated in Panel B of Figure 4. In equilibrium, slow traders fol-
low a reservation-price strategy with a reservation price r�c that is below c +
.
Low-cost dealers quote prices according to a continuous probability distribution
whose support is below this reservation price. Thus, if there are any low-cost
dealers in the market, slow traders buy from the first low-cost dealer that they
contact. In the event that there are only high-cost dealers in the market, which
happens with probability (1 − γ )N, slow traders search the entire market and
then trade with one of the high-cost dealers at the price c +
. This second-best
equilibrium outcome is therefore fully efficient at matching.

The key role of the benchmark in this case is to introduce enough trans-
parency to permit traders to distinguish between efficient and inefficient deal-
ers. The benchmark ensures not only that traders ultimately transact with the
“right” sort of counterparty, but also that no search cost is wasted while look-
ing for this transaction. This last conclusion is true under the weaker condition
that s ≥ κ(1 − α̂)γ
.

If s < κ(1 − α̂)γ
, however, slow traders may search excessively. As the
search cost s get smaller, the equilibrium reservation-price r�c also gets smaller
(closer to c), and low-cost dealers are forced to quote very low prices if they want
to sell at the first contact of any slow trader. Because of their cost advantage,
low-cost dealers always have the “outside option” of trying head-on competition
by quoting a price above the reservation price (and just below c +
), hoping
that all other dealers have high costs (in which case low-cost dealers win the
resulting effective auction, making positive profits). It turns out that low-cost
dealers wish to deviate to this strategy when s < κ(1 − α̂)γ
. In the resulting
equilibrium, which we illustrate in Panel A of Figure 4 and describe formally
in Appendix B, matching remains efficient but we do not achieve the second
best, because of the higher-than-efficient amount of search.

The intuition described above indicates that a low-cost dealer’s incentive to
quote a high price should disappear as the number N of dealers gets large.
Indeed, as N becomes large the probability that all other dealers have high
costs goes to zero quickly. We confirm in the Internet Appendix (Section I.B)
that an upper bound on the potential surplus loss (compared to first-best)
goes to zero exponentially fast with N when s < κ(1 − α̂)γ
. In sharp contrast,

27 We have κ = (1 − γ )N−1/[μ(1 − γ )N−1 + (1 − μ)[1 − (1 − γ )N]/(Nγ )].
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surplus losses are potentially unbounded in N when s is close to (1 − α̂)γ
.
Hence, for practical purposes, it is natural to focus on the case s ≥ κ(1 − α̂)γ
.

C. The No-Benchmark Case

We now show that, without the benchmark, it is impossible to achieve the
second best.

PROPOSITION 9: In the absence of a benchmark, if c̄ > c +
 there does not exist
an equilibrium that achieves the second best.

Our proof of the proposition explores the simple idea that when there is
no benchmark for traders to observe, they cannot recognize a low-cost dealer
when they contact one. In the absence of a benchmark, traders can rely only
on Bayesian inference based on the observed price quotes. This Bayesian infer-
ence, however, can be relatively ineffective. With low realizations of the common
cost component c, high-cost dealers may make offers that “imitate” the offers
that low-cost dealers would make at higher realizations of c. As a result, slow
traders buy from inefficient dealers or engage in socially wasteful search. The
benchmark adds enough transparency to allow traders to distinguish between
high offers from low-cost dealers and low offers from high-cost dealers.

D. Welfare Comparison

As a corollary of Propositions 8 and 9, we obtain the following result, provid-
ing conditions under which adding a benchmark improves welfare.

THEOREM 5: If (i) κ(1 − α̂)γ
 ≤ s ≤ (1 − α̂)γ
 and (ii) c̄ > c +
 both hold, then
the equilibrium in the benchmark case yields a strictly higher expected social
surplus than that of any equilibrium in the no-benchmark case.

The theorem does not cover the entire search-cost space. We discuss the
remaining cases in the Internet Appendix (Section I.A), where we show in
particular that the second best is not achieved if s > (1 − α̂)γ
, even if the
benchmark is present. Nonetheless, with a benchmark, if search costs are
not too large, partial efficiency applies to the matching of traders to low-cost
dealers. The (unique) equilibrium supporting this outcome has an interesting
structure. High-cost dealers post a price c +
 equal to the reservation price r�c
of slow traders, as in Panel C of Figure 4. Slow traders accept that price with
some nontrivial (mixing) probability that is determined in equilibrium.

When search costs are sufficiently high, as in Panel D of Figure 4, both types
of dealers sell at a strictly positive profit margin, and slow traders buy from the
first dealer encountered. Thus, in this case, matching is inefficient. To make
welfare comparisons for this parameter region, it is necessary to explicitly
characterize the no-benchmark equilibrium, which is difficult because traders
can potentially search multiple times and their posterior beliefs about c are
intractable.
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That said, for the case of two dealers, we can provide a full characterization
of reservation-price equilibria in the no-benchmark case. Under the condition
s ≥ κ(1 − α̂)γ
, we show that matching is more efficient with a benchmark than
without, provided that traders use a reservation-price strategy in equilibrium.
Because the details are complicated, we relegate them to the Internet Appendix
(Section I.C).

E. Introduction of Benchmarks by Low-Cost Dealers

This subsection analyzes the incentives of low-cost dealers to introduce a
benchmark on their own—despite opposition from high-cost dealers—as a pow-
erful device to compete for business. We show that, under certain conditions,
the collective decision of low-cost dealers to add a benchmark drives high-cost
dealers’ profits to zero and forces them out of the market. As a result, low-cost
dealers make more profits and the market becomes more efficient overall. This
may explain why emergent “benchmark clubs” are often able to quickly attract
the bulk of trades in some OTC markets, as was the case with LIBOR.

To explain how “benchmark clubs” may emerge, we augment our search-
market game with an earlier stage in which dealers decide whether to introduce
a benchmark and, after calculating their expected profits, whether to enter
the market themselves. To simplify the modeling, we suppose that there are
two types of environments with respect to the cross-sectional distribution of
dealer cost efficiency. With some probability � ∈ (0, 1), there is a relatively
low-cost environment in which the number L of low-cost dealers is at least two.
Otherwise, there are no low-cost dealers (L = 0). We rule out the case in which
there is exactly one low-cost dealer in the market because in that case, for a high
enough cost difference 
, the low-cost dealer would be an effective monopolist,
complicating the analysis. A formal description of the game follows.

1. Pre-trade stage: the introduction of a benchmark and entry by dealers.
(a) Nature chooses the dealer-cost environment, whose outcome is not

observed. With probability 1 − �, all dealers have high costs. With
probability �, the number L of low-cost dealers is drawn from a trun-
cated binomial distribution with parameters (N, γ ), where the trun-
cation restricts the support to the set {2,3, . . . ,N}. Conditional on L,
the identities of dealers with low costs are drawn independently of
L and symmetrically.28 The idiosyncratic component εi of dealer i is
the private information of dealer i.

(b) Dealers simultaneously vote, anonymously, whether to have a bench-
mark or not. If there are at least two votes in favor, the benchmark is
introduced. (In Section IV we explain how dealers could implement
a benchmark, provided that there are at least two of them.) In this

28 This implies that ε1, . . . , εN are no longer i.i.d. Our results would hold under more general
distributions of dealer types. The only properties required of the unconditional distribution of L
are (i) symmetry with respect to dealer identities, (ii) the events L = 0 and L ≥ 2 both have positive
probability, and (iii) the event L = 1 has zero probability.
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case, c immediately becomes common knowledge. If the number of
votes in favor is zero or one, the benchmark is not introduced.

(c) Dealers make entry decisions. For simplicity, we adopt a tie-breaking
rule that dealers enter if and only if their expected trading profits are
strictly positive.

(d) After dealers’ entry decisions, the number of dealers that enter, de-
noted M, becomes common knowledge among dealers and traders.

2. Trading stage. The game proceeds as before, but with N replaced by M.

We denote by

X
 = G(v −
)E (v − c −
 | c ≤ v −
)

the expected gain from trade with high-cost dealers. The following theorem
establishes conditions that are sufficient to induce low-cost dealers to collec-
tively introduce the benchmark and drive their high-cost competitors out of the
market.

THEOREM 6: Suppose that s < (1 − ᾱ)(v − c̄). Then there is a constant 
� such
that, for any dealer cost difference 
 ≥ 
�, the following are true.

� There exists an equilibrium of the extended game in which all low-cost
dealers vote in favor of the benchmark and all high-cost dealers vote against
it. There are no profitable group deviations in the voting stage.

� If the environment is competitive (that is, L ≥ 2), the benchmark is intro-
duced, all high-cost dealers stay out of the market, all low-cost dealers enter
the market, and all traders enter the market.

� If the environment is uncompetitive (L = 0), the benchmark is not intro-
duced, and high-cost dealers enter the market if and only if X
 > s.

A proof is provided in Appendix B. Here, we explain the intuition of the
result.

To start, we note that the theorem makes economically significant predictions
about the role of the benchmark only in the case X
 > s. This case arises if s
is sufficiently small. In the opposite case of X
 < s, high-cost dealers earn
zero profits regardless of whether the benchmark is introduced, so they are
indifferent between voting in favor of or against the benchmark, and they
never enter. In the discussion below, we focus on the interesting case of X
 > s,
in which high-cost dealers can make positive profits and strictly prefer not to
introduce the benchmark.

The benchmark serves as a signaling device for low-cost dealers to announce
to traders that the environment is competitive. The signal is credible because
traders, expecting low prices conditional on introducing the benchmark, set
a low reservation price in equilibrium. Therefore, high-cost dealers cannot
imitate low-cost dealers by deviating and announcing the benchmark. Instead,
they prefer to trade in opaque markets without the benchmark and with low
participation by slow traders, which allows them to make positive profits.
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Low-cost dealers have two distinct incentives to add the benchmark. First,
adding the benchmark encourages the entry of slow traders. In addition to the
intuition conveyed in Section II, in the setting of this section the benchmark
plays the additional role of signaling the types of active dealers, because the
benchmark is added endogenously. On the equilibrium path, once a benchmark
is introduced, slow traders believe with probability one that all active dealers
have low costs. If a benchmark is not introduced, slow traders believe that
all dealers have high costs. As a consequence, the (correctly) perceived gain
from trade by slow traders goes up considerably if a benchmark is added. This
channel encourages entry. The condition s < (1 − ᾱ)(v − c̄) ensures full entry by
traders if the benchmark is introduced.

Second, low-cost dealers capture additional market share by adding the
benchmark. With a large enough dealer cost difference 
, the expected gains
from trade are small if the benchmark is not introduced. As a result, we show
that slow traders who enter will set a reservation price r� equal to v in the
trading-stage subgame, and high-cost dealers inevitably capture a large pro-
portion of trades with slow traders. If, however, the benchmark is introduced,
a sufficiently large 
 makes high-cost dealers’ quotes highly uncompetitive,
which drives trades to low-cost dealers. Thus, although the per-trade profit of
low-cost dealers may be lower with the benchmark, they capture an additional
amount of trade. In fact, in equilibrium, if the environment is relatively com-
petitive, high-cost dealers drop out completely because they cannot make any
profit. Low-cost dealers handle all of the trades.

The first part of Theorem 6 asserts that in the equilibrium that we construct
there are no profitable group deviations in the voting stage. In the usual Nash
equilibrium of the voting game, if everyone is voting against or in favor, no
dealer is pivotal. Each outcome may be supported in equilibrium. This arbi-
trariness is eliminated by allowing group deviations.

F. On Optimal Mechanisms with Heterogeneous Dealer Costs

In the heterogeneous cost setting, the efficiency of the market is driven by
(i) matching efficiency and (ii) total search costs. (Recall that we have imposed
parameter restrictions that guarantee full entry.) Proposition 8 shows that,
when search costs are small, adding a benchmark achieves full matching ef-
ficiency. Thus, any additional benefit from an optimal mechanism must arise
from reducing total search costs.

In the previous subsection we show that, under parameter conditions, with
endogenous entry by dealers, high-cost dealers stay out of the market after the
benchmark is published. The resulting market equilibrium is analogous to that
of the model with homogeneous dealer costs. When this happens, slow traders
search only once, and publication of the benchmark achieves the fully efficient
outcome (subject to the institutional constraint that any trade must involve
incurring the search cost s). The benchmark mechanism uses no information
beyond the common cost component c. Moreover, c can be elicited from dealers
in an incentive-compatible way (as will be shown in Section IV). At least under
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these parameter conditions, the benchmark mechanism is implementable and
there is no mechanism that can improve upon it.

For arbitrary parameters, it is difficult to characterize the optimal mecha-
nism. Even calculating the market equilibrium for any fixed mechanism (other
than announcing the benchmark) is intractable in most cases. Sections II and
III show a range of potential impacts of changing market transparency. Al-
though it is not easy to formally analyze all trade-offs in one model of optimal
mechanism design, announcing the benchmark seems to be a simple and robust
mechanism that performs well in both versions of the model.

IV. Benchmark Manipulation and Implementation

Recent scandals involving the manipulation of interest-rate benchmarks
such as LIBOR and EURIBOR, as well as currency price fixings provided by
WM/Reuters, have shaken investor confidence in financial benchmarks. Serious
manipulation problems or allegations have also been reported for other major
benchmarks, including those for term swap rates, gold, silver, oil, and pharma-
ceuticals.29 Major banks are now more reluctant to support these benchmarks
in the face of potential regulatory penalties and private litigation. For example,
of the 44 banks contributing to EURIBOR before the initial reports of manip-
ulation, 18 have already dropped out of the participating panel.30 Regulators
have responded not only with sanctions,31 but also by taking action to support
more robust benchmarks. The Financial Stability Board has set up several
international working groups charged with recommending reforms to interest
rate and foreign exchange benchmarks that would reduce their susceptibility
to manipulation while maintaining their usefulness in promoting market effi-
ciency.32 The United Kingdom now has a comprehensive regulatory framework
for benchmarks.33

29 See, respectively, Scott Patterson and Katy Burne, “CFTC Probes Potential Manipulation,”
Wall Street Journal, April 8, 2013; Liam Vaughn, “Gold Fix Study Shows Signs of Decade of Bank
Manipulation, Bloomberg, February 8, 2014; Patricia Hurtado, “Deutsche Bank, HSBC Accused of
Silver Fix Manipulation,” Bloomberg, July 25, 2014; Justin Scheck and Jenny Gross, “Traders Try
to Game Platts Oil Price,” Wall Street Journal, June 19, 2013; and Gencarelli (2002).

30 See Jun Brundsen, “ECB Seeks Rules to Stem Bank Exodus from Benchmark Panels,”
Bloomberg, June 19, 2014.

31 See Gavin Finch and Nicholas Larkin, “U.K. Seeks to Criminalize Manipulation of 7 Bench-
marks,” Bloomberg, September 25, 2014.

32 See Official Sector Steering Group (2014), Market Participants Group (MPG) on Reference
Rate Reform (2014), and Foreign Exchange Benchmark Group (2014).

33 See Bank of England (2014). This report provides a list of OTC-market benchmarks “that
should be brought into the regulatory framework originally implemented in the wake of the LI-
BOR misconduct scandal.” (See page 3 of the report.) A table listing the benchmarks that are
recommended for regulatory treatment is found on page 15. In addition to LIBOR, which is al-
ready regulated in the United Kingdom, these are the overnight interest rate benchmarks known
as SONIA and RONIA, the ISDAFix interest rate swap index, the WM/Reuters 4 pm closing for-
eign exchange price indices (which cover many currency pairs), the London Gold Fixing, the LBMA
Silver Price, and ICE Brent (a major oil price benchmark).
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So far, we have assumed that dealers can credibly commit to the truthful
revelation of c. In this section we outline a simple and explicit mechanism that
truthfully implements a benchmark, provided there are at least two dealers,
and provided that a benchmark administrator can impose transfers in the form
of fees and subsidies among them for their cost-related submissions.34 For
simplicity, we assume that γ = 1 throughout (the results can be generalized to
the heterogeneous case in a straightforward way).

Suppose that there exists a benchmark administrator who can design an ar-
bitrary “benchmark announcement” mechanism with transfers. Here, a mecha-
nism is a pair (M, g), where M = (M1 × · · · × MN) is the product of the message
spaces of the N respective dealers, and where g : M → [c, c̄] × R

N. The function
g maps the dealers’ messages (m1, . . . , mN) to an announced benchmark c̃ and
to transfers t1, . . . , tN from the respective dealers to the mechanism designer.
Each mechanism induces a game in which dealers first submit messages. The
second stage of the game is the trading game presented in Section II of this
paper, in which traders assume that the announced benchmark c̃ is a truthful
report of the actual cost c.

In this setting, “Nash implementability” means that there exists a mecha-
nism whose associated game has a Nash equilibrium in which the announced
benchmark c̃ is the true cost c. “Full implementability” adds the requirement
that this is the unique equilibrium of the mechanism-induced game.

PROPOSITION 10: Truthful revelation of c is Nash implementable, but is not fully
Nash implementable.

The proposition states that each dealer wants to report a message supporting
the announcement of a benchmark that is the true cost c, provided that he be-
lieves that all other dealers report in this manner. However, for the mechanism
that we construct, there is also an equilibrium in which all dealers report the
same, but false, common cost level. The second part of Proposition 10 asserts
that this cannot be avoided. That is, there exists no mechanism with a unique
equilibrium in which dealers report truthfully. Informally, this means that it
is impossible to elicit information about c in a way that is not susceptible to
collusion.

That said, a benchmark administrator could use post-trade transaction re-
porting to assist with the detection of collusion. For example, if the reported
cost c implies a distribution of transaction prices that differs substantially from
the empirically observed distribution of transaction prices, there could be scope
for further investigation by the benchmark administrator.

Specifying and solving an equilibrium model of manipulation is beyond the
scope of this paper. Explicit models of benchmark manipulation in different

34 Again, the benchmark in our setting is the common component of dealers’ costs. For compari-
son, in a cheap-talk model, Lubensky (2016) derives conditions under which a supplier voluntarily
reveals his idiosyncratic (or private) production cost by publishing a nonbinding price recommen-
dation. Thus, our model and Lubensky (2016) are complementary to each other.
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settings are offered by Coulter and Shapiro (2014) and Duffie and Dworczak
(2014).35

V. Concluding Remarks

Benchmarks underlie a significant fraction of transactions in financial and
nonfinancial markets, particularly those with an OTC structure that rules
out a common trading venue and a publicly announced market-clearing price.
This paper provides a theory of the effectiveness and endogenous introduction
of benchmarks in search-based markets that are opaque in the absence of a
benchmark. Our focus is the role of benchmarks in improving market trans-
parency. That is, lowering the informational asymmetry between dealers and
their customers regarding the true cost to dealers of providing the underlying
asset.

In the absence of a benchmark, traders have no information other than their
own search costs and what they learn individually by “shopping around” for an
acceptable quote. Dealers exploit this market opaqueness in their price quotes.
Adding a benchmark alleviates information asymmetry between dealers and
their customers. We provide naturally motivated conditions under which the
publication of a benchmark raises expected total social surplus by encouraging
greater market participation by buy-side market participants, by improving
the efficiency of matching, and by reducing wasteful search costs.

In some cases, dealers have an incentive to introduce benchmarks despite the
associated loss of local monopoly advantage, because of a more-than-offsetting
increase in the trade volume achieved through greater customer participation.
When dealers have heterogeneous costs for providing the asset, those who are
more cost-effective may introduce benchmarks themselves, to improve their
market share by driving out higher-cost competitors.

Under homogeneous dealers’ cost, disclosing the benchmark is a socially
optimal mechanism if the realized dealers’ cost, or the benchmark, is above an
endogenous threshold. When the benchmark level is below this threshold, the
optimal mechanism discloses a range of the benchmark but not its exact level.
This mechanism also turns out to be optimal for dealers.

Which markets have a benchmark is not an accident of chance, but rather
is likely to be an outcome of conscious decisions by dealers, case by case, when
trading off the costs and benefits of the additional market transparency af-
forded by a benchmark. Our analysis also suggests that there may be a public

35 Coulter and Shapiro (2014) solve a mechanism design problem with transfers in a setting
that incorporates important incentives to manipulate that are absent from our model. They reach
a similar conclusion in that it is possible to implement a truthful benchmark, but their mecha-
nism can also be “rigged” for false reporting through collusion by dealers. In a different model of
benchmark design and manipulation, Duffie and Dworczak (2014) show that, without transfers,
an optimizing mechanism designer will generally not implement truthful reporting. Instead, con-
sidering a restricted class of mechanisms, they characterize a robust benchmark that minimizes
the variance of the “garbling,” which is the difference between the announced benchmark and the
true cost level.
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welfare role for regulators regarding which markets should have a benchmark,
and also in support of the robustness of benchmarks to manipulation.
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Appendix A: Proofs for Section II

A. Proof of Proposition 1

Here, we fill in the gaps in the derivation of the equilibrium in the benchmark
case. We focus on the nontrivial case in which c ≤ c < v − s.

As we argue in Section II, regardless of the price distribution that dealers use
in a symmetric equilibrium, slow traders play a reservation-price strategy with
some reservation price rc. Fast traders play their weakly dominant strategy of
searching the entire market. (Thus, if the trader is a fast trader, the dealers
are essentially participating in a first-price auction.)

Given this strategy of traders, the following lemma establishes the properties
of the dealers’ equilibrium response.

LEMMA A1: If slow traders enter with a strictly positive probability, the equi-
librium price distribution cannot have atoms or gaps, and the upper limit of the
distribution is equal to rc.

PROOF: Suppose there is an atom at some price p in the distribution of prices
Fc( · ) for some cost level c ∈ (c, v − s). Suppose further that p > c. In this case
a dealer quoting p can profitably deviate to a price p − ε, for some small ε > 0
(because slow traders play a reservation-price strategy, the probability of trade
jumps up discontinuously). Because dealers never post prices below their costs,
we must have p = c. But that is also impossible, because a dealer could then
profitably deviate to rc (clearly, rc ≥ c + s in equilibrium). Thus, there are no
atoms in the distribution.

Second, suppose that p̄c > rc. In this case the dealer posting p̄c makes no
profits, so she could profitably deviate to rc. In contrast, if p̄c < rc, a dealer can
increase profits by quoting rc instead of p̄c as this does not affect the probability
of selling. Thus, p̄c = rc.

Third, suppose that there is an open gap in the support of the distribution of
prices conditional on some cost level c, that is, an interval (p1, p2) ⊂ [p

c
, p̄c] \

supp(Fc( · )). Take this interval to be maximal, that is, such that p1 is an infimum
and p2 is a supremum, both subject to being in the support of Fc( · ). Then we
get a contradiction because the probability of selling is the same whether the
dealer posts p1 or p2. �

The rest of the equilibrium characterization follows from the derivation in
Section II.
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B. Proof of Lemma 1

Let r�0 be the equilibrium first-round reservation price for slow traders. Note
that, unlike in the benchmark case, r�0 is a number, not a function of c.

We take c < r�0. Such a c exists because r�0 ≥ c + s. Suppose that the upper
limit of the support of the distribution Fc of offer prices, p̄c, is (strictly) larger
than r�0. Since traders follow a reservation-price strategy, and because fast
traders visit all dealers, there can be no atoms in the distribution of prices
(otherwise a dealer could profitably deviate by quoting a price just below the
atom). Thus, a dealer setting the price p̄c never sells in equilibrium and hence
makes zero profit. However, she could make positive profit by setting a price
equal to r�0. Thus, p̄c ≤ r�0. Because we took an arbitrary c < r�0, it follows that,
whenever c < r�0, traders do not observe prices above r�0 on the equilibrium path.

Suppose that r�0 < v. Whenever the realization of c lies above r�0, the of-
fer in the first round must be rejected by a slow trader (dealers cannot offer
prices below their costs). In particular, a slow trader must reject the price
p� ∈ supp(Fc( · )) with r�0 < p� ≤ inf{p ∈ supp(Fc( · ) : c > r�0} + δ < v, for a suffi-
ciently small δ > 0.36 This is a contradiction. Indeed, by the previous paragraph,
conditional on observing a price p > r�0 in the first round, the trader believes
that c must lie above r�0 with probability one. But in this case, the price p�

is within δ of the best possible price that the trader can ever be offered, so
this offer should be accepted by a slow trader (if δ < s), contrary to p� > r�0.
This shows that r�0 = v.

Finally, suppose that p̄c < v for some c < v. Then a dealer quoting the price
p̄c could profitably deviate by posting a price v (the probability of trade is
unaffected). This justifies the second claim.

C. Proof of Proposition 2

Fix a fraction λ of slow traders that enter. By Lemma 1 and the arguments
used in the derivation of equilibrium prices in the benchmark case, the cdf of
offered prices must be

Fc(p) = 1 −
[
λ(1 − μ)

Nμ
v − p
p − c

] 1
N−1

(A1)

with support [p
c
, v], where p

c
= ϕ(λ)v + (1 − ϕ(λ))c and

ϕ(λ) = λ(1 − μ)
Nμ+ λ(1 − μ)

.

We note that the only difference with the equilibrium pricing under the bench-
mark is that the reservation price and probability of entry are constants, not
functions of c.

36 Such a p� exists. As long as c < v, in equilibrium dealers must be posting prices below v with
positive probability.
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We can now calculate the expected profits of slow traders if they choose to
enter:

π (λ) = −s +
∫ v

c

[∫ v

p
c

(v − p) dFc(p)

]
dG(c) = −s + (1 − α(λ))X,

where

X = G(v) [v − E [c| c ≤ v]]

is the expected gains from trade. By reasoning analogous to that in the bench-
mark case, we determine that:

� If s ≤ (1 − ᾱ)X, there must be full entry by slow traders (λ� = 1).
� If s ≥ X, there cannot be entry by slow traders (λ� = 0).
� If s ∈ ((1 − ᾱ)X, X), then the entry of slow traders is interior, with proba-

bility λ� determined uniquely by the equation (10).

D. Proof of Proposition 3

Given Proposition 2, to prove existence in our setting we need only show that
a slow trader does not want to search after observing a price p ≤ v in the first
round. After observing a price p, the slow trader forms a posterior probability
distribution of c, given by the cdf

G(c | p) =
∫ c

c fy(p) dG(y)∫ c̄p

c fy(p) dG(y)
,

where fc(p) denotes the density of the distribution defined by the cdf (11), and

c̄p = 1
1 − ϕ(λ�)

p − ϕ(λ�)
1 − ϕ(λ�)

v

is the upper limit of the support of the posterior distribution.
With two dealers, it is easy to provide a necessary and sufficient condition

for existence. A price p is accepted in the first round if and only if

v − p ≥ −s +
∫ c̄p

c

[∫ p

p
c

(v − ρ) fc(ρ) dρ + (v − p)(1 − Fc(p))

]
dG(c | p),

or

s ≥
∫ c̄p

c

∫ p
p

c
Fc(ρ)dρ(v − c)(p − c)−2 dG(c)∫ c̄p

c (v − c)(p − c)−2 dG(c)
. (A2)

Thus, a reservation-price equilibrium with two dealers exists if and only if
inequality (A2) holds for all p ∈ (p

c
, v). The condition can be easily verified, as

the expression on the right-hand side of (A2) is directly computable.
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With more than two dealers, an additional difficulty arises because it is not
easy to calculate the continuation value when an offer p is rejected in the
first round. We can nevertheless provide a sufficient condition based on the
following argument. Suppose that after observing p and forming the posterior
belief about c, the slow trader is promised to find, in the next search, an offer
equal to the lower limit of the price distribution. This provides an upper bound
on the continuation value; thus, if the trader decides not to search in this case,
she would also not search under the actual continuation value. A sufficient
condition for existence is therefore that

s ≥ (p − v) + (1 − ϕ(λ�))

∫ c̄p

c (v − c)2(p − c)−
N

N−1 dG(c)∫ c̄p

c (v − c)(p − c)−
N

N−1 dG(c)
, (A3)

for all p ∈ (p
c
, v). Again, inequality (A3) can be directly computed and verified.

The last step in the proof is to show that inequality (A3) holds for s in some
range below X. To this end, we analyze the behavior of the posterior distribution
of costs G(c | p) after a price p is observed by a slow trader in the first round
when the probability of entry λ� is small. As λ� ↘ 0, conditional on p, the upper
limit of the support of the posterior cost distribution, c̄p, converges to p. Thus,
G(c | p) converges pointwise to zero for c < p and to one for c > p. By one of
the (equivalent) definitions of weak� convergence of probability measures, the
posterior distribution converges in distribution to an atom at p. Thus, in the
limit, inequality (A3) becomes

s ≥ (p − v) + (1 − ϕ(0))(v − p) = 0,

and is thus vacuously satisfied. By continuity of the right-hand side of inequal-
ity (A3), the inequality holds if λ� is smaller than some λ > 0. Recall that λ� is
determined uniquely by equation (10). Moreover, it is continuous and strictly
decreasing in s for s ∈ ((1 − ᾱ)X, X), and equal to zero at s = X. Thus, there
exists s < X such that, for all s > s, λ� is smaller than λ.

E. Proof of Theorem 1

We first outline the main steps of the argument, and leave the technical
details for the two lemmas that follow. To make the proof concise, we make
a change of variables by defining x = (v − c)+ ≡ max{v − c,0} as the realized
gain from a trade given the common cost c.

Note first that conditions (i) and (ii) both imply that s > (1 − ᾱ)X. The case s ≥
X is trivial to analyze as there is no entry of slow traders without the benchmark
(see Proposition 2). Thus, we focus on the range (1 − ᾱ)X< s < X, within which
Proposition 2 implies interior entry in the absence of the benchmark.

The total expected surplus in the no-benchmark case is

Wnb ≡ [
λ�(1 − μ) + μ

]
X − λ�(1 − μ)s.
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With the benchmark, we let λ(x) denote the probability of entry by slow traders
conditional on a realized gain from trade of x. By Proposition 1,

λ(x)

⎧⎨
⎩

= 0, if x ≤ s,
solves s = (1 − α(λ(x)))x, if s < x < s

1−ᾱ ,
= 1, if x ≥ s

1−ᾱ .

The conditional expected social surplus in the benchmark case conditional
on x is

Wb(x) ≡ [
λ(x)(1 − μ) + μ

]
x − λ(x)(1 − μ)s.

The crucial observation, demonstrated in Lemma A2 below, is that Wb is a con-
vex function on [0, s/(1 − ᾱ)]. Figure 1 depicts a typical shape of that function.

Under condition (i), Wb is convex on its entire domain. (This corresponds to
cutting off the part of the domain that upsets convexity, as shown in Figure 1).
We can thus apply Jensen’s Inequality to obtain

E
[
Wb(x)

] ≥ Wb [E (x)] = Wb

(∫ c̄

c
(v − c)+ dG(c)

)
= Wb(X) = Wnb.

To justify the last equality, one notes that λ� is precisely λ(X), by equations (8)
and (10). (This inequality is actually strict because G is a nondegenerate dis-
tribution and because λ(x) > 0 with positive probability under G.)

Under condition (ii), Wb may fail to be convex on its entire domain. However,
an inspection of the proof of Jensen’s Inequality shows that all that is required
to achieve the inequality is that the function Wb is subdifferentiable37 at E(x).
The slope of Wb is increasing on [0, s/(1 − ᾱ)] and equal to 1 on (s/(1 − ᾱ), v − c].
Thus, a sufficient condition for existence of a supporting hyperplane of Wb
at X is that W ′

b(X) ≤ 1. We thus want to solve the equation W ′
b(x0) = 1 for

x0 ∈ (s, s/(1 − ᾱ)) and impose X ≤ x0. (See Figure 1.) An explicit solution is
not available, so instead we show in Lemma A3 below (by approximating the
functions α and λ) that this condition is implied by s ≥ (1 − ψ)X.

Finally, a simple application of the Lebesgue Dominated Convergence Theo-
rem shows that ᾱ converges (monotonically) to 1 when either N → ∞ or μ → 0.
Thus, condition (i) holds if N is large enough or if μ is small enough.

LEMMA A2: Wb(x) and λ(x) are convex functions on [0, s/(1 − ᾱ)].

PROOF: First we prove that λ(x) and Wb(x) are convex on (s, s/(1 − ᾱ)]. By the
Implicit Function Theorem, λ is twice differentiable on this interval and we
have

∂λ

∂x
= (1 − α(λ))

α′(λ)x
> 0

37 A function f : [a, b] → R is said to be subdifferentiable at x0 if there exists a real number ξ such
that, for all x in [a,b], we have f (x) − f (x0) ≥ ξ (x − x0). If Wb is convex, then it is subdifferentiable
on the interior of its domain by the Separating Hyperplane Theorem.
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and

∂2λ

∂x2 =
−α′(λ)(1 − α(λ)) − (1 − α(λ))

[
α′(λ) + α′′(λ) (1−α(λ))

α′(λ)

]
[
α′(λ)x

]2 .

Hence, ∂
2λ
∂x2 ≥ 0 for all x ∈ (s, s/(1 − ᾱ)) if and only if, for all λ ∈ (0, 1),

2
[
α′(λ)

]2 + α′′(λ)(1 − α(λ)) ≤ 0. (A4)

Letting β = Nμ/(1 − μ) and computing the derivatives of α(λ), we rewrite (A4)
as (∫ 1

0

βzN−1(
λ+ βzN−1

)2 dz

)2

≤
(∫ 1

0

βzN−1(
λ+ βzN−1

)3 dz

)(∫ 1

0

βzN−1

λ+ βzN−1 dz

)
.

Hölder’s Inequality states that, for all measurable and square-integrable func-
tions f and g, ‖ fg‖1 ≤ ‖ f ‖2‖g‖2. By letting

f (z) =
√√√√ βzN−1(

λ+ βzN−1
)3 and g(z) =

√
βzN−1

λ+ βzN−1 ,

we have proven inequality (A4) and thus the convexity of λ(x).
Now it becomes straightforward to check that Wb(x) is convex on [s, s/(1 − ᾱ)].

Notice that Wb(x) and λ(x) are trivially convex on [0, s] (because, on this inter-
val, λ(x) is identically zero and Wb(x) is affine). Therefore, to finish the proof it
is enough to make sure that λ(x) and Wb(x) are differentiable at s. We can verify
this by computing the left and right derivatives: ∂−Wb([s]) = μ = ∂+Wb([s]) and
∂−λ([s]) = 0 = ∂+λ([s]). �

LEMMA A3: If x ≤ s
1−ψ , whereψ = 1

2 [
√

(1 − ᾱ + ᾱβ)2 + 4ᾱ(1 − ᾱ) − (1 − ᾱ + ᾱβ)]

and β = Nμ
1−μ , then W ′

b(x) ≤ 1.

PROOF: The claim is true for x ≤ s, and since ψ ≤ ᾱ, we can focus on the region
where λ(x) is defined as the solution to equation (8), which can be written as

α(λ(x)) = 1 − s
x
.

Since α( · ) is a strictly increasing function, if we replace α( · ) in the above
equation by a lower bound, any solution of the new equation will be an upper
bound on λ(x). Because Wb(x) is convex in the relevant part of the domain (by
Lemma A2), to make sure that W ′

b(x) ≤ 1, it’s enough to require that x ≤ x0,
where x0 solves W ′

b(x0) = 1 (such x0 exists and is unique). We have

W ′
b(x0) = μ+ λ′(x0)(1 − μ)(x0 − s) + λ(x0)(1 − μ) = 1. (A5)
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We cannot solve this equation explicitly, so we provide a lower bound on the
solution. Because W ′

b(x) is increasing, we need to bound W ′
b(x) from above. Since

α(λ) ≥ λᾱ, by the above remark, the solution of the equation

ᾱλ̄(x) = 1 − s
x

provides an upper bound on λ(x). That is,

λ(x) ≤ λ̄(x) = 1
ᾱ

− s
ᾱ

1
x
.

Moreover,

λ′(x) = 1
α′(λ(x))

s
x2 ,

and we have, for all λ ∈ [0, 1],

α′(λ) =
∫ 1

0

βzN−1(
λ+ βzN−1

)2 dz ≥ 1
λ+ β

∫ 1

0

(
λ+ βzN−1

λ+ βzN−1 − λ

λ+ βzN−1

)
dz

= 1
λ+ β

(1 − α(λ)) ≥ 1 − ᾱ

λ+ β
.

Plugging these bounds into equation (A5) and rearranging, we obtain

β + 1
ᾱ

− s
ᾱ

1
x0

1 − ᾱ

s
x0

(
1 − s

x0

)
+ 1
ᾱ

[
1 − s

x0

]
= 1.

Denoting y = 1 − s/x0, bounding the left-hand side from above one more time,
and rearranging, we get

y2 + (1 − ᾱ + ᾱβ)y − ᾱ(1 − ᾱ) = 0.

The relevant solution is ψ . �

F. Proof of Proposition 4

This result follows directly from Propositions 1 and 2.

G. Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1, so we skip
some of the details. Denote the expected profits of a dealer in the benchmark
case conditional on x (where x = (v − c)+) by χb(x) and in the case with no
benchmark by χnb. Recall from Propositions 1 and 2 that

χb(x) = λ(x)(1 − μ)
N

s
1 − α(λ(x))

and χnb = Xλ�(1 − μ)/N.
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Assume that condition (i) holds. Then, using the fact that λ(x) is given by
s = (1 − α(λ(x)))x in the relevant range, we can write χb(x) = (1 − μ)λ(x)x/N.
By Lemma A2, λ(x) is increasing and convex, so χb(x) is also convex. Therefore,
applying Jensen’s Inequality we get

E
[
χb(x)

] ≥ χb (E[x]) = χb(X) = χnb.

Now assume that condition (ii) holds. As in the proof of Theorem 1, we want
to find a condition on X that would guarantee that the profit function χb is
subdifferentiable at X. Using the reasoning from the proof of Theorem 1, we
can establish existence of a constant η ∈ (0, ᾱ) that depends only on μ and N,
such that X ≤ s/(1 − η) guarantees existence of a supporting hyperplane at X
(thus allowing us to apply Jensen’s Inequality).

H. Proof of Proposition 5

For this proof only, let G̃ denote the distribution function of the gain from
trade max{v − c, 0} (derived from the cdf G of the cost c). We also denote
s̄ ≡ s/(1 − ᾱ) to simplify expressions. The proof is by contradiction. Suppose
that E[χb(x)] ≥ χb(E[x]) but E[Wb(x)] < Wb(E[x]). The first inequality implies
that X = E[x] < s̄ (with full entry, dealers would not want to introduce a bench-
mark). Using the expressions for Wb(x) and χb(x) derived in earler proofs, and
simplifying these inequalities, we obtain∫ s̄

v−c̄
λ(x)x dG̃(x) +

∫ v−c

s̄
s̄ dG̃(x) ≥ λ(E[x])E[x], (A6)

∫ s̄

v−c̄
λ(x)(x − s) dG̃(x) +

∫ v−c

s̄
(x − s) dG̃(x) < λ(E[x])(E[x] − s). (A7)

Combining (A6) and (A7) yields∫ s̄

v−c̄
λ(x)(x − s) dG̃(x) +

∫ v−c

s̄
(x − s) dG̃(x) <

∫ s̄

v−c̄
λ(x)x dG̃(x)

+
∫ v−c

s̄
s̄ dG̃(x) − sλ(E[x]),

or

s
[
λ(E[x]) −

∫ s̄

v−c̄
λ(x) dG̃(x) +

∫ v−c

s̄
dG̃(x)

]
︸ ︷︷ ︸

λ(E[x])−E[λ(x)]

<

∫ v−c

s̄
(s̄ − x) dG̃(x) ≤ 0.

Thus, we have λ(E[x]) < E[λ(x)], that is, the probability of entry is higher with
the benchmark. The last step in the proof is to show that this implies that the
benchmark case yields a higher expected social surplus than the no-benchmark
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case (leading to a contradiction). We have

E
[
λ(x)(x − s)

] = E
[
λ(x)(x − s)+

] ≥ E[λ(x)]E[(x − s)+] ≥ λ(E[x])E[(x − s)+]

≥ λ(E[x])E[x − s], (A8)

where the first equality is true because λ(x) = 0 when x ≤ s, the second in-
equality follows from the fact that λ(x) and (x − s)+ are positively correlated
as random variables (their covariance is positive), the third is by the fact that
λ(E[x]) < E[λ(x)], and the last one is trivial. Because Wb(x) is an affine trans-
formation of λ(x)(x − s), the inequality (A8) implies that E[Wb(x)] ≥ Wb(E[x]),
finishing the proof.

I. Proof of Theorem 3

First, we reformulate the problem as a Bayesian persuasion problem with in-
finite type and action spaces. A Sender (mechanism designer) who observes the
state of the world (cost c) sends a signal under commitment to an uninformed
Receiver (trader) who then takes an action based on the posterior belief of the
state. (See Kamenica and Gentzkow (2011), along with their Online Appendix,
for details.)

Given an arbitrary distribution function H of costs c, let XH = EH[(v − c)+]
be the associated expected gain from trade. In a reservation-price equilibrium
(which is assumed to exist in Section II.F), the entry probability of slow traders
is λ(XH), and the social surplus is Wb(XH). If the mechanism induces posterior
belief H conditional on slow traders observing the signal, then the value of the
objective function is Wb(XH). In particular, the objective function depends on
the posterior belief of the cost H only through the expectation of the conditional
gain from trade XH .

We can first simplify the problem by noting that it is always optimal to
reveal c whenever x = (v − c)+ < s. Indeed, fixing a mechanism, suppose the
probability of entry by slow traders conditional on the event x < s is strictly
positive. We can then construct a new mechanism that is identical to the old one,
except that it discloses c whenever x < s. In the new mechanism, when x < s
and c is revealed, slow traders do not enter. This raises social surplus because
not entering yields 0, whereas entering yields at most x − s, which is strictly
negative. When x ≥ s, any signal from the new mechanism induces a weakly
higher posterior mean gain from trade than that of the original mechanism.
Because social welfare Wb(XH) is increasing in the posterior mean XH , the new
mechanism does better than the old one.

Hence, we can focus on the case x ≥ s. Because there is a one-to-one corre-
spondence between x and c in this region, we can treat x as the primitive state.
Let G̃ be the distribution of x conditional on x ≥ s, which can be computed
from the original distribution G of costs. Dworczak and Martini (2017) provide
a method for constructing optimal signals for Bayesian persuasion problems
in which the objective function depends on the posterior beliefs of the under-
lying random variable only through the posterior mean. Optimization can be
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Figure A1. The functions Wb(x) and p(x) of the gain from trade x. (Color figure can be viewed at
wileyonlinelibrary.com)

performed directly in the space of distributions over posterior means. By apply-
ing duality methods, Dworczak and Martini (2017) prove the following result,
which we restate for the convenience of the reader. (The function p below can
be thought of as a Lagrange multiplier.)

LEMMA A4: Suppose that F is a cumulative distribution function on [s, v − c]
and p : [s, v − c] → R is a convex function. If F and p satisfy

1. supp(F) ⊆ argmax x ∈ [s, v−c]{Wb(x) − p(x)},
2. EF [p(x)] = EG̃ [p(x)],
3. G̃ is a mean-preserving spread of F,

then F is the distribution of the posterior means of x associated with the
welfare-maximizing revelation mechanism.

To exploit Lemma A4, we construct the function p as

p(x) =
{

Wb(x) if x ≤ y
Wb(y) + Wb(s/(1−ᾱ))−Wb(y)

s/(1−ᾱ)−y (x − y) if x ≥ y,

where recall that y is defined by E[x | x ≥ y] = s/(1 − ᾱ).
The functions Wb and p are illustrated in Figure A1. Note that p(x) coin-

cides with Wb(x) for x ≤ y. To the right of y, p is linear and p(x) is equal to
Wb(x) at exactly one point x = s/(1 − ᾱ). By the properties of Wb analyzed in
Appendix A.E, the slope of the linear component of p must be larger than one,
and the slope of Wb at x ≥ s/(1 − ᾱ) is equal to one. Moreover, Wb is strictly
convex on [s, s/(1 − ᾱ)]. It follows that

argmaxx ∈ [s, v−c]
{
Wb(x) − p(x)

} = [s, y] ∪ {s/(1 − ᾱ)}.
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We define the distribution F by

F(x) =
{

G̃(x), x ≤ y,
G̃(y) + (1 − G̃(y))1{x≥s/(1−ᾱ)}, x ≥ y.

The distribution F coincides with G̃ for x ≤ y and assigns the rest of its mass
to an atom at s/(1 − ᾱ). The distribution F satisfies condition 1 of Lemma A4
with equality. By the choice of y, F is a distribution of conditional means of G̃.
This implies that G̃ is a mean-preserving spread of F, which in turn implies
condition 3 of Lemma A4. To verify condition 2, we note that F and G̃ coincide
on [s, y]. In the remaining interval [y, v − c], F and G̃ have the same mean and
p is linear, leading to equal expectations of the value of function p.

Hence, we can apply Lemma A4 to conclude that F is the distribution of
posterior means of x associated with a welfare-maximizing revelation mecha-
nism. By direct calculation, the mechanism described in Theorem 3 leads to
distribution of posterior means F and thus is a welfare-maximizing revelation
mechanism.

J. Proof of Proposition 6

The first part of the proof follows directly from Theorem 3. To prove the
necessity of disclosing x in the interval [s, v − c], note that, under Assumption
(i), the function Wb(x) is globally convex, and strictly convex on [s, v − c]. If
there were an optimal mechanism that does not disclose x fully in some set of
nonzero measure in [s, v − c], then it would be dominated by a mechanism that
does, by (the strict version of) Jensen’s Inequality.

K. Proof of Theorem 4

The proof of Theorem 4 is analogous to the proof of Theorem 3. In a
reservation-price equilibrium, as shown in Section II, the dealer’s expected
profit function, conditional on the gain from trade x, is given by

χb(x) =
⎧⎨
⎩

0 if x ≤ s,
λ(x)(1−μ)

N x if s/(1 − ᾱ) > x > s,
1−μ

N
s

1−ᾱ if x ≥ s/(1 − ᾱ).

Moreover, the properties of χb(x) coincide with the properties of the function
Wb(x) used in the proof of Theorem 3. Most importantly, χb(x) is convex for
x ≤ s/(1 − ᾱ) (convexity of λ(x) was established by the proof of Theorem 1), and
has a kink at x = s/(1 − ᾱ). We can apply Lemma A4 with Wb(x) replaced by
χb(x) and use the same Lagrange multiplier p and distribution F defined in the
proof of Theorem 3. (See also Figure A1.) Because the rest of the argument is
identical to the proof of Theorem 3, we omit the remaining details.
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Appendix B: Proofs and Supporting Content for Section III
and Section IV

A. Proof of Proposition 7 and Equilibrium Characterization in the Benchmark
Case

Because the distribution of costs is i.i.d. across dealers conditional on ob-
serving the benchmark, slow traders must follow a reservation-price strategy
with some reservation price rc. A stationary 38 reservation-price strategy of slow
traders will now be characterized by three numbers: λc, the probability of entry;
rc, the reservation price; and θ̂c, the probability of rejecting an offer equal to the
reservation price rc. Fixing the strategy of the dealers and the reservation price
rc, the rejection probability θ̂c determines the probability θc that a slow trader
rejects an offer from a high-cost dealer, and vice versa. Given the one-to-one
correspondence between θc and θ̂c, for convenience we will abuse the notation
for the strategy of a slow trader, denoting it by the triple (rc, λc, θc). Again
without loss of generality, we can assume that fast traders play their weakly
dominant strategy of always entering and visiting all dealers. We ignore the
issue of off-equilibrium beliefs, as it is fairly trivial to deal with.

Fixing c and a strategy (rc, λc, θc), we characterize the equilibrium best-
response of dealers. We start with two technical lemmas.

LEMMA B1: In equilibrium, conditional on c (for c < v), if dealers of a certain
type (high-cost or low-cost) make positive expected profits, then the probability
distribution of price offers for that type is atomless. If high-cost dealers make
zero expected profits, then in equilibrium they must quote a price equal to their
cost, provided that c +
 < v.

PROOF: The first part of the lemma can be proven using the argument from the
proof of Lemma A1. To prove the second part, suppose that for some c < v −
,
a price above c +
 is in the support of the equilibrium strategy of high-cost
dealers. The probability of selling at that price (or some lower price above
c +
) must be positive since with probability (1 − γ )N only high-cost dealers
are present in the market. Thus, we get a contradiction with the assumption
that high-cost dealers make zero expected profits. �
LEMMA B2: In equilibrium, conditional on c, if c < v, for any equilibrium price
pl of a low-cost dealer and any equilibrium price ph of a high-cost dealer, we
have pl ≤ ph.

PROOF: The claim is true by a standard “revealed-preference” argument. Sup-
pose that pl > ph. Fix an equilibrium, and let �(p) (for some fixed c ≤ v) be the

38 Requiring stationarity, that is, the same mixing probability at every search round, simplifies
the exposition and is without loss of generality. Without stationarity, there is an indeterminacy
in specifying the probability of rejecting the reservation price in equilibrium. Traders can use
different mixing probabilities in every search round, as long as they lead to the same posterior
beliefs of dealers. This indeterminacy does not change expected equilibrium payoffs, so without
loss of generality we get rid of it by requiring stationarity.
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probability that a dealer sells the asset when posting the price p. Since dealers
are optimizing in equilibrium, we must have

�(pl)(pl − c) ≥ �(ph)(ph − c), (B1)

�(ph)(ph − c −
) ≥ �(pl)(pl − c −
). (B2)

If �(ph) 
= 0, then

�(ph)(ph − c −
) < �(ph)(pl − c −
).

If pl > c +
, then �(ph) > �(pl). From inequality (B1),

�(pl)(pl − c) +
(�(ph) − �(pl)) > �(ph)(ph − c),

which contradicts inequality (B2).
We are left with two cases. First, suppose that pl ≤ c +
. Then ph < c +
,

which is impossible in equilibrium. Second, suppose that �(ph) = 0. Then it
must be the case that �(pl) = 0 as well, which is a contradiction if c < v. �

Finally, we prove a lemma about the possibility of gaps in the distribution
of prices. Let pi

c
and p̄i

c denote the lower and upper limit of the support of the
distribution of prices for dealer of type i ∈ {l, h}.
LEMMA B3: In equilibrium, conditional on c (for c < v), there can be no gaps
in the distribution of prices except for the cases in which the support of the
distribution of prices of low-cost dealers consists of two intervals, [pl

c
, rc] and

[ p̂l
c, min{c +
, v}], and in which either (i) high-cost dealers post c +
 or (ii)

c > v −
.

PROOF: Suppose that there is a gap in the distribution of prices conditional
on some cost level c for some type of dealers, that is, an interval (p1, p2) ⊂
[pi

c
, p̄i

c] \ supp(Fi
c ( · )), i ∈ {l, h}. We take this interval to be maximal, that is,

such that p1 and p2 are in the support of Fi
c ( · ). It must be the case that

the probability of selling is strictly larger at p1 than at p2, and thus, in a
reservation-price equilibrium, p1 ≤ rc ≤ p2 (we make use here of Lemma B2).
It cannot be the case that p1 < rc because then the dealer posting p1 could
profitably deviate to rc. Thus p1 = rc.

By Lemma B2, p̄h
c is the highest price that can be observed on the equilibrium

path, and it lies above rc. It follows, using Lemma B1, that high-cost dealers
make zero expected profits (if the price distribution for high-cost dealers were
atomless, the probability of selling at the price p̄h

c > rc would be zero). Moreover,
either (i) high-cost dealers post c +
 or (ii) c > v −
. In either case we can
conclude that i = l, that is, the gap occurs in the price distribution of low-cost
dealers.

By the above, if there is a gap, then the support of the distribution for low-cost
dealers consists of two intervals, the first of which must be [pl

c
, rc]. To prove that

p̄l
c = min{c +
, v}, we use the fact that p̄l

c > rc, and thus if p̄l
c < min{c +
, v},

the dealer quoting p̄l
c would want to deviate to min{c +
, v}. �
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Using the above observations, we can now show, case by case, that the equi-
librium pricing strategies are uniquely pinned down when there are gains from
trade. (We assume throughout that c < v; the opposite case is trivial.) We let
Fl

c (p) denote the cumulative distribution function of prices for low-cost dealers,
and Fh

c (p) the cumulative distribution function of prices for high-cost dealers.
In most cases it is a routine exercise to rule out the possibility of a gap in
the distribution, using Lemma B3. We therefore comment on this possibility
explicitly only in the two cases when a gap actually occurs in equilibrium.

Case 1: λc = 0. When λc = 0, only fast traders enter. In this case, we have a
standard first-price auction between dealers. There are two subcases.

When c > v −
, high-cost dealers cannot sell in equilibrium, and the speci-
fication of their strategy is irrelevant (they can choose any price above c +
).
In this case low-cost dealers randomize according to a distribution Fl

c (p) that
solves the equation

[
N−1∑
k=0

(
N − 1

k

)
γ k(1 − γ )N−1−k (1 − Fl

c (p)
)k]

(p − c) = (1 − γ )N−1(v − c).

Let us define the function

�(z) = 1
1 − (1 − γ )N−1

N−1∑
k=1

(
N − 1

k

)
zkγ k(1 − γ )N−1−k, (B3)

which can be viewed as a generalization of the function zN−1 that appears in the
definition (6). It is easy to see that�(z) is a (strictly) increasing polynomial with
�(0) = 0, �(1) = 1, and �(z) = zN−1 when γ = 1. Moreover, using the binomial
identity, we can write �(z) alternatively as

�(z) = (zγ + 1 − γ )N−1 − (1 − γ )N−1

1 − (1 − γ )N−1 . (B4)

Using definition (B3), we can write

Fl
c (p) = 1 −�−1

(
(1 − γ )N−1

1 − (1 − γ )N−1

v − p
p − c

)

with upper limit p̄l
c = v, and lower limit pl

c
= (1 − γ )N−1v + (1 − (1 − γ )N−1)c.

When c ≤ v −
, high-cost dealers can sell in equilibrium, but a standard
result from auction theory (see, for example, Fudenberg and Tirole (1991)) says
that in the unique equilibrium they will make zero profit by bidding c +
. In
this case, the distribution Fl

c (p) solves

[
N−1∑
k=0

(
N − 1

k

) (
1 − Fl(p| c)

)k
γ k(1 − γ )N−1−k

]
(p − c) = (1 − γ )N−1
,



2030 The Journal of Finance R©

and thus we get

Fl
c (p) = 1 −�−1

(
(1 − γ )N−1

1 − (1 − γ )N−1

(c +
) − p
p − c

)

with upper limit p̄l
c = c +
 and lower limit pl

c
= c + (1 − γ )N−1
.

Case 2: λc > 0. From now on, we assume λc > 0, that is, slow traders enter
with positive probability. There are again two subcases.

When c > v −
 (case 2.1), high-cost dealers cannot sell in equilibrium, and
the specification of their strategy is irrelevant. Low-cost dealers mix according
to a continuous distribution Fl

c (p) on an interval with upper limit p̄c
l = rc, or on

a union of two intervals as in Lemma B3.
When c ≤ v −
 (case 2.2), using Lemmas B1, B2, B3 and the argument from

the proof of Lemma A1, we can show that only two subcases are possible:

� If rc ≤ c +
, (case 2.2.1), high-cost dealers make zero profit; they post a
price c +
 with probability one, while low-cost dealers mix according to
a continuous distribution on an interval with upper limit p̄l

c = rc, or on a
union of two intervals as in Lemma B3.

� If rc > c +
 (case 2.2.2), high-cost dealers make positive profits, and in
equilibrium both low-cost and high-cost dealers mix according to continu-
ous distributions with adjacent supports ( p̄l

c = ph
c
), and with rc being the

upper limit of the distribution of the prices of high-cost dealers ( p̄h
c = rc).

Below we analyze these cases in detail and characterize the optimal search
behavior of slow traders. We first define some key functions that generalize
their equivalents from Section II to the case in which there is an idiosyncratic
component of dealer costs. Let q(λc, θc) be the posterior probability that a cus-
tomer is a fast trader, conditional on a visit, given the strategy (rc, λc, θc). That
is, let

q(λc, θc) = Nμ

Nμ+ 1−θN
c (1−γ )N

1−θc(1−γ ) λc(1 − μ)
. (B5)

This definition generalizes formula (1). We also generalize the definition
of the function α from equation (6), which now becomes a function of two
arguments:

α(λc, θc) =
∫ 1

0

(
1 + q(λc, θc)

(
1 − (1 − γ )N−1

)
1 − q(λc, θc)

(
1 − (1 − γ )N−1

)�(z)

)−1

dz, (B6)

where �(z) is defined in formula (B3). Finally, we let α̂ = α(1, 1), which corre-
sponds to formula (7).

To emphasize the point that we now deal with equilibrium rather than just
the best response of dealers to some generic strategy of traders, we add star
superscripts to symbols denoting the strategy of traders.
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Case 2.1: λ�c > 0, c > v −
. In this case, we clearly have θ�c = 1. We first
suppose that the support of the distribution for low-cost dealers is an interval.
Then Fl

c (p) must satisfy[
1 − q

(
λ�c, 1

)+ q
(
λ�c, 1

) N−1∑
k=0

(
N − 1

k

) (
1 − Fl

c (p)
)k
γ k(1 − γ )N−1−k

]
(p − c)

=
[
1 − q

(
λ�c, 1

)+ q
(
λ�c, 1

)
(1 − γ )N−1

] (
r�c − c

)
.

Solving for Fl
c (p), we obtain

Fl
c (p) = 1 −�−1

(
1 − q

(
λ�c, 1

) (
1 − (1 − γ )N−1

)
q
(
λ�c, 1

) (
1 − (1 − γ )N−1

) r�c − p
p − c

)
,

with p̄l
c = r�c and lower limit

pl
c
=
[
1 − q

(
λ�c, 1

) (
1 − (1 − γ )N−1

)]
r�c +

[
q
(
λ�c, 1

) (
1 − (1 − γ )N−1

)]
c.

We can determine r�c in this case from the fact that it must solve the following
equation (specifying that the trader must be indifferent at r�c between buying
and searching), which is analogous to equation (4):

v − r�c = −s + γ

[
v −

∫ r�c

pl
c

pdFl
c (p)

]
+ (1 − γ )

(
v − r�c

)
.

Using a change of variables, we can transform this equation into the form

s = γ

[
r�c −

∫ r�c

pl
c

pdFl
c (p)

]
= (

1 − α
(
λ�c, 1

))
γ
(
r�c − c

)
.

We therefore have

r�c = c + s(
1 − α

(
λ�c, 1

))
γ
.

The last thing to determine is the probability λ�c of entry by slow traders. The
profit of a slow trader conditional on entry is equal to

πc =
(
1 − (1 − γ )N

) (
v − α

(
λ�c, 1

)
r�c − (

1 − α
(
λ�c, 1

))
c
)

−
(

N∑
k=1

(1 − γ )k−1γk + (1 − γ )N N

)
s

=
(
1 − (1 − γ )N

)[
v − c − s(

1 − α
(
λ�c, 1

))
γ

]
.



2032 The Journal of Finance R©

When profit is strictly positive, we must have entry with probability one. That
is, we have λ�c = 1 if

c ≤ v − s
(1 − α(1, 1))γ

.

When profit is strictly negative, we must have entry with probability zero,
meaning that λ�c = 0 if

c ≥ v − s
(1 − α(0, 1))γ

.

This takes us back to case 1 analyzed before. Finally, if

v − s
(1 − α(1, 1))γ

< c < v − s
(1 − α(0, 1))γ

,

then we must have interior entry λ�c ∈ (0, 1), where λ�c is the unique solution of
the equation

s = (
1 − α

(
λ�c, 1

))
γ (v − c).

In this case, slow traders have zero profits and we have r�c = v.
To check whether the above strategies constitute an equilibrium, we need to

verify that the support of price offers by low-cost dealers is indeed an interval,
that is, these dealers cannot profitably deviate from posting prices in the range
[pl

c
, r�c ]. The only deviation that we need to check is bidding v in the case

r�c < v.39 This leads to the condition[
μ(1 − γ )N−1 + (1 − μ)

1 − (1 − γ )N

Nγ

]
s

(1 − α(1, 1))γ
≥ (1 − γ )N−1(v − c),

where the left-hand side is the expected profit from bidding r�c and the right-
hand side is the expected profit from bidding v (a dealer quoting v can only sell
if all other dealers have high costs). We define

κ = (1 − γ )N−1

μ(1 − γ )N−1 + (1 − μ) 1−(1−γ )N

Nγ

. (B7)

Thus, we have an equilibrium when

c ≥ v − s
κ(1 − α(1, 1))γ

.

Note that κ < 1, and therefore

v − s
κ(1 − α(1, 1))γ

< v − s
(1 − α(1, 1))γ

.

39 If there is a profitable deviation, this one is the most profitable.
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When c < v − s/(κ(1 − α(1, 1))γ ), by Lemma B3, we must have an equilib-
rium in which the support for low-cost dealers consists of two intervals: [pl

c
, r�c ]

and [ p̂l
c, v]. Let ζc be the conditional probability that a low-cost dealer posts a

price in the lower interval. Then the dealer must be indifferent between r�c and
v, which pins down ζc in that[

μ(1 − γ ζc)N−1 + (1 − μ)
1 − (1 − γ ζc)N

Nγ ζc

] (
r�c − c

) = (1 − γ )N−1(v − c). (B8)

We define

ϑ(ζc) = (1 − γ )N−1

μ(1 − γ ζc)N−1 + (1 − μ) 1−(1−γ ζc)N

Nγ ζc

. (B9)

Note that ϑ(1) = κ. Then, equation (B8) becomes

r�c = (1 − ϑ(ζc))c + ϑ(ζc)v. (B10)

We can now determine the exact distribution of prices. In the upper interval
we must have[

N−1∑
k=0

(
N − 1

k

)
γ k(1 − γ )N−1−k (1 − Fl

c (p)
)k]

(p − c) = (1 − γ )N−1(v − c),

so we get

Fl
c (p) = 1 −�−1

(
(1 − γ )N−1

1 − (1 − γ )N−1

v − p
p − c

)
.

In the lower interval, the distribution must satisfy[
μ

N−1∑
k=0

(
N − 1

k

)
(γ ζc)k(1 − γ ζc)N−1−k

(
1 − Fl

c (p)
ζc

)k

+ 1 − μ

N
1 − (1 − γ ζc)N

γ ζc

]
(p − c)

=
[
μ(1 − γ ζc)N−1 + 1 − μ

N
1 − (1 − γ ζc)N

γ ζc

] (
r�c − c

)
,

which gives

Fl
c (p) = ζc − ζc�

−1
(

(1 − γ )N−1

1 − (1 − γ ζc)N−1

1
μϑ(ζc)

r�c − p
p − c

; ζc

)
,

where

�(z; ζc) = 1
1 − (1 − γ ζc)N−1

N−1∑
k=1

(
N − 1

k

)
zk(γ ζc)k(1 − γ ζc)N−1−k.

That is, �(z; ζc) is the analogue to �(z) when replacing γ with γ ζc.



2034 The Journal of Finance R©

Finally, the reservation price is determined by

v − r�c = −s + γ ζc

[
v −

∫ r�c

pl
c

p d
(

Fl
c (p)
ζc

)]
+ (1 − γ ζc)

(
v − r�c

)
. (B11)

Using a change of variable z = (ζc − Fl
c (p))/ζc, we obtain∫ r�c

pl
c

p d
(

Fl
c (p)
ζc

)
= c + (

r�c − c
)
α̃(ζc),

where

α̃(ζc) =
∫ 1

0

(
1 + 1 − (1 − γ ζc)N−1

(1 − γ )N−1 μϑ(ζc)�(z; ζc)
)−1

dz.

Note that α̃(1) = α(1, 1). From this we can calculate the optimal reservation
price, determined by equation (B11), as

r�c = c + s
(1 − α̃(ζc))γ ζc

. (B12)

Equations (B10) and (B12) together pin down r�c and ζc. Combining them, we
get a single equation that pins down ζc, in the form

s = ϑ(ζc)(1 − α̃(ζc))γ ζc(v − c).

A unique solution ζ �c ∈ (0, 1) exists if and only if 0 < s < κ(1 − α(1, 1))γ (v − c),
which is precisely our assumption for that case.

Note that in this range the equilibrium level ζ �c will be close to one when s is
close to κ(1 − α(1, 1))γ (v − c) and will converge to zero as s goes to zero.

Case 2.2.1: c ≤ v −
, r�c ≤ c +
. In this case, high-cost dealers offer the
price c +
. We have two cases to consider, which we call (a) and (b).

Case (a). When r�c < c +
, we must have θ�c = 1. Suppose that low-cost deal-
ers mix on an interval. Then the distribution of prices is

Fl
c (p) = 1 −�−1

(
1 − q

(
λ�c, 1

) (
1 − (1 − γ )N−1

)
q
(
λ�c, 1

) (
1 − (1 − γ )N−1

) r�c − p
p − c

)
,

just as in the previous case. What differs from the previous case is the profit
of a slow trader conditional on entry. In the event that there are no low-cost
dealers in the market, a trader buys from a high-cost dealer instead of exiting.
Accordingly, the profit now becomes

πc = v − c − (1 − γ )N
−
(
1 − (1 − γ )N

) s
(1 − α

(
λ�c, 1

)
)γ
.

We can have strictly positive entry by slow traders only if

v ≥ c + (1 − γ )N

[

− s

(1 − α
(
λ�c, 1

)
)γ

]
+ s

(1 − α
(
λ�c, 1

)
)γ
. (B13)
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Recall that we have

r�c = c + s
(1 − α

(
λ�c, 1

)
)γ
.

Thus, given that we assumed r�c < c +
, we have an equilibrium with positive
entry if inequality (B13) holds and


 >
s

(1 − α
(
λ�c, 1

)
)γ
.

Notice that we have

v − c − (1 − γ )N
−
(
1 − (1 − γ )N

) s
(1 − α

(
λ�c, 1

)
)γ

> v − c − (1 − γ )N
−
(
1 − (1 − γ )N

)

 = v − c −
 ≥ 0,

which means that profits are always strictly positive in this case. Thus, we
must have full entry, meaning λ�c = 1, and this can be an equilibrium only if
s < (1 − α(1, 1))γ
.

Finally, we verify the supposition that low-cost dealers mix on an interval.
We need to check the deviation to (just below) c +
, which is analogous to
deviation to v in the previous case. We require[

μ(1 − γ )N−1 + (1 − μ)
1 − (1 − γ )N

Nγ

]
s

(1 − α(1, 1))γ
≥ (1 − γ )N−1
.

Thus, the above strategies are an equilibrium if s ≥ κ(1 − α(1, 1))γ
.
In the case s < κ(1 − α(1, 1))γ
, we have an equilibrium with low-cost deal-

ers mixing on two intervals [pl
c
, r�c ] and [ p̂l

c, c +
]. The analysis is analogous
to that in the previous case 2.1 so we skip some details. First, the indifference
condition between r�c and c +
 is40

(
r�c − c

) = ϑ(ζc)
. (B14)

The upper part of the distribution is given by

Fl
c (p) = 1 −�−1

(
(1 − γ )N−1

1 − (1 − γ )N−1

c +
− p
p − c

)
,

while the lower part is

Fl
c (p) = ζc − ζc�

−1
(

(1 − γ )N−1

1 − (1 − γ ζc)N−1

1
μϑ(ζc)

r�c − p
p − c

; ζc

)
.

40 Note that c +
 is the upper limit of the support but prices posted by a low-cost dealer are
below c +
 with probability one. Thus, when we say that the dealer must be indifferent between
posting r�c and c +
, we really mean c +
− ε for arbitrarily small ε → 0, which leads to the
formula below.
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The reservation price is determined by equation (B11). Simplifying as before,
we obtain

r�c = c + s
(1 − α̃(ζc))γ ζc

.

Combining with equation (B14), ζc is pinned down by the equation

s = ϑ(ζc)(1 − α̃(ζc))γ ζc
.

This equation does not depend on c, so neither does the solution. That is, ζ �c is
independent of c and solves

s = ϑ(ζ )(1 − α̃(ζ ))γ ζ
.

This equation has a unique solution in (0, 1) precisely when 0 < s < κ(1 −
α(1, 1))γ
, which was our assumption for this case.

Case (b). We now look at the second possibility: r�c = c +
. We can now have
θ�c ∈ (0, 1), and this matters for equilibrium pricing through the impact on the
posterior beliefs of dealers. The probability Fl

c (p) of an offer of p or less by a
low-cost dealer solves[

1 − q
(
λ�c, θ

�
c

)+ q
(
λ�c, θ

�
c

) N−1∑
k=0

(
N − 1

k

) (
1 − Fl

c (p)
)k
γ k(1 − γ )N−1−k

]
(p − c)

=
[
1 − q

(
λ�c, θ

�
c

)+ q
(
λ�c, θ

�
c

)
(1 − γ )N−1

] (
r�c − c

)
.

The profit of a slow trader is the same as in the previous case. The condition
r�c = c +
 means that we must have

s
(1 − α

(
λ�c, θ

�
c

)
)γ

= 
.

This implies that we must again have entry with probability one. Thus, we
have an equilibrium with full entry and the probability of rejecting an offer of
r�c given by θ�c that solves

s = (1 − α
(
1, θ�c

)
)γ
.

Note that θ�c = θ� (the equation, and hence the solution, is independent of c).
An interior solution exists if and only if (1 − α(1, 1))γ
 < s < (1 − α(1, 0))γ
.
Notice that θ� is close to 1 when s is close to (1 − α(1,1))γ
, and is close to zero
when s is close to (1 − α(1, 0))γ
.

Case 2.2.2: c ≤ v −
, r�c > c +
. This is the case when high-cost dealers
make positive profits and mix according to a continuous distribution Fh

c ( · )
with upper limit r�c . We must have θ�c = 0. The cumulative distribution function
Fh

c solves[
1 − q

(
λ�c, 0

)+ q
(
λ�c, 0

)
(1 − γ )N−1 (1 − Fh

c (p)
)N−1

]
(p − c −
)

= [
1 − q

(
λ�c, 0

)] (
r�c − c −


)
.
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Simplifying, we obtain

Fh
c (p) = 1 −

(
1 − q(λ�c, 0)

q(λ�c, 0)(1 − γ )N−1

r�c − p
p − c −


) 1
N−1

with upper limit p̄h
c = r�c and lower limit

ph
c

= 1 − q(λ�c, 0)
1 − q(λ�c, 0)(1 − (1 − γ )N−1)

r�c + q(λ�c, 0)(1 − γ )N−1

1 − q(λ�c, 0)
(
1 − (1 − γ )N−1

) (c +
).

To simplify notation, let us denote

φ
(
λ�c
) = 1 − q(λ�c, 0)

1 − (1 − (1 − γ )N−1)q(λ�c, 0)
. (B15)

Next, Fl
c (p) must solve[

1 − q
(
λ�c, 0

)+ q
(
λ�c, 0

) N−1∑
k=0

(
N − 1

k

) (
1 − Fl

c (p)
)k
γ k(1 − γ )N−1−k

]
(p − c)

=
[
1 − q

(
λ�c, 0

)+ q
(
λ�c, 0

)
(1 − γ )N−1

] (
ph

c
− c

)
.

Solving for Fl
c (p), we get

Fl
c (p) = 1 −�−1

(
1 − q(λ�c, 0)

(
1 − (1 − γ )N−1

)
q(λ�c, 0)

(
1 − (1 − γ )N−1

) ph
c
− p

p − c

)
,

with p̄l
c = ph

c
and lower limit

pl
c
=
[
1 − q

(
λ�c, 0

)
(1 − (1 − γ )N−1)

]
ph

c
+
[
q
(
λ�c, 0

)
(1 − (1 − γ )N−1)

]
c.

We need to define one more function, analogous to α(λ, θ ), and corresponding
to the distribution of prices used by high-cost dealers. Let

αh(λ) =
∫ 1

0

(
1 + q(λ, 0)(1 − γ )N−1

1 − q(λ, 0)
zN−1

)−1

dz.

Then, using a change of variables, we get∫
pdFh

c (p) = (1 − αh(λ�c))(c +
) + αh
(
λ�c
)
r�c

and ∫
pdFl

c (p) = (
1 − α

(
λ�c, 0

))
c + α

(
λ�c, 0

)
ph

c
.
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As always, r�c is determined by the indifference condition

v − r�c = −s + γ

[
v −

∫ p̄l
c

pl
c

pdFl
c (p)

]
+ (1 − γ )

[
v −

∫ p̄h
c

ph
c

pdFh
c (p)

]
.

From this we can obtain

r�c = c +
+ s − (1 − α(λ�c, 0))γ

γ (1 − φ(λ�c)α(λ�c, 0)) + (1 − γ )(1 − αh(λ�c))

.

Next, we consider the entry decision of slow traders. The profit conditional on
entry is simply v − r�c . Thus, we have entry with probability one if and only if

c < v −
− s − (1 − α(1, 0))γ

γ (1 − φ(1)α(1, 0)) + (1 − γ )(1 − αh(1))

.

Since we have assumed that r�c > c +
, we additionally require s > (1 −
α(1, 0))γ
.

Interior entry requires that λ�c solves

v = c +
+ s − (1 − α(λ�c, 0))γ

γ (1 − φ(λ�c)α(λ�c, 0)) + (1 − γ )(1 − αh(λ�c))

. (B16)

An interior solution exists if and only if

s − (1 − α(0, 0))γ

γ (1 − φ(0)α(0, 0)) + (1 − γ )(1 − αh(0))

< v − c −


<
s − (1 − α(1, 0))γ


γ (1 − φ(1)α(1, 0)) + (1 − γ )(1 − αh(1))
. (B17)

Noticing that αh(0) = 0 and that φ(0) = 0, we can simplify the inequality on the
left to s − (1 − α(0, 0))γ
 < v − c −
.

Finally, since we have assumed that r�c > c +
, we require s > (1 −
α(λ�c, 0))γ
. This condition is satisfied vacuously when equation (B16) holds.

When s − (1 − α(0, 0))γ
 ≥ v − c −
, we must have entry with probability
zero, which brings us back to case 1.

This concludes the analysis of all cases. By direct inspection, we check that,
for any given pair (s, c), there is exactly one equilibrium (up to payoff-irrelevant
changes in equilibrium strategies). Figure A2 summarizes our conclusions by
depicting the equilibrium correspondence in the (s, c) space. “Full entry” means
that λ�c = 1 in the relevant range. “Interior entry” means that λ�c ∈ (0, 1). When
we say that “only low-cost dealers sell,” we mean that if there is at least one low-
cost dealer in the market, then all customers trade with low-cost dealers. When
we say that “all dealers sell” or that “high-cost dealers sell with probability θ ,”
we refer to the probability of selling to a slow trader upon a visit. Finally, the
trapezoidal area denoted by “(gap)” corresponds to the case in which low-cost
dealers have a gap in the support of their offer distribution.
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Figure A2. The benchmark case: equilibrium correspondence.

B. Proof of Proposition 8

Generalized statement (without Assumption A2): If s ≤ (1 − α̂)γ min{
, v −
c}, then equilibrium in the benchmark case leads to efficient matching. That
is, slow traders always enter, and all traders buy from a low-cost dealer, in the
event that there is at least one such dealer present in the market. Additionally,
if s ≥ κ(1 − α̂)γ min{
, v − c}, where41κ < 1, the equilibrium with the bench-
mark achieves the second best, in the sense that each slow trader buys from the
first low-cost dealer that she contacts, thus minimizing search costs subject to
matching efficiency.

PROOF: The theorem follows directly from the derivation above (cases 2.1 and
2.2.1 (a)). When

κ(1 − α̂)γ min{
, v − c} ≤ s ≤ (1 − α̂)γ min{
, v − c},

we are in the region in which the equilibrium achieves the second-best. Slow
traders always enter, and they search until they find the first low-cost dealer
(low-cost dealers always post prices below the reservation price, and high-cost
dealers always post prices above the reservation price). If there are no low-
cost dealers in the market and c > v −
, then traders exit without trading.
When c < v −
, they buy from a high-cost dealer. When s < κ(1 − α̂)γ
, low-
cost dealers post prices below the reservation price with probability ζ �c ∈ (0, 1).
Because high-cost dealers still post prices above the reservation price (and
above the prices posted by low-cost dealers), the matching of traders to low-
cost dealers is efficient. �

41 We have κ = (1 − γ )N−1/[μ(1 − γ )N−1 + (1 − μ)[1 − (1 − γ )N]/(Nγ )].
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C. Proof of Proposition 9

Generalized statement (without Assumption A2): In the absence of a bench-
mark, if min{v, c̄} > c +
, there does not exist an equilibrium achieving the
second best.

PROOF: In an equilibrium in which the second-best is achieved under the con-
dition s < γ
, high-cost dealers can sell only when there are no low-cost dealers
in the market and the slow trader searched the entire market. Thus, if an equi-
librium like this exists, high-cost dealers quote prices as if they participated in
an auction with all other high-cost dealers. A standard result in auction theory
says that in this case they must bid their costs, that is, they must offer to sell
for c +
.

Consider a situation in which a slow trader enters and the first dealer has
low costs, for some c < v. If the second-best is achieved, that offer needs to be
accepted by a slow trader. Under the assumption of the proposition, we can find
a c� that satisfies v > c� > c +
. By the above observation, (almost) all prices in
the support of the distribution of the low-cost dealer at c = c� must be accepted
by a slow trader in the first search round. This leads to a contradiction. Since
high-cost dealers post a price of c +
 conditional on c, they make zero profits.
They can profitably deviate at c = c by quoting a price in the support of the
distribution of a low-cost dealer at c = c�. �

D. Generalized Statement of Theorem 5 (without Assumption A2)

THEOREM: If (i) κ(1 − α̂)γ min{
, v − c} ≤ s ≤ (1 − α̂)γ min{
, v − c̄} and (ii)
c̄ > c +
 both hold, then the equilibrium in the benchmark case yields a strictly
higher social surplus than any equilibrium in the no-benchmark case.

PROOF: Follows directly from the generalized statements of Propositions 8
and 9. �

E. Proof of Theorem 6

To prove the theorem, we first describe the equilibrium path, and then show
the optimality of dealers’ strategies under a sufficiently high 
.

If the environment is competitive, the benchmark is introduced, only low-cost
dealers enter, and we have a reservation-price equilibrium in the trading-stage
subgame described in Section II.B (with the exception that N is now replaced
by M, which is equal to L in equilibrium). Because s < (1 − ᾱ)(v − c̄), we have
full entry in this case, and the reservation price of slow traders is

r�c = c + s
1 − ᾱL

,

where the subscript L in ᾱL indicates that N is replaced by L in the definition
of ᾱ given by equation (7).
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If the environment is uncompetitive (all dealers have high costs), the bench-
mark is not introduced and high-cost dealers enter if and only if X
 > s. To see
this, note that in this case we can apply the analysis of Section II.C with the
exception that c is replaced by c +
 (correspondingly, X is replaced by X
). In
particular, high-cost dealers make strictly positive expected profits if and only
if X
 > s because this condition guarantees that there is positive probability
of entry by slow traders, according to Proposition 2. Existence follows from
Proposition 3 for all 
 ≥ 
�

1 for some 
�
1 with X
�1 > s. Indeed, inspection of

the proof shows that a sufficient condition is that X
 − s is sufficiently small,
which we can achieve by taking high enough 
.

On the equilibrium path in the pre-play stage, low-cost dealers vote in favor of
the benchmark and enter if the benchmark is introduced or if the benchmark is
not introduced and X
 > s. High-cost dealers vote against the benchmark and
enter if and only if the benchmark is not introduced and X
 > s.

We now verify the optimality of these dealer strategies.
Set 
�

0 = s/(1 − ᾱ), and suppose that 
 ≥ 
�
0 so that s < (1 − ᾱ)
.

First, we show that a high-cost dealer does not want to deviate and enter
when the benchmark is introduced. Indeed, when the benchmark is observed,
slow traders follow a reservation-price strategy with

r�c = c + s
1 − ᾱM

≤ c + s
1 − ᾱ

,

using the fact that ᾱM is increasing in M.42 Since s ≤ (1 − ᾱ)
 for 
 ≥ 
�
0,

we conclude that c +
 ≥ r�c . Thus, using familiar arguments from previous
sections, we show that a high-cost dealer cannot make positive profits after en-
tering the market, regardless of the identities of other dealers in the market.43

Second, we show that a high-cost dealer does not want to deviate and stay out
of the market when the benchmark is not introduced and X
 > s. By the remark
above, high-cost dealers make strictly positive profits on the equilibrium path
in that case.

Third, low-cost dealers cannot deviate by changing their entry decision be-
cause, by the specification of their strategy, they enter if and only if their
expected profits are strictly positive.

Fourth, we show that any coalition of high-cost dealers does not want to
deviate by voting in favor of the benchmark. By what we establish above, if the
benchmark is introduced, a high-cost dealer finds it optimal not to enter and
hence earns no profits. Thus, this cannot be a strictly profitable deviation.

Fifth, we show that any coalition of low-cost dealers does not want to deviate
by voting against the benchmark. Note that L ≥ 2 is common knowledge among

42 This is shown in Janssen and Moraga-González (2004).
43 Note that off-equilibrium-path traders may observe offers above their reservation price, some-

thing that never happens on the equilibrium path. We specify off-equilibrium beliefs of traders by
saying that this off-equilibrium event does not change the belief of any trader about the types of
active dealers. This is consistent with a perfect Bayesian equilibrium.
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low-cost dealers. In equilibrium, the benchmark is introduced, high-cost dealers
stay out, and the low-cost dealers’ expected profit is equal to

1 − μ

L
s

1 − ᾱL
> 0,

which does not depend on 
. If the benchmark is not introduced, slow traders
believe with probability one that only high-cost dealers are present in the mar-
ket. By taking 
 high enough we can make X
 − s arbitrarily small, so the
equilibrium probability of entry by slow traders is arbitrarily small without
the benchmark (see the analysis in Section II.C). Because L ≥ 2, the expected
profits of low-cost dealers in this case converge to zero as the posterior prob-
ability of meeting a slow trader approaches zero. Because the profit on the
equilibrium path is bounded away from zero, low-cost dealers do not want to
deviate in this way if 
 is above some cutoff level 
�

2.
We conclude the proof by defining 
� = max{
�

0, 

�
1, 


�
2}.

Note that
�
1 and
�

2 can be chosen so that X
 > s if
 is close to max{
�
1, 


�
2}.

If, in addition, s is sufficiently small, we can guarantee that X
 > s for all 
 in
some right neighborhood of 
�.

F. Proof of Proposition 10

The first part of the proposition follows from the observation that the admin-
istrator can ask all dealers to report c and punish them (with a high enough
transfer) if the reports disagree. The benchmark may then be made equal (for
example) to the average of the reports. The second part follows from the fact
that the choice rule to be implemented is not monotonic. (See Maskin (1999)
for the definition of monotonicity and the relevant result.)
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