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Are CDS Auctions Biased and Inefficient?

SONGZI DU and HAOXIANG ZHU∗

ABSTRACT

We study the design of credit default swaps (CDS) auctions, which determine the
payments by CDS sellers to CDS buyers following defaults of bonds. Using a simple
model, we find that the current design of CDS auctions leads to biased prices and
inefficient allocations. This is because various restrictions imposed in CDS auctions
prevent certain investors from participating in the price discovery and allocation
process. The imposition of a price cap or floor also gives dealers large influence on
the final auction price. We propose an alternative double auction design that delivers
more efficient price discovery and allocations.

CREDIT DEFAULT SWAPS (CDS) ARE DEFAULT insurance contracts between buy-
ers of protection (“CDS buyer”) and sellers of protection (“CDS seller”) that
are written against the default of firms or countries. Since the financial cri-
sis, CDS have been among the top financial innovations to receive policy at-
tention and regulatory actions.1 As of December 2015, global CDS markets
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have a notional outstanding of $12.3 trillion and a gross market value of
$421 billion.2

This paper studies the design of CDS auctions, a unique mechanism that
determines postdefault recovery value for the purpose of settling CDS. Since
recovery value is a fundamental parameter for the pricing, trading, and clearing
of CDS contracts, achieving a fair and unbiased auction price is crucial for
the proper functioning of CDS markets. For example, using a sample of U.S.
corporate bond defaults, Gupta and Sundaram (2012) find that “information
generated in CDS auctions is critical for postauction market price formation.”
In addition to price discovery, an auction protocol also has the key benefit of
facilitating cash settlement by producing a transparent price, which overcomes
the difficulty of physical settlement when the outstanding amount of CDS
exceeds the supply of bonds (see Creditex and Markit (2010)).3

The current CDS auction mechanism was initially implemented in 2005,
and in 2009 it became the standard method used to settle CDS contracts after
default (ISDA (2009)). Over the 2005 to May 2016 period, CDS auctions settled
121 defaults of firms (such as Fannie Mae, Lehman Brothers, and General
Motors) and sovereign countries (such as Greece, Argentina, and Ukraine). For
many firms, separate CDS auctions are held for senior and subordinate debt.

As we explain in Section I, the current auction mechanism consists of two
stages. The first stage involves soliciting market orders, called “physical settle-
ment requests,” to buy or sell defaulted bonds. The net market order is called
the “open interest.” At the same time, dealers quote prices on the bonds used to
calculate a price cap or floor. The second stage involves a (one-sided) uniform-
price auction subject to the price cap or floor. If the final auction price is p∗ per
$1 of face value, the default payment by CDS sellers to CDS buyers is 1 − p∗.

The primary objective of this paper is to evaluate CDS auctions from a the-
oretical and market design perspective. We show that the current design of
CDS auctions leads to biased prices and inefficient allocations of defaulted
bonds. The primary reason is that various restrictions imposed on the auctions
prevent certain investors from participating in the price discovery and alloca-
tion process. Moreover, the current design leaves ample scope for dealers to
strategically manipulate the price to profit from their existing CDS positions.
We suggest a double auction design that delivers more efficient prices and
allocations.

Our analysis builds on a simple model of divisible auctions that works
roughly as follows. There are two dates, t ∈ {0, 1}, and a continuum of infinites-
imal traders. At t = 0, everyone has the same probability distribution over the
default of a risky bond. Traders are endowed with i.i.d. private values {bi} for

Press Release, March 1, 2016. In 2012, European regulators banned “naked” sovereign CDS in the
European Union.

2 See the latest semiannual OTC derivatives statistics, Bank for International Settlements,
http://www.bis.org/statistics/derstats.htm.

3 As noted by Creditex and Markit (2010), in the physical settlement of CDS, if the outstanding
amount of CDS exceeds the supply of defaulted bonds, the bonds need to be recycled multiple times
to settle all CDS contracts, leading to endogenous scarcity of the bonds and artificially high prices.

http://www.bis.org/statistics/derstats.htm
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buying or selling CDS on the bond. Each trader incurs a per-unit cost in trad-
ing CDS contracts and a quadratic inventory cost in holding CDS positions.
The CDS positions are determined optimally in a double auction, taking into
account the actions at t = 1. At t = 1, with some positive probability, the bond
defaults and traders are endowed with high or low valuations {vi} for owning
the defaulted bonds. Immediately afterward, a CDS auction is held. Traders
select the optimal physical requests in the first stage and the optimal demand
schedules in the second stage. Like CDS positions, traders also incur quadratic
costs in buying or selling defaulted bonds in the auction. Optimal strategies in
the CDS auction as well as predefault CDS trading are solved in a subgame-
perfect equilibrium. For simplicity, our model is solved without imposing the
price cap or floor in the second stage.

To see why the price is biased and allocations are inefficient, consider the
strategy of a trader who has a high value for owning the defaulted bonds at
t = 1. The trader’s CDS position could be positive (CDS buyer), negative (CDS
seller), or zero. For simplicity, let us consider a high-value trader with zero
CDS position. In practice, this trader could be a specialist in distressed debt
who does not trade CDS. This high-value trader wishes to buy defaulted bonds,
but the current design of the CDS auction stipulates that only CDS sellers can
submit physical requests to buy (i.e., market orders to buy) in the first stage.
Thus, demand to buy bonds from this high-value trader is suppressed in the
first stage of the auction. If the open interest is to buy, the auction protocol also
stipulates that only orders in the opposite direction, that is, sell limit orders,
are allowed in the second stage. Thus, demand to buy bonds from this high-
value trader is suppressed in the second stage of the auction as well. The same
argument applies to a high-value CDS buyer. As a result, if the open interest
is to buy, high-value traders with positive or zero CDS positions are excluded
from the auction, leading to a downward-biased final auction price.4

This result applies symmetrically if the open interest is to sell, but in this case
it is the low-value traders with zero or negative CDS positions who are excluded
from both stages of the auction. Thus, the final auction price is upward-biased
if the open interest is to sell.

Inefficient allocations naturally follow from biased prices. The directions of
the inefficiency are summarized in Table I. In particular, high-value traders’
allocations are almost always too low (with the only exception being high-value
CDS sellers in the high state), and low-value traders’ allocations are almost
always too high (with the only exception being low-value CDS buyers in the
low state).

The restrictions imposed in CDS auctions also have an unintended conse-
quence in CDS markets before default. Because a larger CDS position (in abso-
lute value) relaxes participation constraints in the first stage of CDS auctions,

4 We can show that other types of traders—including low-value traders (regardless of CDS
positions) and high-value CDS sellers—either fully or partially participate in either stage of the
auction.
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Table I
Price Bias and Inefficient Allocations in CDS Auctions

(without Price Cap or Floor)

Allocations

High-Value Traders Low-Value Traders

State
Open

Interest
Price
Bias

CDS
Buyer

Zero
CDS

CDS
Seller

CDS
Buyer

Zero
CDS

CDS
Seller

High Buy Downward Too low Too low Mixed Too high Too high Too high
Low Sell Upward Too low Too low Too low Mixed Too high Too high

traders with moderate values of trading CDS establish CDS positions that are
larger in magnitude than the socially optimal level.

We emphasize that although investors can buy and sell defaulted bonds in
the secondary markets, doing so incurs nontrivial transaction costs. For exam-
ple, Feldhutter, Hotchkiss, and Karakas (2016) find that the round-trip cost
of trading defaulted bonds is about 0.9% in the quarter after default. The
Amihud illiquidity measure also roughly doubles in the week of default, sug-
gesting higher price impact costs of trading large quantities. More recently,
Bao, O’Hara, and Zhou (2016) find that the price impact of trading corporate
bonds after a downgrade has increased since the implementation of postcri-
sis regulation. Dick-Nielsen and Rossi (2016) find similar results in the “in-
tertemporal bid-ask spread” following the index exclusion of some corporate
bonds.

By contrast, trading in CDS auctions incurs zero spread and hence is desir-
able from a social perspective. As long as transaction costs prevent the realiza-
tion of some gains from trade, the qualitative nature of inefficient allocations
would carry through in a model extension with bond trading in the secondary
market.

We do not explicitly model price caps or floors. Although they are used in
practice, price caps and floors are difficult to set correctly in the first place,
and even if they were set correctly, allocations would remain inefficient.5 In
fact, since price caps and floors are determined by dealers’ quotes in the first
stage, this arrangement leaves ample room for dealers to manipulate the final
auction price. This manipulation incentive is similar to that in survey-based
financial benchmarks such as the London Interbank Offered Rate (LIBOR).
Since LIBOR manipulation is already an established fact,6 the current CDS
auction design raises similar questions.

Our model generates a number of novel predictions regarding quoting be-
havior, price biases, and postauction trading activity. For example, our model

5 Details of this result are available upon request.
6 See, for example, Market Participants Group on Reference Rate Reform (2014) and Official

Sector Steering Group (2014) for institutional details and suggested reforms on reference rates
such as LIBOR.
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predicts that, in the first stage, dealers who are CDS buyers quote relatively
low prices, whereas dealers who are CDS sellers quote relatively high prices.
Moreover, our model predicts that if the open interest is to buy, low-value CDS
traders get too much of an allocation in the auctions and will sell bonds after
the auctions, whereas if the open interest is to sell, high-value CDS traders get
too little of an allocation in the auctions and will buy bonds after the auctions.
These predictions are unique to our model and new to the literature. Tests of
these predictions require data on CDS positions by identity or bond transac-
tions by identity. These types of data are available to regulatory agencies.

Our analysis suggests that a double auction design reduces price biases and
improves allocation inefficiency. A double auction design is by no means un-
usual or exotic. Indeed, it is used in open and close auctions on stock exchanges.
Under a double auction design, limit orders in the second stage can be submit-
ted in both directions—buy and sell—regardless of the open interest. Two-way
orders allow for broader investor participation in the price discovery process.
We also argue that the price caps or floors should be dropped (or modified to
a wide two-way price band) to weaken dealers’ ability to manipulate prices in
a particular direction. Importantly, however, the double auction design could
still allow physical settlement requests and dealers’ quotes to help aggregate
information in the first stage.

To the best of our knowledge, two other theoretical models of CDS auctions
have been proposed in the literature. The model of Chernov, Gorbenko, and
Makarov (2013, CGM) is an extension of the strategic bidding models of Wilson
(1979) and Back and Zender (1993). CGM (2013) deliver the important insight
that CDS auction participants have incentives to manipulate the second-stage
price to profit from their existing CDS positions. Such manipulation is possible
and effective because the second stage of the auction is one-sided, that is, only
buy orders or only sell orders are allowed. CGM (2013) also model constraints to
buy and sell defaulted bonds (short-sales are impossible, and certain investors
cannot buy the defaulted bonds at all). Combining these two features, CGM
(2013) conclude that the final auction price can be higher or lower than a
bond’s fundamental value.

More recently, Peivandi (2015) studies CDS auctions using a mechanism de-
sign approach that puts an emphasis on participation. He argues that any sub-
set of CDS traders may settle among themselves away from the CDS auction,
in a “blocking mechanism,” if doing so gives them a better payoff than settling
in the CDS auction. In particular, a large CDS trader may use side payments to
prevent some of his CDS counterparties from participating in CDS auctions so
that the large trader can manipulate the CDS auction price to his advantage.
Peivandi (2015) shows that the only way to ensure full participation in CDS
auctions is to use a fixed price, which is independent of agents’ signals of the
defaulted bond’s value. That is, in Peivandi’s model, full participation and price
discovery cannot be achieved together.

Table II compares the economic channels of this paper to those of CGM (2013)
and Peivandi (2015). As we can see, CGM (2013) and Peivandi (2015) share the
common feature that the second stage of the CDS auction has positive price
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Table II
Economic Channels of This Paper Relative to CGM (2013) and

Peivandi (2015)

Price
Impact

Constraints
to Buy/Sell

Bonds
Nonparticipation

of a Block
Price

Discovery
Allocative
Efficiency

CGM (2013) Yes Yes No No No
Peivandi (2015) Yes No Yes No No
Current paper No No No Yes Yes

impact, whereas our model has zero price impact. Under zero price impact,
CGM’s model would generate underpricing only for open interest to sell (be-
cause of funding constraint), and Peivandi’s model would not generate block
settlement away from the auction (because no one can affect the final auction
price). Our model with zero price impact therefore illustrates the economic
insights of this paper in the cleanest and most transparent way. For a sim-
ilar reason, we do not model constraints in buying or selling bonds, nor do
we model side settlement. Of course, in practice, all of the economic channels
listed in Table II are probably at play. Our results can thus be thought of as
complementary to, and not in dispute with, those of CGM (2013) and Peivandi
(2015).

More specifically, our results lead to a few new insights not in CGM (2013)
and Peivandi (2015). First, we identify a new explanation for why CDS auc-
tions generate biased prices: various restrictions prevent the participation of
certain types of traders, even without price impact. In CGM (2013), a bond’s
fundamental value is commonly known after default, so CDS auctions pro-
vide no additional price discovery. Second, results on allocation inefficiency are
unique to our model because the models of CGM (2013) and Peivandi (2015)
have common values. Our allocation efficiency results provide new empirical
predictions that can be tested in the data. Third, we show that traders have
“excessive CDS positions” before default because a higher CDS position (in
absolute value) relaxes participation constraints in the first stage of CDS auc-
tions. Endogenous CDS positions are not modeled by CGM (2013) and Peivandi
(2015). Last, we suggest a double auction design, which is distinct from CGM’s
proposal of an alternative allocation rule (following Kremer and Nyborg (2004))
and state-dependent price cap.

Empirically, CGM (2013) find that, for a sample of 26 CDS auctions on U.S.
firms from 2006 to 2011, CDS auction prices tend to be lower than secondary
market bond prices before and after auction dates. In CGM’s model, this price
pattern is generated by strategic bidding and some investors’ inability to buy
bonds. The V-shaped price pattern is confirmed by Gupta and Sundaram (2012,
GS), who also conduct a structural estimation of CDS auctions. GS (2012)
further examine Vickery and discriminatory auctions as alternative formats in
the second stage, holding the first-stage strategies fixed. In earlier empirical
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papers with smaller samples, Helwege et al. (2009) find that CDS auction prices
and bond prices are close to each other, and Coudert and Gex (2010) provide a
detailed discussion on the performance of a few large CDS auctions.

The rest of the paper is organized as follows. Section I summarizes the
institutional details concerning CDS auctions. Section II sets up our model.
After solving for the unconstrained benchmark equilibrium in Section III, in
Section IV we solve for the main equilibrium of the CDS auction model in which
constraints are imposed. Manipulation incentives are discussed in Section V,
and empirical implications are discussed in Section VI. In Section VII, we
propose the double auction design and discuss various practical considerations.

I. Institutional Background on CDS Auctions

This section provides an overview of CDS auctions. Detailed descriptions of
the auction mechanism are provided by Creditex and Markit (2010).

A CDS auction comprises two stages. In the first stage, participating deal-
ers7 submit “physical settlement requests” on behalf of themselves and their
clients. These physical settlement requests indicate whether they want to buy
or sell the defaulted bonds as well as the quantities of bonds they want to
buy or sell. Importantly, only market participants with nonzero CDS posi-
tions are allowed to submit physical settlement requests, and these requests
must be in the opposite direction of, and not exceeding, their net CDS po-
sitions. For example, suppose that bank A has bought CDS protection on
$100 million notional of General Motors bonds. Because bank A will deliver
defaulted bonds in physical settlement, the bank can only submit a physical
sell request with a notional value between $0 and $100 million. Similarly, a
fund that has sold CDS on $100 million notional of GM bonds is only allowed
to submit a physical buy request with a notional value between $0 and $100
million.8 Participants who submit physical requests are obliged to transact at
the final price, which is determined in the second stage of the auction and is
thus unknown in the first stage. The net of total buy physical requests and
total sell physical requests is called the “open interest.”

Also in the first stage, but separately from the physical settlement requests,
each dealer submits a two-way quote, that is, a bid and an offer. The quotation
size (say $5 million) and the maximum spread (say $0.02 per $1 face value
of bonds) are predetermined in each auction. Bids and offers that cross each
other are eliminated. The average of the best halves of remaining bids and offers
becomes the “initial market midpoint” (IMM), which serves as a benchmark for
the second stage of the auction. A penalty called the “adjustment amount” is

7 For example, between 2006 and 2010, participating dealers in CDS auctions include ABN
Amro, Bank of America Merrill Lynch, Barclays, Bear Stearns, BNP Paribas, Citigroup, Com-
merzbank, Credit Suisse, Deutsche Bank, Dresdner, Goldman Sachs, HSBC, ING Bank, JP Mor-
gan Chase, Lehman Brothers, Merrill Lynch, Mitsubishi UFJ, Mizuho, Morgan Stanley, Nomura,
Royal Bank of Scotland, Société Générale, and UBS.

8 To the best of our knowledge, there are no formal external verifications that one’s physical
settlement request is consistent with one’s net CDS position.
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Figure 1. Lehman Brothers CDS auction, first stage. (Color figure can be viewed at wileyon-
linelibrary.com)

imposed on dealers whose quotes are off-market (i.e., too far from other dealers’
quotes).

The first stage of the auction concludes with the simultaneous publication of
(i) the IMM, (ii) the size and direction of the open interest, and (iii) adjustment
amounts, if any.

Figure 1 plots the first-stage quotes (left-hand panel) and physical settlement
requests (right-hand panel) of the Lehman Brothers auction in October 2008.
The bid-ask spread quoted by dealers was fixed at $2 per $100 face value,
and the IMM was $9.75. One dealer whose bid and ask were on the same
side of the IMM paid an adjustment amount. Of the 14 participating dealers,
11 submitted physical sell requests and three submitted physical buy requests.
The open interest to sell was about $4.92 billion.

In the second stage of the auction, all dealers and market participants—
including those without any CDS position—can submit limit orders to match
the open interest. Nondealers must submit orders through dealers, and there
is no restriction regarding the size of limit orders one can submit. If the first-
stage open interest is to sell, then bidders must submit limit orders to buy. If
the open interest is to buy, then bidders must submit limit orders to sell. Thus,
the second stage is a one-sided market. The final price, p∗, is determined as
in a usual uniform-price auction, subject to a price cap or floor. Specifically, for
open sell interest, the final price is set at

p∗ = min (M + �, pb) , (1)

where M is the IMM, � is a predetermined “spread” that is usually $0.01 or
$0.02 per $1 face value, and pb is the limit price of the last limit buy order



Are CDS Auctions Biased and Inefficient? 2597

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

Quantity (Billion USD)

P
ric

e 
(P

er
 1

00
 N

ot
io

na
l)

 

 

Aggregate limit orders
Open interest
Final price

Figure 2. Lehman Brothers CDS auction, second stage. (Color figure can be viewed at wi-
leyonlinelibrary.com)

that is matched. If needed, limit orders with price p∗ are rationed pro-rata.
Symmetrically, for open buy interest, the final price is set at

p∗ = max (M − �, ps) , (2)

where ps is the limit price of the last limit sell order that is matched, with
pro-rata allocation at p∗ if needed. If the open interest is zero, then the final
price is set at the IMM. The announcement of the final price p∗ concludes the
auction.

After the auction, bond buyers and sellers that are matched in the auction
trade the bonds at the price of p∗; this is called “physical settlement.” In addi-
tion, CDS sellers pay CDS buyers 1 − p∗ per unit notional of their CDS contract;
this is called “cash settlement.”

Figure 2 plots the aggregate limit order schedule in the second stage of the
Lehman auction. For any given price p, the aggregate limit order at p is the
sum of all limit orders to buy at p or above. The sum of all submitted limit
orders was over $130 billion, with limit prices ranging from $10.75 (the price
cap) to $0.125 per $100 face value. The final auction price was $8.625. CDS
sellers thus pay CDS buyers $91.375 per $100 notional of CDS contract.

II. A Model of CDS Auctions

In this section, we describe the model. Price caps or floors are not formally
modeled here for analytical simplicity, but are discussed in Section V.

There is a unit mass of infinitesimal traders on [0, 1]. There are two dates, t =
0, 1. At t = 0, before the potential bond default, each trader i ∈ [0, 1] is endowed
with a benefit bi ∈ [−b, b], b > 0, for buying a unit of CDS contract. A positive
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bi means trader i is a potential CDS buyer, such as an institution that wishes
to hedge its credit exposure. A negative bi corresponds to a potential CDS
seller, such as an institution that wishes to create a synthetic credit exposure
through derivatives. We assume that bi is symmetrically distributed around 0:
P(bi ≤ z | bi ≥ 0) = P(bi ≥ −z | bi ≤ 0) ≡ F(z) for every z ≥ 0. Moreover, trading
each unit of CDS incurs a cost of c > 0,9 and holding q units of CDS contracts
incurs an inventory cost of γ

2 q2, with γ > 0. The linear cost c is a proxy for
trading or operational costs, and the quadratic inventory cost is a proxy for
convex margin or collateral costs. Each trader i chooses an endogenous CDS
position Qi ∈ R, where Qi > 0 means buying CDS and Qi < 0 means selling
CDS. We assume that b > c, so some traders will choose Qi �= 0 in equilibrium.
But because c > 0, we expect traders with sufficiently small |bi| to hold zero
CDS position.

At t = 1, the bond defaults with probability π ; if the bond does not default,
it pays the face value $1. Conditional on default, there are two states for
the defaulted bonds, high (H) and low (L), with equal ex ante probability.
In the high state, a fraction m > 1/2 of the traders have value vH for holding
the defaulted bonds, and the remaining fraction 1 − m have value vL, where
vH > vL. In the low state, a fraction mof the traders have value vL, and the rest
have value vH . Each trader observes his value for the bond immediately after
a default, and each trader i’s value vi for a defaulted bond is independent of his
value bi for buying or selling CDS. In practice, a trader’s value vH or vL may
reflect, for example, this trader’s expertise in managing the complicated legal
process of restructuring or liquidation. Hence, reallocating defaulted bonds to
investors who can extract a higher recovery value is socially beneficial.

After default and the private values {vi} are realized, the following two-stage
auction is held:

(1) In stage 1, each trader i ∈ [0, 1] submits a physical settlement request ri
that satisfies ri · Qi ≤ 0 and |ri| ≤ |Qi|.
Let

R ≡
∫

i
ri di (3)

be the open interest in the first stage of the auction.
(2) (a) If R < 0, then in stage 2 each trader i ∈ [0, 1] submits a demand

schedule xi : [0, 1] → [0,∞) to buy bonds.
(b) If R > 0, then in stage 2 each trader i ∈ [0, 1] submits a supply sched-

ule xi : [0, 1] → (−∞, 0] to sell bonds.
(3) The final auction price p∗ is defined by∫

i
(ri + xi(p∗)) di = 0. (4)

9 The qualitative nature of the equilibrium would be the same if one assumed a fixed transaction
cost, or the sum of fixed and proportional costs.
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(4) The bond allocation to trader i is ri + xi(p∗).

We assume that buying or selling a net position q of defaulted bonds in the
CDS auction incurs the inventory cost of λ

2q2, for some λ > 0, with the same
motivation of convex collateral or margin cost.

Summarizing, the time-0 expected utility of trader i is

Ui = (
bi − pCDS)Qi − c|Qi| − γ

2
Q2

i

+π · E

[
(1 − p∗)Qi + (

vi − p∗) (ri + xi(p∗)
)− λ

2
(
ri + xi(p∗)

)2]
. (5)

The first line of Ui summarizes the time-0 profit of trading Qi units of CDS,
including the per-unit cost and quadratic inventory cost. The second line of
Ui summarizes the profit of trader i in the CDS auction: (1 − p∗)Qi is the
payout from CDS settlement, (vi − p∗)(ri + xi(p∗)) is the profit of trading the
defaulted bonds, and λ

2 (ri + xi(p∗))2 is the inventory cost of creating the bond
position ri + xi in CDS auctions. This type of linear-quadratic utility is also used
by Vives (2011), Rostek and Weretka (2012), and Du and Zhu (2016), among
others. The constants γ and λ that dictate the inventory costs are required to
be positive, but can be arbitrarily small.

We make two final remarks on the model setup. First, we do not explicitly
model initial bond positions because they are not an essential element for our
main result. One could add initial bond positions to the model by assuming
that trader i is endowed with initial bond position zi, such that

∫
i zi di = Z, the

total bond supply. Exogenous initial bond positions like these could come from
institutional constraints. For instance, if a corporate bond fund receives money
inflows or outflows, then it has to buy or sell corporate bonds. The quadratic
cost λ

2 (ri + xi(p∗))2 should be interpreted as the cost of creating a bond position
in CDS auctions that is above and beyond the predefault bond holdings. With
initial bond positions, the utility function Ui becomes

U ′
i = (

bi − pCDS)Qi − c|Qi| − γ

2
Q2

i + (1 − π )zi · 1

+π · E

[
vizi + (1 − p∗)Qi + (

vi − p∗) (ri + xi(p∗)
)− λ

2
(
ri + xi(p∗)

)2 ]
. (6)

Clearly, the extra term involving zi is (1 − π + πE[vi])zi at t = 0 and is either
vizi (given default) or zi (given no default) at t = 1. Hence, the part of the utility
function U ′

i involving zi is a constant to dealer i on each date and does not
affect his optimal strategies. Without loss of generality, we can work with Ui
in equation (5).

Second, we do not explicitly model the trading of bonds after default but
before the CDS auction. This time window is fairly short in reality (about three
weeks in the case of Lehman Brothers). Moreover, as discussed in the introduc-
tion, trading defaulted bonds in the secondary market is costly, which prevents
some beneficial trades from taking place before the auction. The qualitative
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nature of our results is therefore likely to carry through if bonds are also
traded after default but before the CDS auction.

III. The Competitive Equilibrium Benchmark

As a benchmark, we first consider the competitive equilibrium. In our setting
with infinitesimal traders, the competitive equilibrium at t = 1 can be imple-
mented by a double auction in which each trader submits an unconstrained
demand schedule, taking the bond price as given. The first-order condition of
Ui with respect to bonds gives the demand for bonds:

xc
i = vi − p

λ
. (7)

Given the market-clearing condition
∫

i xc
i di = 0, the competitive equilibrium

prices in the high state and low state are, respectively,

pc
H = mvH + (1 − m)vL, (8)

pc
L = (1 − m)vH + mvL. (9)

The allocations in the competitive equilibrium are efficient, so trader i’s efficient
allocation of defaulted bonds is (vi − pc

H)/λ in the high state and (vi − pc
L)/λ in

the low state.
Next, we turn to the competitive equilibrium at t = 0 in the CDS market

before a default. Trader i’s competitive (i.e., efficient) allocation of defaulted
bonds is clearly independent of his CDS position Qi. This implies that the
last two terms in the expectation E[(vi − p∗)(ri + xi(p∗)) − λ

2 (ri + xi(p∗))2] are
not functions of Qi. Moreover, E[1 − p∗] is equal to the ex ante mean, 1 − (vH +
vL)/2. Thus, the first-order condition of Ui with respect to Qi gives the following
demand for CDS:

Qi =
{ 1

γ
max

(
bi − pCDS − c + π

(
1 − vH+vL

2

)
, 0
)

if bi ≥ 0,

1
γ

min
(
bi − pCDS + c + π

(
1 − vH+vL

2

)
, 0
)

if bi ≤ 0.
(10)

Since the distribution of bi is symmetric around zero, the market-clearing
condition

∫
i Qi di = 0 for CDS implies

pCDS = π

(
1 − vH + vL

2

)
. (11)

Thus, in the competitive equilibrium trader i chooses

Qc
i =

{ 1
γ

max (bi − c, 0) if bi ≥ 0,

1
γ

min (bi + c, 0) if bi ≤ 0.
(12)

In summary, the strategy (12) at t = 0 and the strategy (7) at t = 1 constitute
the unique equilibrium in the competitive benchmark.
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Figure 3. CDS positions from Proposition 4 (left) and Proposition 5 (right). Parameters:
vH = 1, vL = 0, λ = 1, γ = 1, π = 0.5, c = 1.2, and b is uniformly distributed on [−2, 2]. (Color figure
can be viewed at wileyonlinelibrary.com)

IV. Equilibrium of CDS Auctions and Predefault CDS Trading

This section provides an equilibrium analysis of CDS auctions and predefault
CDS trading.

A. Intuition behind the Equilibrium in a Numerical Example

Before formally stating the equilibrium strategies, we first provide intuition
behind the equilibrium outcomes based on a numerical example and a few
plots. The formal statements of equilibrium strategies are in Section IV.B and
Section IV.C. Since this discussion of intuition is presented before the formal re-
sults, we focus on the most salient features of the equilibrium in this subsection
and leave details to the next two subsections. This sequence is chosen to priori-
tize the general intuition of the equilibrium over (certain complicated-looking)
mathematical formulas. Readers who prefer to see the formal results first may
jump to Section IV.B and Section IV.C and then return to this subsection.

Throughout this subsection, we compare the equilibrium behavior and the
hypothetical efficient benchmark shown in Section III. We use the following
parameterization for the numerical examples: vH = 1, vL = 0, λ = 1, γ = 1,
π = 0.5, c = 1.2, and b is uniformly distributed on [−2, 2].

Predefault CDS trading. Figure 3 shows the time-0 equilibrium choice of
CDS position, Qi, as a function of the benefit of CDS trading, bi. The thin solid
line is the efficient benchmark of Section III, and the thick dashed line is the
equilibrium CDS positions.

The main observation from this figure is that only traders with sufficiently
positive or sufficiently negative bi trade CDS. The rest hold zero CDS posi-
tions. Because of the CDS auction rule that |ri| ≤ |Qi|, these zero-CDS-position
traders cannot submit a physical settlement request in the first stage of CDS
auctions. We thus anticipate, and will see shortly, that these traders suffer
from inefficient allocations of defaulted bonds.
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A secondary observation from Figure 3 is that, for a certain range of bi,
traders’ CDS positions tend to be “too large” relative to the efficient benchmark
(i.e., more positive Qi if bi > 0 and more negative Qi if bi < 0). Again, this is
because of the CDS auction rule |ri| ≤ |Qi|. As we explain in more detail below,
by trading CDS positions that are too large, a trader gets some flexibility in
the CDS auctions. This incentive of trading too-large CDS does not apply to
traders with bi close to zero because of the trading cost c, nor does it apply to
any trader with a large |bi|, since such a trader already picks a large |Qi| that
does not constrain him in the CDS auction.

CDS auction strategies. Now we turn to the strategies in the CDS auction.
The intuition here is best understood by asking which types of traders are
constrained in the two stages?

Figure 4 plots the first-stage physical requests and second-stage allocations
in equilibrium, both as functions of bi. Here, we have “plugged in” the equilib-
rium mapping from bi to Qi, as shown in Figure 3. The three left-hand subplots
correspond to the parameter case with a sufficiently large m, shown formally
in Proposition 1. The three right-hand subplots correspond to the parameter
case with a sufficiently small m, shown formally in Proposition 2.

The top two subplots of Figure 4 show the first-stage physical request ri as
a function of bi. As we show in Section IV.C, traders with moderate bi choose
Qi = 0 because of the cost of trading CDS. Since |ri| ≤ |Qi|, those traders are
forced to pick ri = 0, that is, they are prevented from participating in the first
stage. Moreover, a trader with a sufficiently positive bi will choose a positive Qi
and can only submit a sell physical request (because ri and Qi must have oppo-
site signs). If, however, this trader turns out to have a high value for holding
the bonds and wishes to buy, the constraint ri Qi ≤ 0 prevents him from sending
a physical request to buy. As a result, a high-value trader with sufficiently pos-
itive bi chooses ri = 0. Similarly, a low-value trader with sufficiently negative
bi chooses ri = 0. The only traders who send a nonzero physical requests are
those who have (i) a sufficiently positive bi and a realized low value vL or (ii) a
sufficiently negative bi and a realized high value vH .

The next four subplots of Figure 4 show the second-stage allocations, depend-
ing on whether m is high or low and on whether the open interest is to buy or
sell. Let us first focus on the high state, which leads to an open interest to buy
(R > 0). In this case, the two middle subplots show that all high-value traders
are prevented from participating in the second stage. This is because only sell
orders are allowed for R > 0 but high-value traders only wish to buy. By con-
trast, all low-value traders participate in the second stage. Consequently, in
the second stage the ratio of high-value traders to low-value traders is too low,
leading to a downward-biased auction price.

The opposite case, the low state, displays symmetric behavior. The two bot-
tom subplots show that all low-value traders are prevented from participating
in the second stage because the open interest is to sell (R < 0). As a result, the
final auction price is too high.

Biased auction price. Figure 5 plots the final auction price as a function of m.
The high-state equilibrium price is denoted p∗

B since the open interest is to buy,
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Figure 4. First-stage physical requests and second-stage allocations, given the CDS po-
sitions from Figure 3. Parameters: vH = 1, vL = 0, λ = 1, γ = 1, π = 0.5, c = 1.2, and b is uni-
formly distributed on [−2, 2]. Left panels are from Proposition 1 (α = 1), and right panels are from
Proposition 2. (Color figure can be viewed at wileyonlinelibrary.com)

and the low-state equilibrium price is denoted p∗
S since the open interest is to

sell. We observe that p∗
B < pc

H and p∗
S > pc

L for all m ∈ (0.5, 1). Again, because
the high state leads to an open interest to buy and only low-value traders are
willing to sell (at the equilibrium price) in the second stage, the final auction
price is downward-biased relative to the efficient benchmark. Likewise, the low
state produces an upward-biased price.
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Figure 5. Final auction prices (parameters as in Figure 4). (Color figure can be viewed at
wileyonlinelibrary.com)

We also observe from Figure 5 that the price bias is the most severe for m
close to 1/2. This is because mclose to 1/2 generates a very small open interest in
magnitude. Indeed, as m → 1/2, R → 0. In the high state, if R is small, then the
substantial participation of low-value traders in the second stage dominates the
small open interest to buy. As a result, the auction price is heavily downward-
biased. Similarly, in the low state, there is a very small open sell interest, and
high-value traders dominate price discovery in the second stage, resulting in a
heavily upward-biased price.

Inefficient allocations. It is therefore not a surprise that the equilibrium
allocations of bonds are inefficient. Figure 6 depicts the final allocations. In
the high state, allocations to low-value traders are uniformly too high. High-
value traders buy either too much (if Qi is sufficiently negative) or too little
(if Qi is positive or mildly negative). In the low state, allocations to high-value
traders are uniformly too low. Low-value traders sell either too much (if Qi is
sufficiently positive) or too little (if Qi is negative or mildly positive).

B. Equilibrium of the Two-Stage CDS Auction

Having illustrated the intuition of the results through a numerical exam-
ple, we now provide the formal equilibrium results for the two-stage CDS
auction (all proofs are provided in the Appendix A). In this subsection, we
take the preauction CDS positions as given. In particular, we suppose that
the predefault CDS positions {Qi} are symmetrically distributed around 0:
P(Qi ≤ z | Qi ≥ 0) = P(Qi ≥ −z | Qi ≤ 0) ≡ G(z) for every z ≥ 0. The distribution
of CDS positions is endogenized in Section IV.C.

Given the first-stage open interest, the second-stage strategy is straightfor-
ward. Since traders are infinitesimal, each trader takes the price p∗ in the
second stage as given and wants to get as close to his optimal bond allocation,
vi−p∗

λ
, as possible.



Are CDS Auctions Biased and Inefficient? 2605

-2 -1 1 2

-1 1 2

-2 -1 1 2

-2 -1 1 2

bi

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Total allocations, high state (m=0.9)

Equilibrium allocation, high–value trader

Efficient allocation, high–value trader

bi

-0.6

-0.4

-0.2

0.2

0.4

0.6

Total allocations, high state (m=0.7)

Equilibrium allocation, low–value trader

Efficient allocation, low–value trader

−2
bi

−0.4

−0.2

0.2

0.4

0.6

0.8

Total allocations, low state (m=0.9)

bi

−0.6

−0.4

−0.2

0.2

0.4

0.6

Total allocations, low state (m=0.7)

Figure 6. Total allocations in two stages (parameters as in Figure 4). (Color figure can be
viewed at wileyonlinelibrary.com)

LEMMA 1: Let R be the open interest. In any equilibrium, in the second stage
each trader i submits the demand/supply schedule

xi(p) =
{

max
(−ri + vi−p

λ
, 0
)
, if R < 0,

min
(−ri + vi−p

λ
, 0
)
, if R > 0.

(13)

The following propositions show the equilibrium strategy in both stages of
the CDS auction. Proposition 1 corresponds to the case p∗

B ≥ p∗
S and the left-

hand subplots of Figures 3, 4, and 6. Proposition 2 corresponds to the case
p∗

B < p∗
S and the right-hand subplots of Figures 3, 4, and 6.

PROPOSITION 1: Suppose

− (1 − m)
vH − vL

2λ
+ m

2

∫
Qi≥0

min
(

Qi,
vH − vL

2λ

)
dG(Qi) ≥ 0. (14)

Let p∗
B and p∗

S be the unique solution to

(1 − m)
vL − p∗

B

λ
+ m

2

∫
Qi≥0

min
(

Qi,
vH − p∗

B

λ

)
dG(Qi) = 0, (15)
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p∗
S = vL + vH − p∗

B. (16)

We have the following equilibrium in the two-stage auction:

� In the first stage, every trader i submits

ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
(

−Qi,
vH − α p∗

B − (1 − α)p∗
S

λ

)
if vi = vH, Qi < 0

max
(

−Qi,
vL − α p∗

S − (1 − α)p∗
B

λ

)
if vi = vL, Qi > 0

0 otherwise

(17)

for any α ∈ [0, 1].
� In the second stage, every trader i submits the demand schedule in

equation (13). In the high state, the open interest is to buy, and the fi-
nal price is p∗

B; in the low state, the open interest is to sell, and the final
price is p∗

S. We have p∗
B ≥ p∗

S.
� The equilibrium outcome is unique, in the sense that the total allocations

of bonds ri + xi(p∗) and the prices p∗
B and p∗

S are the same for any choice of
α in the first stage.

PROPOSITION 2: Suppose

− (1 − m)
vH − vL

2λ
+ m

2

∫
Qi≥0

min
(

Qi,
vH − vL

2λ

)
dG(Qi) < 0. (18)

Let p∗
B and p∗

S be the unique solution to

1 − m
2

vL − p∗
B

λ
+ 2m− 1

2

∫
Qi≥0

min
(

Qi,
vH − mp∗

B − (1 − m)p∗
S

λ

)
dG(Qi)

+ 1 − m
2

∫
Qi≥0

min
(

vL − p∗
B

λ
+ Qi, 0

)
dG(Qi) = 0, (19)

p∗
S = vL + vH − p∗

B. (20)

We have the following equilibrium in the two-stage auction:

� In the first stage, every trader i submits

ri =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
(

−Qi,
vH − mp∗

B − (1 − m)p∗
S

λ

)
if vi = vH, Qi < 0

max
(

−Qi,
vL − mp∗

S − (1 − m)p∗
B

λ

)
if vi = vL, Qi > 0

0 otherwise.

(21)
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� In the second stage, every trader i submits the demand schedule in
equation (13). In the high state, the open interest is to buy, and the fi-
nal price is p∗

B; in the low state, the open interest is to sell, and the final
price is p∗

S. We have p∗
B < p∗

S.

PROPOSITION 3: In both Propositions 1 and 2, the equilibrium price p∗
S in the

low state is higher than the competitive price pc
L, and the equilibrium price p∗

B
in the high state is lower than the competitive price pc

H.
Moreover, the equilibrium allocation of bonds is inefficient in both Proposi-

tions 1 and 2, in the following manner:

State Open Allocations

Interest High-Value Traders Low-Value Traders

CDS Buyer Zero CDS CDS Seller CDS Buyer Zero CDS CDS Seller

High Buy Too low Too low Mixed Too high Too high Too high
Low Sell Too low Too low Too low Mixed Too high Too high

The general shapes of the equilibrium behaviors in Propositions 1, 2, and 3
are described in the previous subsection, so we now look at the equations in
more detail.

Starting from condition (14) of Proposition 1, this condition guarantees
that p∗

B ≥ p∗
S. To see why, consider the allocation of bonds at the hypo-

thetical price (vH + vL)/2 and in the high state. The first term on the left-
hand side of condition (14) is the total allocation for the low-value traders.
Those traders are not constrained in the high state, so their allocation is
(1 − m) vL−(vH+vL)/2

λ
= −(1 − m) vH−vL

2λ
. The second term on the left-hand side of

condition (14) is the total allocation for the high-value CDS sellers, who have
submitted buy physical requests but do not buy in the second stage because
the open interest is to buy. High-value CDS buyers are prevented from trad-
ing altogether. Thus, condition (14) says that at a price of (vH + vL)/2, there
is excess demand for bonds, so p∗

B ≥ (vH + vL)/2. But since the equilibrium is
symmetric, p∗

B ≥ (vH + vL)/2 if and only if p∗
S ≤ (vH + vL)/2, or p∗

B ≥ p∗
S. By a

similar argument, if the state is low, condition (14) implies an excess supply of
bonds at the hypothetical price (vH + vL)/2 and hence p∗

S ≤ (vH + vL)/2, which
also leads to p∗

B ≥ p∗
S.

The equation defining p∗
B, (15), simply follows from market-clearing at

the second stage. In the high state, the two terms on the left-hand side of
equation (15) represent the allocations of low-value traders and high-value
CDS sellers, respectively, at the price p∗

B. The price p∗
S follows from symmetry.

Likewise, condition (18) in Proposition 2 guarantees that p∗
B < p∗

S. The equa-
tion that defines p∗

B, (19), is similar to equation (15) but involves three terms.
By comparing the top-right and top-left subplots of Figure 6, we see that the
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extra term comes from more “subtypes” of low-value traders. Again, p∗
S follows

by symmetry.
Now let us move to first-stage strategies. There is a subtle difference be-

tween the two equilibrium cases. In Proposition 1, with p∗
B ≥ p∗

S, traders are
indifferent between a range of physical requests. For example, a high-value
trader with a highly negative Qi (that does not constrain any ri) is indifferent
between ri = vH−α p∗

B−(1−α)p∗
S

λ
for every α ∈ [0, 1]. This is because he can sell back

xi = −ri + vH−p∗
B

λ
< 0 units if R > 0 and buy back xi = −ri + vH−p∗

S
λ

> 0 units if
R < 0, where the two inequalities follow from p∗

B ≥ p∗
S, so his total allocation

of bonds is the same.
In Proposition 2, with p∗

B < p∗
S, a high-value trader does not wish to trade

more in stage 2 given a physical request ri = vH−α p∗
B−(1−α)p∗

S
λ

, for any α ∈ [0, 1].

To see this, note that ri = vH−α p∗
B−(1−α)p∗

S
λ

∈ [ vH−p∗
S

λ
,

vH−p∗
B

λ
]. If R > 0, the price is

p∗
B and the high-value trader can only sell; but his first-stage trade ri is already

smaller than his desired trade vH−p∗
B

λ
. Symmetrically, if R < 0, the price is p∗

S
and the high-value trader can only buy; but at p∗

S his first-stage trade ri is
already larger than his desired trade vH−p∗

S
λ

. Thus, in both cases, the high-value
trader does not trade in the second stage. The uniquely optimal ri is obtained
by taking α = mbecause by Bayes’s rule the high-value trader believes that the
high state occurs with probability m.

C. Predefault CDS Trades

We now endogenize the distribution of CDS positions {Qi}, or the function G
in the previous section. At t = 0, trader i chooses Qi based on the benefit bi and
cost c of trading CDS, while also taking into account the equilibrium outcomes
in the CDS auction if a default occurs. As before, there are two equilibrium
cases.

PROPOSITION 4: Suppose

− (1 − m)
vH − vL

2λ
+ m

2

∫ b

0
min

(
(bi + πm(vH − vL)/4 − c)+

γ + πmλ/2
,
vH − vL

2λ

)
dF(bi) ≥ 0. (22)

Let p∗
B and p∗

S be the unique solution to

(1 − m)
vL − p∗

B

λ
+ m

2

∫ b

0
min

(
(bi + πm(vH − p∗

B)/2 − c)+

γ + πmλ/2
,
vH − p∗

B

λ

)
dF(bi)

= 0, (23)

p∗
S = vL + vH − p∗

B. (24)

We have the following equilibrium:
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� Before the auction, we have for bi ≥ 0

Qi(bi) =

⎧⎪⎪⎨
⎪⎪⎩

(bi + πm(p∗
S − vL)/2 − c)+

γ + πmλ/2
>

bi − c
γ

if bi ≤ c + γ (p∗
S − vL)
λ

,

bi − c
γ

if bi > c + γ (p∗
S − vL)
λ

,

(25)

Qi(bi) = −Qi(−bi) if bi ≤ 0, and

pCDS = π

(
1 − vH + vL

2

)
. (26)

� Equilibrium strategies in the CDS auction are given by Proposition 1, where
p∗

B is the final auction price in the high state, p∗
S is the final auction price

in the low state, and p∗
B ≥ p∗

S.

PROPOSITION 5: Suppose

− (1 − m)
vH − vL

2λ
+ m

2

∫ b

0
min

(
(bi + πm(vH − vL)/4 − c)+

γ + πmλ/2
,
vH − vL

2λ

)
dF(bi) < 0. (27)

Let p∗
B and p∗

S be uniquely defined by

1 − m
2

vL − p∗
B

λ
+ 2m− 1

2

·
∫ b

0
min

(
(bi + πm(vH − p∗

B)/2 − c)+

γ + πmλ/2
,

(bi + π (vH − mp∗
B − (1 − m)p∗

S)/2 − c)+

γ + πλ/2
,
vH − mp∗

B − (1 − m)p∗
S

λ

)
dF(bi)

+ 1 − m
2

∫ b

0
min

(
vL − p∗

B

λ
+ (bi + πm(vH − p∗

B)/2 − c)+

γ + πmλ/2
, 0
)

dF(bi) = 0,

(28)

p∗
S = vL + vH − p∗

B. (29)

We have the following equilibrium:

� Before the auction, we have for bi ≥ 0

Qi(bi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(bi+(p∗
S−vL)πm/2−c)+

γ+πmλ/2 > bi−c
γ

if (bi+(p∗
S−vL)πm/2−c)+

γ+πmλ/2 ≤ p∗
B−vL

λ

bi+(mp∗
S+(1−m)p∗

B−vL)π/2−c
γ+πλ/2 > bi−c

γ
if p∗

B−vL

λ
<

bi+(mp∗
S+(1−m)p∗

B−vL)π/2−c
γ+πλ/2

≤ mp∗
S+(1−m)p∗

B−vL

λ

bi−c
γ

if mp∗
S+(1−m)p∗

B−vL

λ
< bi−c

γ
,

(30)
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Qi(bi) = −Qi(−bi) if bi ≤ 0, and

pCDS = π

(
1 − vH + vL

2

)
. (31)

� Equilibrium strategies in the CDS auction are given by Proposition 2, where
p∗

B is the final auction price in the high state, p∗
S is the final auction price

in the low state, and p∗
B < p∗

S.

While Propositions 4 and 5 contain quite a few equations, most of them are
analogous to those in Propositions 1 and 2. For example, condition (22) follows
from substituting equation (25) into condition (14), and condition (27) follows
from substituting equation (30) into condition (18). The equations defining p∗

B
in the two cases are obtained similarly.

Therefore, the only equations left to discuss are the equilibrium choices of
Qi. Although the equilibrium price of CDS in Propositions 4 and 5 is the same
as that in a competitive equilibrium (see Section III), the equilibrium CDS po-
sitions are generally larger in magnitude than their competitive counterparts.

Let us first examine Proposition 4 and, without loss of generality, consider a
potential CDS buyer with bi ≥ 0. Traders anticipate equilibrium behavior from
Proposition 1 in the CDS auction after a default. Suppose that the state of
the default is low and trader i also has a low value for the bond. Then from
Proposition 1, trader i has a total bond allocation of max(−Qi, (vL − p∗

S)/λ) in
the auction. Thus, if Qi > (p∗

S − vL)/λ, his CDS position Qi does not affect his
bond allocation. In this case, Qi is determined entirely by the cost c and benefit
bi of trading CDS before default, exactly as in the competitive equilibrium.
This corresponds to the second case in equation (25). If Qi < (p∗

S − vL)/λ, then
increasing Qi moves trader i’s bond allocation closer to the optimal quantity of
(vL − p∗

S)/λ in the low state, and such incentive results in a larger Qi compared
with a competitive equilibrium. This corresponds to the first case in equation
(25).

In Proposition 5, traders anticipate equilibrium behavior from Proposition
2 in the CDS auction after default. If 0 ≤ Qi ≤ p∗

B−vL

λ
for a low-value CDS

buyer, then in Proposition 2 Qi only affects his total bond position in the
low state as before; this corresponds to the first case in equation (30). If
p∗

B−vL

λ
< Qi <

mp∗
S+(1−m)p∗

B−vL

λ
, then in Proposition 2, −Qi is the total bond al-

location in both high and low states for a low-value CDS buyer, which causes
additional distortion in the preauction incentive for Qi as summarized in the
second case in equation (30). Finally, if Qi ≥ mp∗

S+(1−m)p∗
B−vL

λ
, the bond allocation

in the auction is unaffected by Qi; this is the third case in equation (30).
In sum, as we discussed in the previous subsection, traders with moderate bi

enter predefault CDS positions that are too large (in magnitude) relative to the
first-best. This is because a larger CDS position relaxes a trader’s constraint
in CDS auctions.
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D. A Short Discussion of Multiple Equilibria

The equilibrium characterized in this section can generate both directions of
open interest, R > 0 and R < 0, depending on the underlying state being high
or low. This equilibrium can therefore match the empirical observation that
some CDS auctions have open interest to sell and some open interest to buy.

This equilibrium is not the only one, however. In the Internet Appendix of
this paper, we characterize two one-sided equilibria and show that they also do
not yield the competitive price or competitive allocation.10 In one equilibrium,
the open interest is always to buy regardless of the state; in the other, the open
interest is always to sell regardless of the state. Intuitively, these equilibria may
arise due to coordination. For example, if low-value traders only participate in
the second stage (using limit orders) and high-value traders participate in both
stages, the open interest is always to buy. And conditional on always having a
buy open interest, it is self-fulfilling that (i) high-value traders always submit
buy market orders in the first stage, anticipating the low-state price (their
second-stage limit orders are executed in the high state, selling back some
of their first-stage orders), and (ii) low-value traders always submit limit sell
orders in the second stage (there is no benefit for them to use the first stage).
A symmetric self-fulfilling logic applies to the equilibrium that always has an
open interest to sell. Clearly, both one-sided equilibria are counterfactual.

The equilibrium of this section and the two one-sided equilibria in the In-
ternet Appendix are the only equilibria under pure strategies (see the Internet
Appendix for more discussions). Since only the equilibrium characterized in
this section can generate both directions of open interest, it is the one that we
use throughout the paper.

V. A Brief Discussion of Price Caps/Floors and Dealers’ Incentive to
Manipulate the First-Stage Quotes

In Section IV, we show that the two-stage CDS auctions without a price
cap or floor lead to biased prices and inefficient allocations. In this section,
we briefly discuss the effect of imposing a price cap or floor that is formed by
dealers’ quotes in the first stage of the auction. Since the price cap or floor could
be binding in the second stage, dealers may have incentives to manipulate the
first-stage quotes to push the second-stage price in their favor.

Let the price cap be p, which applies if R < 0, and let the price floor be p,
which applies if R > 0. Given the auction rule, if R < 0, the final auction price
is min(p, p∗

S), where p∗
S is the hypothetical market-clearing price without the

price cap; if R > 0, the final auction price is max(p, p∗
B), where p∗

B is the hy-
pothetical market-clearing price without the price floor. Since the price cap or
floor is determined by a relatively small group of dealers, it leads to manipu-
lation incentives. For example, suppose that dealers are predominantly CDS
buyers. Because they benefit from a low final auction price p∗, dealers have

10 The Internet Appendix may be found in the online version of this article.
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incentives to quote prices that are too low in the first stage, leading to a p and
p that are also too low. All else equal, a strictly lower p or p means, respec-
tively, a weakly lower min(p, p∗

S) or max(p, p∗
B) and hence a lower expected final

auction price. Conversely, if dealers are predominantly CDS buyers, they tend
to quote prices that are too high in the first stage, leading to an inflated price
cap/floor and a higher expected final auction price. These theoretical results
are straightforward and omitted.

Manipulation incentives like these are more than theoretical possibilities. A
close analogy relates to LIBOR, an interest rate benchmark underlying trillions
of dollars of derivatives contracts such as interest rate swaps. Every day, LIBOR
is fixed at a truncated mean of quoted interest rates from LIBOR panel banks,
just like the CDS auction midpoint price is fixed at a truncated mean of dealers’
quotes. The difference is that LIBOR is the price at which the derivatives
contracts settle on, whereas the CDS auction midpoint (adjusted by the cap
amount) provides a one-way bound on the final auction price. But similar to
the CDS auction setting, the LIBOR panel banks’ profits and losses from their
own derivatives books depend on LIBOR, so the LIBOR fixing method induces
strong manipulation incentives. Unsurprisingly, manipulations of LIBOR have
happened, and the banks involved in the scandals have paid billions of dollars
in fines.11 Although this analogy is by no means evidence of manipulation in
CDS auctions, it serves as a reminder that certain incentives created by market
designs are too strong to resist.

VI. Empirical Implications

This section discusses empirical predictions of our model. The following two
propositions follow from the formal analysis of Section IV and the discussion
of Section V.

PREDICTION 1: All else equal,

(1) If the open interest is to buy, low-value traders get too large an allocation
in the auctions and will sell bonds after the auctions. This effect is stronger
for CDS sellers and traders with zero CDS positions.

(2) If the open interest is to sell, high-value traders get too little an allocation
in the auctions and will buy bonds after the auctions. This effect is stronger
for CDS buyers and traders with zero CDS positions.

PREDICTION 2: All else equal,

(1) In the first stage, dealers who are net CDS buyers quote lower prices than
dealers who are net CDS sellers.

(2) The final auction price is lower if dealers’ preauction CDS positions are
more positive (or less negative).

11 For a comprehensive review, see https://en.wikipedia.org/wiki/Libor_scandal.

https://en.wikipedia.org/wiki/Libor_scandal
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The publicly available CDS auction data report the first-stage market orders
and second-stage limit orders by dealer name. These data do not distinguish
dealers’ own orders and customers’ orders that are channeled through dealers.

To test Prediction 1, one needs proxies for the high-value traders and the
low-value traders. For dealers, valuations may be inferred from their trading
behaviors before CDS auctions. A higher-value dealer would be one that buy
bonds at higher prices, controlling for other covariates. Alternatively, to the
extent that dealers wish to keep a small absolute inventory level, a higher-
value dealer would be one that has abnormally low (or negative) bond inventory.
These proxies will require proprietary data that report dealers’ identities in the
secondary corporate bond markets, such as the unmasked TRACE data that
are managed by the Financial Industry Regulatory Authority and available to
regulators.

To test Prediction 2, one would need to combine publicly available CDS auc-
tion data with dealers’ CDS positions. CDS positions exist in the Depository
Trust and Clearing Corporation’s Trade Information Warehouse and other reg-
ulatory agencies (at least for relatively recent CDS auctions). Note that Pre-
diction 2 does not make a direct statement on the level of quotes or final prices
in CDS auctions because, as we discussed in the introduction, a few other eco-
nomic channels also potentially affect them. It would be ideal to test Prediction
2 controlling for those channels.

VII. Discussion: Current CDS Auction Design versus Double Auction

We have shown that the current design of CDS auctions leads to biased prices
and inefficient allocations of defaulted bonds. Various restrictions imposed on
both stages of CDS auctions prevent certain investors from fully participating
in the price discovery process. Moreover, since dealers’ first-stage quotes may
bind the final auction price from above or below, this design also leaves ample
room for potential manipulation. In our model, a double auction achieves the
first best (see Section III). It is worth noting that these results are obtained in
a model with infinitesimal traders who have zero impact on the price.

In markets with imperfect competition, a double auction is not fully efficient.
This is because the strategic avoidance of price impact makes trading too slow
relative to the first-best. This result is shown in the static models of Vives
(2011), Rostek and Weretka (2012), and Ausubel et al. (2014), as well as the
dynamic models of Vayanos (1999) and Du and Zhu (2016), among others.
Appendix B reproduces the argument in a static setting, showing that the
allocation inefficiency in double auctions is of order O(1/n), where n is the
number of auction participants.

Since the double auction protocol is not fully efficient, it is not obvious that it
is better than the current CDS auction design. In particular, one may suspect
that the current format of CDS auctions is designed to address some practi-
cal concerns not covered in our model. In the remainder of this section, we
discuss potential motivations for the current CDS auction design, and discuss
whether a double auction design can achieve the same objective equally well
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or better. Although this section involves no formal modeling, we draw upon
the widespread implementation of double auctions in stock exchanges as a
natural comparison to CDS auctions. Our general conclusion is that, even after
taking into account various practical considerations, a double auction design—
enriched, if necessary—is still more efficient than the current CDS auction
design.

A. A Double Auction Design

Let us start by proposing a double auction design of CDS auctions:

Step DA-1(a) In the first stage, physical settlement requests may still be
submitted, and they are filled at the final auction price.

Step DA-1(b) In the first stage, simultaneous to Step DA-1(a), dealers may
still make quotes on the defaulted bonds, but their quotes no
longer bind the second-stage price.

Step DA-2 In the second stage, traders can submit both buy and sell limit
orders, regardless of the open interest from the first stage.
There is no price cap or floor. The final auction price matches
supply and demand.

This double auction design is nothing exotic or unusual. It is similar to
the standard mechanism used in open auctions and close auctions in stock
exchanges such as NYSE and NASDAQ, with minor differences in details.

In principle, the only essential step in a double auction design is Step DA-2,
as in Section III. By including Steps DA-1(a) and DA-1(b), the above implemen-
tation preserves the first-stage physical requests and quotes in the current CDS
auction design. Note that, given Step DA-2, Step DA-1(a) is in fact unnecessary.
A trader can move his market order in Step DA-1(a) to Step DA-2, with no effect
in the equilibrium outcome. In this sense, one may also add arbitrary restric-
tions on Step DA-1(a), such as requiring that a trader’s physical settlement
request be opposite in direction to his CDS position. Moreover, the dealers’
quotes in Step DA-1(b) could be useful for reducing information asymmetry. In
models with asymmetric information and price impact, a lower degree of in-
formation asymmetry typically improves allocation efficiency (see Du and Zhu
(2016) and references therein).

Before elaborating the difference between the one-sided CDS auction design
and the double auction design, we emphasize that both mechanisms overcome
the concerns that give rise to CDS auctions in the first place. Creditex and
Markit (2010) give two main reasons why an auction protocol was introduced.
First, an auction protocol produces a unique price at which investors can choose
to settle in cash. Second, if CDS outstanding is greater than the volume of
bonds outstanding, in bilateral physical settlements “the bonds would have to
be ‘recycled’ a number of times through the market to settle all the CDS trades”
(Creditex and Markit (2010)). This recycling of bonds creates an endogenous
supply shortage and may artificially raise the price of defaulted bonds. By
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concentrating all buyers and sellers to one point in time, an auction protocol
effectively eliminates the supply shortage problem.

However, while the above reasons justify an auction protocol to settle CDS,
they do not justify a one-sided auction design. We now compare the one-sided
CDS auction and the double auction.

B. Why Impose Restrictions in CDS Auctions?

Compared with the double auction design above, the current CDS auction
design introduces two interconnected restrictions:

(1) In the first stage, dealers’ quotes form a one-sided price constraint (cap
or floor) on the final auction price.

(2) In the second stage, only limit orders that are on the opposite side of the
open interest are permitted.

Below, we discuss a few practical considerations that may motivate these two
restrictions.

Price manipulation in the second stage. According to Creditex and Markit
(2010), the price cap and floor are introduced to “avoid a large limit order being
submitted off-market to try and manipulate the results, particularly in the
case of a small open interest.” For instance, a large CDS seller benefits from a
higher final auction price, and a large CDS buyer benefits from a lower final
price. They thus have corresponding incentives to manipulate the price.

It is far from clear that a one-way price constraint is the best way to mitigate
manipulation incentives. First, finding the correct price cap or floor is not easy.
If the price cap is set too high, CDS sellers can still manipulate the price
upward; but if the price cap is set too low, the price cap itself becomes an
inefficient constraint.12 A similar problem applies to the price floor. Second,
using a price cap or floor gives dealers the ability to manipulate the final
auction price, as we explain in Section V.

A more natural way to mitigate price manipulation is to allow limit orders
in both directions in the second stage of the double auction (Step DA-2 above).
Because CDS contracts have zero net supply, the increased profit to all CDS
sellers of pushing the price up by ε is equal to the increased profit to all CDS
buyers of pushing the price down by ε. That is, manipulation incentives apply
to both sides and they should offset each other, at least in part. In Appendix
B, we solve an extended double auction model with imperfect competition and
show that, although each trader’s demand schedule reflects his CDS position,
these CDS positions have zero net effect on the final auction price because they
add up to zero.

Supply or demand shock. In practice, a price constraint could be useful to
guard against an unexpected supply or demand shock. For example, if only

12 In our simple model with two states, the open interest reveals the efficient price. But in reality,
traders’ values for the bonds are likely more complicated, and finding the efficient price cap or floor
is likely much more difficult.
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a very small fraction of investors show up in CDS auctions (for rational or
behavioral reasons), the resulting price may overshoot either way. In this case,
a two-way price constraint seems more suitable than a one-way price constraint
because, again, the latter gives dealers too much discretion in moving the price
in a certain direction. With a two-way price constraint, the midpoint could
be calculated from dealers’ quotes or secondary market prices (where data are
available), and the “spread” should be wide enough to reflect the volatility of the
defaulted bonds and thereby discourage incentives to manipulate the quotes.

The U.S. equity markets offer some useful comparisons on such price con-
straints. For instance, in the NASDAQ closing auction, the lowest permissable
price is the NASDAQ best bid minus the greater of $0.50 and 10% of the
NASDAQ midpoint price, and the highest permissable price is the NASDAQ
best ask plus the greater of $0.50 and 10% of the NASDAQ midpoint price.13

Therefore, the price range in a NASDAQ close auction is at least 20% of the
NASDAQ midpoint. In NYSE Arca close auctions, the price range is from 10%
below to 10% above the last transaction price if the stock price is above $10,
and from 25% below to 25% above the last transaction price if the stock price is
below $10.14 During continuous trading hours, the two-way price range of in-
dividual stocks is governed by the limit up–limit down mechanism, which sets
three levels of price bands: 5%, 10%, and 20% of the average price of the stock
over the immediately preceding five minutes. If these price bands are breached
for more than 15 seconds, trading is halted for five minutes.15 All these price
ranges are designed to prevent extreme volatility in equity markets that may
not be driven by fundamentals.

Given the illiquidity of defaulted bonds or loans, it seems reasonable to set a
two-way price range that is comparable to equities or wider. In the current CDS
auctions, the “cap amount” of $0.01 or $0.02 per $1 face value seems quite low.

Participation. In informal conversations, a couple of market participants
have suggested that an advantage of the two restrictions—one-way price con-
straint and one-sided limit orders in the second stage—is to create additional
uncertainty about price and allocation in the second stage of the auction, as
such uncertainty should encourage CDS buyers and sellers to participate in the
first stage of CDS auctions. For example, a CDS buyer who also holds defaulted
bonds may find it risky to wait until the second stage to sell the bonds because
he will not be allowed to submit sell orders if the open interest is to sell. This
risk may prompt the CDS buyer to submit a physical settlement request in

13 See https://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/openclose faqs.
pdf

14 See https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE_Arca_Auctions_Bro-
chure.pdf.

15 The limit up–limit down mechanism for individual stocks should be distinguished from
the marketwide circuit breaker, which is triggered if the S&P 500 index has a single-day de-
cline of more than 7%, 13%, or 20% relative to the prior day’s closing price. Breaching the
7% and 13% thresholds leads to a marketwide trading halt for 15 minutes, whereas breaching
the 20% threshold ends marketwide trading for the remainder of the day. For more details, see
https://www.sec.gov/investor/alerts/circuitbreakersbulletin.htm.

https://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/openclose_faqs.pdf
https://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/openclose_faqs.pdf
https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE_Arca_Auctions_Brochure.pdf
https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE_Arca_Auctions_Brochure.pdf
https://www.sec.gov/investor/alerts/circuitbreakersbulletin.htm
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the first stage. If all CDS traders participate in the first stage and submit full
physical settlement requests (i.e., ri = −Qi), then the net open interest would
be zero and CDS auctions would achieve the same outcome as cash settlement.

Although we do not formally model the cost of participating in CDS auctions,
our model can be viewed as one with zero participation cost. We show that
the restrictions imposed in CDS auctions reduce participation by certain types
of CDS traders, rather than encourage participation (see Section IV). This
leads to biased prices and inefficient allocations. Moreover, the open interest
is rarely zero in the data, suggesting that the restrictions in CDS auctions
cannot attract full participation in the first stage of the auction. By contrast,
the double auction design allows every CDS trader to participate if the cost of
doing so is zero. By continuity, we infer that, as long as the participation cost
is not too high, the double auction design is still better than the current design
in terms of encouraging broad participation.

Summary. In summary, we have difficulty justifying the one-sided CDS auc-
tion design, even after considering various frictions and practical concerns. To
be clear, while we argue that the double auction design is an improvement
over the current CDS auction design, we are by no means suggesting that the
double auction design would be the optimal mechanism in practice. Identifying
the optimal mechanism in dynamic markets with frictions is a difficult problem
that is beyond the scope of this paper.
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Appendix A

A. Proof of Proposition 1

We conjecture that p∗
S ≤ p∗

B and that in the high state R > 0, while in the
low state R < 0.16 We derive the equilibrium based on this conjecture, and then
verify this conjecture under some parameter conditions.

We first show that the first-stage strategy in equation (17) is optimal, which
has four cases.

Case 1. If the trader has a high value for the bond and is a CDS seller,
then he wants to buy bonds but is constrained to buy at most −Qi
units in the first stage. Given this constraint, it is optimal for him
to submit ri = min( vH−α p∗

B−(1−α)p∗
S

λ
,−Qi) for any α ∈ [0, 1]. Indeed, if

the open interest is to buy, then he sells back some of his ri, that is,
xi = − min( vH−α p∗

B−(1−α)p∗
S

λ
,−Qi) + vH−p∗

B
λ

≤ 0, which results in a total

16 In equilibrium we cannot have R<0 in the high state and R>0 in the low state. Because
high-value traders want to buy, if R>0 in the low state, then we must have R>0 in the high state
as well (since there are more high-value traders in the high state). However, we do have a one-sided
equilibrium in which R>0 in both high and low states and a one-sided equilibrium in which R<0
in both high and low states. See the Internet Appendix for those equilibria.
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allocation of min((vH − p∗
B)/λ,−Qi) that is as close as possible to his

optimal allocation (vH − p∗
B)/λ. If the open interest is to sell, then he

buys xi = − min( vH−α p∗
B−(1−α)p∗

S
λ

,−Qi) + vH−p∗
B

λ
≥ 0 additional units in

the second stage, exactly achieving his optimal allocation (vH − p∗
S)/λ.

Case 2. The case for a low-value CDS buyer is analogous to Case 1.
Case 3. If the trader has a high value for the bond and has a positive or zero

CDS position, then he cannot submit buy orders in the first stage.
Clearly, his optimal request is to set ri = 0 in the first stage.

Case 4. The case for a low-value trader with a zero or negative CDS position
is analogous to Case 3.

Aggregating the allocations across the two stages, we have the following
market-clearing condition given an open interest to buy (i.e., in the high state):

(1 − m)
vL − p∗

B

λ
+ m

2

∫
Qi≥0

min
(

Qi,
vH − p∗

B

λ

)
dG(Qi) = 0. (A1)

In equation (A1), all low-value traders sell in the second stage (regardless of
their physical requests in the first stage) and achieve their optimal allocation
of (vL − p∗

B)/λ (the first term). High-value traders with positive or zero CDS
positions do not trade in either stage: they only want to buy, are constrained
to sell in the first stage because of their CDS positions, and are constrained
to sell in the second stage because of the open interest to buy. In the second
term of equation (A1), high-value CDS sellers buy in the first stage; they sell
in the second stage and achieve their optimal allocation of (vH − p∗

B)/λ if −Qi ≥
(vH − p∗

B)/λ (if Qi = 0, the integrand is just zero).
Analogously, the market-clearing condition given an open interest to sell (i.e.,

in the low state) is

(1 − m)
vH − p∗

S

λ
+ m

2

∫
Qi≥0

max
(

−Qi,
vL − p∗

S

λ

)
dG(Qi) = 0. (A2)

The left-hand side of equation (A1) is clearly decreasing in p∗
B, is positive

when p∗
B = vL, and is negative when p∗

B = vH . Thus, there exists a unique p∗
B ∈

(vL, vH) that satisfies equation (A1). Likewise, the left-hand side of equation
(A2) is clearly decreasing in p∗

S, is positive when p∗
S = vL, and is negative

when p∗
S = vH . Thus, there exists a unique p∗

S ∈ (vL, vH) that satisfies equation
(A2). Moreover, the solution (p∗

B, p∗
S) clearly satisfies vH − p∗

S = p∗
B − vL. Thus,

p∗
B ≥ p∗

S if and only if p∗
B ≥ (vH + vL)/2, that is, the left-hand side of equation

(A1) is nonnegative when p∗
B = (vH + vL)/2; this is simply condition (14).

Finally, given the identity vH − p∗
S = p∗

B − vL, the first-stage strategy in equa-
tion (17) implies that R > 0 in the high state and R < 0 in the low state, as we
have conjectured.

This completes the derivation and verification of the equilibrium in which
p∗

B ≥ p∗
S.
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B. Proof of Proposition 2

We conjecture that p∗
B < p∗

S and that in the high state R > 0, while in the
low state R < 0. We derive the equilibrium based on this conjecture, and then
verify this conjecture under some parameter conditions.

We first show that the first-stage strategy in equation (21) is optimal, which
has four cases.

Case 1. If trader i has a high value for the bond and is a CDS seller, then
he wants to buy bonds but is constrained to buy at most −Qi units
in the first stage. For any ri ∈ [(vH − p∗

S)/λ, (vH − p∗
B)/λ], by equa-

tion (13) trader i buys zero following a sell open interest because
−ri + (vH − p∗

S)/λ ≤ 0, and sells zero following a buy open interest
because −ri + (vH − p∗

B)/λ ≥ 0, where we have used the conjecture
that p∗

B < p∗
S. That is, trader i does not trade in the second stage. By

Bayes’s rule, trader i puts the probability mon the high state (R > 0).
Hence, his unconstrained optimal ri is (vH − mp∗

B − (1 − m)p∗
S)/λ, and

his constrained optimal ri is min((vH − mp∗
B − (1 − m)p∗

S)/λ,−Qi).
Case 2. The case for a low-value CDS buyer is analogous to Case 1.
Case 3. If the trader has a high value for the bond and has a positive or zero

CDS position, then he cannot submit buy orders in the first stage.
Clearly, his optimal request is to set ri = 0 in the first stage.

Case 4. The case for a low-value trader with a zero or negative CDS position
is analogous to Case 3.

Aggregating the allocations across the two stages, we have the following
market-clearing condition given a buy open interest (i.e., in the high state):

1 − m
2

vL − p∗
B

λ
+ 1 − m

2

∫
Qi≥0

max
(

−Qi,
vL − mp∗

S − (1 − m)p∗
B

λ

)
dG (Qi)

+ 1 − m
2

∫
Qi≥0

min
(

vL − p∗
B

λ
+ Qi, 0

)
dG (Qi)

+ m
2

∫
Qi≥0

min
(

Qi,
vH − mp∗

B − (1 − m)p∗
S

λ

)
dG (Qi) = 0. (A3)

In equation (A3), low-value traders with negative or zero CDS positions trade
only in the second stage and achieve their optimal allocation of (vL − p∗

B)/λ; see
the first term and the Qi = 0 part of the third term of equation (A3). The second
term of equation (A3) is the total physical request from low-value CDS buyers (if
Qi = 0, the integrand is just zero). In the third term of equation (A3), low-value
CDS buyers with physical request ri = −Qi ≥ (vL − p∗

B)/λ submit sell order in
the second stage and end up trading (vL − p∗

B)/λ − (−Qi) ≤ 0. Low-value CDS
buyers do not trade in the second stage because they have sold too much in the
first stage. The fourth term of equation (A3) is the total physical request from
high-value CDS sellers (if Qi = 0, the integrand is just zero); they do not trade
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in the second stage because they want to buy but the open interest is also to
buy. High-value CDS buyers do not trade in either stage.

Analogously, the market-clearing condition given a sell open interest (i.e., in
the low state) is

1 − m
2

vH − p∗
S

λ
+ 1 − m

2

∫
Qi≥0

min
(

Qi,
vH − mp∗

B − (1 − m)p∗
S

λ

)
dG (Qi)

+ 1 − m
2

∫
Qi≥0

max
(

vH − p∗
S

λ
− Qi, 0

)
dG (Qi)

+ m
2

∫
Qi≥0

max
(

−Qi,
vL − mp∗

S − (1 − m)p∗
B

λ

)
dG (Qi) = 0. (A4)

To solve equations (A3) and (A4), we define the following functions. For any
fixed value of p∗

S − vL, let h1(p∗
S − vL) be the value of vH − p∗

B such that equation
(A3) holds. (This is well defined because the left-hand side of equation (A3) is
decreasing in p∗

B.) Likewise, for any fixed value of vH − p∗
B, let h2(vH − p∗

B) be
the value of p∗

S − vL such that equation (A4) holds. By inspecting equations
(A3) and (A4) we see that h1 = h2; moreover, h1 and h2 are strictly increasing
functions. This implies that any solution (p∗

B, p∗
S) to equations (A3) and (A4)

satisfies the symmetry condition

vH − p∗
B = p∗

S − vL. (A5)

If not (suppose vH − p∗
B > p∗

S − vL), then we have p∗
S − vL = h2(vH − p∗

B) >

h1(p∗
S − vL) = vH − p∗

B, that is, a contradiction.
Under condition (A5), equations (A3) and (A4) simplify to

1 − m
2

vL − p∗
B

λ
+2m− 1

2

∫
Qi≥0

min
(

Qi,
vH − mp∗

B − (1 − m)p∗
S

λ

)
dG(Qi)

+ 1 − m
2

∫
Qi≥0

min
(

vL − p∗
B

λ
+ Qi, 0

)
dG(Qi) = 0. (A6)

Under condition (A5), mp∗
B + (1 − m)p∗

S is increasing in p∗
B since m > 1/2. Thus,

under condition (A5), the left-hand side of equation (A6) is decreasing in p∗
B, is

positive when p∗
B = vL, and is negative when p∗

B = vH , so equation (A6) admits a
unique solution p∗

B ∈ (vL, vH). Moreover, this solution satisfies p∗
B < (vH + vL)/2

(i.e., p∗
B < p∗

S) if and only if the left-hand side of equation (A6) is negative when
p∗

B = (vH + vL)/2, which is equivalent to condition (18) by simple algebra.
Finally, given equation (A5), the first-stage strategy in equation (21) implies

that R > 0 in the high state and R < 0 in the low state, as we have conjectured.
This completes the derivation and verification of the equilibrium under which

p∗
B < p∗

S.
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C. Proof of Proposition 3

In Proposition 1, the final price p∗
B in the high state is defined by equation

(A1), which excludes some high-value traders; that is, for every value of p∗
B, the

left-hand side of equation (A1) is strictly less than

(1 − m)
vL − p∗

B

λ
+ m

vH − p∗
B

λ
. (A7)

The above expression is equal to zero when p∗
B = pc

H . Therefore, the solution
p∗

B that satisfies equation (A1) must be less than pc
H . Since p∗

S = vH + vL − p∗
B

and pc
L = vH + vL − pc

H , we have p∗
S > pc

L for Proposition 1.
In Proposition 2, we have p∗

B < (vH + vL)/2 < p∗
S. Since pc

H > (vH + vL)/2 >

pc
L by definition, we also have p∗

B < pc
H and p∗

S > pc
L.

The inefficiency of allocations follows directly from the biases in prices. We
focus on the high state, since the proof for the low state is symmetric and hence
omitted.

(1) Low-value traders: In Proposition 1, they get a bond allocation of
vL−p∗

B
λ

>
vL−pc

H
λ

. In Proposition 2, they get a bond allocation of at

least vL−mp∗
S−(1−m)p∗

B
λ

, which is larger than the efficient allocation
of vL−pc

H
λ

because mp∗
S + (1 − m)p∗

B = mp∗
S + (1 − m)(vL + vH − p∗

S) <

mvH + (1 − m)vL = pc
H .

(2) High-value CDS buyers and zero-CDS-position traders: In both
Propositions 1 and 2, they are prevented from participating in the
auction and receive zero allocation, which is clearly lower than their
efficient allocation of vH−pc

H
λ

.
(3) High-value CDS sellers: In Proposition 1, their allocation is

min(−Qi,
vH−p∗

B
λ

), which can be lower than or higher than their ef-
ficient allocation of vH−pc

H
λ

. Specifically, if |Qi| is sufficiently small,
min(−Qi,

vH−p∗
B

λ
) = −Qi <

vH−pc
H

λ
, whereas if |Qi| is sufficiently large,

min(−Qi,
vH−p∗

B
λ

) = vH−p∗
B

λ
>

vH−pc
H

λ
. In Proposition 2, their allocation is

min(−Qi,
vH−mp∗

B−(1−m)p∗
S

λ
), which can be lower than or higher than their

efficient allocation of vH−pc
H

λ
, following similar logic.

D. Proof of Proposition 4

Suppose in the CDS auction we have the equilibrium in Proposition 1 (where
p∗

B ≥ p∗
S).

Without loss of generality, let us focus on an investor with a benefit bi ≥
0 (wants to buy CDS). Investor i chooses Qi ≥ 0 and obtains the following
quantity of bonds from the two-stage auction:
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Investor i with Qi ≥ 0 ri + xi(p∗)

High state, vi = vH 0
High state, vi = vL (vL − p∗

B)/λ
Low state, vi = vH (vH − p∗

S)/λ
Low state, vi = vL max((vL − p∗

S)/λ, −Qi)

We can see that the only case in which Qi plays a role in the auction is the
low state with vi = vL.

Investor i solves the following problem at stage 0 (ignoring terms that are
independent of Qi):

max
Qi≥0

(bi − pCDS − c)Qi − γ

2
(Qi)2 + π Qi

(
1 − vH + vL

2

)

+πm
2

((
vL − p∗

S

)
max

(
vL − p∗

S

λ
,−Qi

)
− λ

2
max

(
vL − p∗

S

λ
,−Qi

)2
)

, (A8)

where by symmetry p∗
B + p∗

S = (vH + vL)/2.
Define

b′
i ≡ bi − pCDS − c + π

(
1 − vH + vL

2

)
. (A9)

There are two cases, depending on the value of max( vL−p∗
S

λ
,−Qi).

First, conjecture Qi ≤ p∗
S−vL

λ
. The problem (A8) reduces to

max
0≤Qi≤(p∗

S−vL)/λ

(
b′

i − πm
2
(
vL − p∗

S

))
Qi −

(
γ

2
+ πmλ

4

)
(Qi)2, (A10)

whose solution is

Qi =
(
b′

i + (
p∗

S − vL
)
πm/2

)+
γ + πmλ/2

≤ p∗
S − vL

λ
, (A11)

where the last inequality is equivalent to

b′
i

γ
≤ p∗

S − vL

λ
. (A12)

Second, conjecture Qi >
p∗

S−vL

λ
. The problem (A8) reduces to

max
Qi>(p∗

S−vL)/λ
b′

i Qi − γ

2
(Qi)2, (A13)

whose solution is

Qi = b′
i

γ
>

p∗
S − vL

λ
, (A14)
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where the last inequality is just the complement of the condition for the first
case.

Therefore, the solution to problem (A8) is

Qi =

⎧⎪⎪⎨
⎪⎪⎩

(b′
i + (

p∗
S − vL

)
πm/2)+

γ + πmλ/2
if b′

i ≤ γ
(
p∗

S − vL
)

λ
b′

i

γ
if

γ
(
p∗

S − vL
)

λ
< b′

i.

(A15)

When bi < 0, the optimal Qi is computed symmetrically. To clear all CDS
positions {Qi}, we must have

pCDS = π

(
1 − vH + vL

2

)
. (A16)

Given the strategy in equation (A15) and the counterpart when bi < 0, the
market-clearing condition for the auction price p∗

B in the high state is equation
(23). Clearly, the left-hand side of equation (23) is strictly decreasing in p∗

B, is
positive when p∗

B = vL, and is negative when p∗
B = vH . Thus, it has a unique

solution in p∗
B. Moreover, this solution p∗

B is larger than p∗
S = vH + vL − p∗

B if
and only if the left-hand side of equation (23) is positive when p∗

B = (vH + vL)/2,
that is, condition (22).

E.1 Proof of Proposition 5

Suppose in the CDS auction we have the equilibrium in Proposition 2 (where
p∗

B < p∗
S).

Without loss of generality let us focus on a trader with a benefit bi ≥ 0 (wants
to buy CDS). Trader i chooses Qi ≥ 0 and obtains the following quantity of bonds
from the two-stage auction:

Investor i with Qi ≥ 0 ri + xi(p∗)

High state, vi = vH 0
High state, vi = vL

(
vL − p∗

B

)
/λ if

(
vL − p∗

B

)
/λ ≤ −Qi

max
((

vL − mp∗
S − (1 − m)p∗

B

)
/λ, −Qi

)
if (vL − p∗

B)/λ > −Qi
Low state, vi = vH

(
vH − p∗

S

)
/λ

Low state, vi = vL max
((

vL − mp∗
S − (1 − m)p∗

B

)
/λ, −Qi

)

We can see that of the four cases, two involve Qi, namely, those in which
vi = vL.

Investor i solves the following problem at stage 0 (ignoring terms that are
independent of Qi):
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max
Qi≥0

(bi − pCDS − c)Qi − γ

2
(Qi)2 + π Qi

(
1 − vH + vL

2

)

+π (1 − m)
2

(
(vL − p∗

B) max
(

min
(

−Qi,
vL − p∗

B

λ

)
,
vL − mp∗

S − (1 − m)p∗
B

λ

)

−λ

2
max

(
min

(
−Qi,

vL − p∗
B

λ

)
,
vL − mp∗

S − (1 − m)p∗
B

λ

)2
)

+πm
2

(
(vL − p∗

S) max
(

−Qi,
vL − mp∗

S − (1 − m)p∗
B

λ

)

−λ

2
max

(
−Qi,

vL − mp∗
S − (1 − m)p∗

B

λ

)2
)

, (A17)

where by symmetry p∗
B + p∗

S = (vH + vL)/2.
As in the proof for the previous proposition, define

b′
i = bi − pCDS − c + π

(
1 − vH + vL

2

)
. (A18)

Similar to the proof of Proposition 4, we solve Problem (A17) conditional on
three possible ranges of Qi.

First, conjecture Qi ≤ p∗
B−vL

λ
. The problem (A17) reduces to

max
0≤Qi≤(p∗

B−vL)/λ

(
b′

i − πm
2
(
vL − p∗

S

))
Qi −

(
γ

2
+ πmλ

4

)
(Qi)2, (A19)

whose solution is

Qi =
(
b′

i + (
p∗

S − vL
)
πm/2

)+
γ + πmλ/2

≤ p∗
B − vL

λ
. (A20)

Next, we conjecture p∗
B−vL

λ
< Qi ≤ mp∗

S+(1−m)p∗
B−vL

λ
. The problem (A17) reduces

to

max
(p∗

B−vL)/λ<Qi≤(mp∗
S+(1−m)p∗

B−vL)/λ

(
b′

i − πm
2

(vL − p∗
S) − π (1 − m)

2
(
vL − p∗

B

))
Qi (A21)

−
(

γ

2
+ πmλ

4
+ π (1 − m)λ

4

)
(Qi)2,

whose solution is

Qi = b′
i + (

mp∗
S + (1 − m)p∗

B − vL
)
π/2

γ + πλ/2
∈
(

p∗
B − vL

λ
,

mp∗
S + (1 − m)p∗

B − vL

λ

]
, (A22)

where in the solution above the condition Qi >
p∗

B−vL

λ
is equivalent to

b′
i + (

p∗
S − vL

)
πm/2

γ + πmλ/2
>

p∗
B − vL

λ
, (A23)
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and the condition Qi ≤ mp∗
S + (1−m)p∗

B−vL

λ
is equivalent to

b′
i

γ
≤ mp∗

S + (1 − m)p∗
B − vL

λ
. (A24)

Finally, we conjecture Qi >
mp∗

S + (1−m)p∗
B−vL

λ
. The problem (A17) reduces to

max
Qi>(mp∗

S + (1−m)p∗
B−vL)/λ

b′
i Qi − γ

2
(Qi)2, (A25)

whose solution is

Qi = b′
i

γ
>

mp∗
S + (1 − m)p∗

B − vL

λ
. (A26)

We see that the parameter conditions for the above three cases complement
each other. Therefore, the solution to problem (A17) is

Qi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(b′
i+(p∗

S−vL)πm/2)+

γ+πmλ/2 if b′
i+(p∗

S−vL)πm/2
γ+πmλ/2 ≤ p∗

B−vL

λ
,

b′
i+(mp∗

S+(1−m)p∗
B−vL)π/2

γ+πλ/2 if p∗
B−vL

λ
≤ b′

i+(mp∗
S+(1−m)p∗

B−vL)π/2
γ+πλ/2 ≤ mp∗

S+(1−m)p∗
B−vL

λ
,

b′
i

γ
if mp∗

S+(1−m)p∗
B−vL

λ
≤ b′

i
γ

.

(A27)

When bi < 0, the optimal Qi is computed symmetrically. To clear all CDS
positions {Qi}, we must have

pCDS = π

(
1 − vH + vL

2

)
. (A28)

Given the strategy in equation (A27) and the counterpart when bi < 0, the
market-clearing condition for the auction price p∗

B in the high state is equation
(28).17 Clearly, the left-hand side of equation (28) is strictly decreasing in p∗

B, is
positive when p∗

B = vL, and is negative when p∗
B = vH . Thus, it has an unique

solution in p∗
B. Moreover, this solution p∗

B is larger than p∗
S = vH + vL − p∗

B if
and only if the left-hand side of equation (28) is positive when p∗

B = (vH + vL)/2,
that is, condition (27).

Appendix B: A More General Double Auction Model

In this appendix, we generalize the double auction model in Section VII by
allowing a finite number n of traders and general distributions of values and
CDS positions. We show that the double auction still has an equilibrium that
produces the competitive price, even though each trader has a price impact.

17 Here we also need the fact that

b′
i + (

p∗
S − vL

)
πm/2

γ + πmλ/2
≤ p∗

B − vL

λ
iff

b′
i + (

p∗
S − vL

)
πm/2

γ + πmλ/2
≤ b′

i + (
mp∗

S + (1 − m)p∗
B − vL

)
π/2

γ + πλ/2
.
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Although the allocations in this equilibrium are not fully efficient, we show that
the difference between the equilibrium allocation and the efficient allocation
for each trader is on the order of O(1/n), where n is the total number of traders.

Suppose there are n ≥ 3 traders. We focus on the date t = 1 after the default
of the bond. As in Section II, each trader i has a private valuation vi for owning
the defaulted bond and a CDS position Qi, for 1 ≤ i ≤ n. We allow for any joint
probability distribution of values {vi}1≤i≤n and CDS positions {Qi}1≤i≤n (with
the condition that path-by-path,

∑n
i=1 Qi = 0). Trader i’s utility is still given by

equation (5). The double auction rule is described in Section VII. The final price
p∗ is determined to clear the market:

n∑
i=1

xi(p∗) +
n∑

i=1

ri = 0. (B1)

Notice that with a finite number of traders, each one can affect the final price
p∗ by changing his physical request ri or his demand schedule xi(p).

PROPOSITION B1: In the double auction with n ≥ 3 traders, there exists an equi-
librium in which trader i submits a (arbitrary) physical request ri between zero
and −Qi in the first stage, and in the second stage submits the demand schedule

xi(p) = −ri + n − 2
λ(n − 1)

(vi − p) − 1
n − 1

Qi. (B2)

The equilibrium price is

p∗ = 1
n

n∑
i=1

vi. (B3)

PROOF: Without loss of generality, suppose that ri = 0.
Fix a strategy profile (x1, x2, . . . , xn). Given that all other traders use this

strategy profile and for a fixed profile of values (v1, v2, . . . , vn), the payoff of
trader i at the price p is

�i(p) = (1 − p)Qi + (vi − p)

⎛
⎝−

∑
j �=i

xj(p)

⎞
⎠− 1

2
λ

⎛
⎝−

∑
j �=i

xj(p)

⎞
⎠

2

.

We can see that trader i is effectively selecting an optimal price p. Taking the
first-order condition of �i(p) at p = p∗, we have, for all i,

0 = �′
i(p∗) = −Qi − xi(p∗) + (

vi − p∗ − λxi(p∗)
) (−∑ j �=i

∂xj

∂ p (p∗)
)

. (B4)

We conjecture a symmetric linear demand schedule,

xj(p) = av j − bp + cQi, (B5)
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where a, b, and c are constants. Given this conjecture, trader i’s first-order
condition (B4) becomes

xi(p∗) = (n − 1)b(vi − p∗) − Qi

1 + λ(n − 1)b
, (B6)

that is, when trader i uses the demand schedule in equation (B5) with

a = b = n − 2
λ(n − 1)

, c = − 1
n − 1

, (B7)

trader i’s first-order condition is always satisfied for every realization of
(v1, v2, . . . , vn).

It is easy to verify that, under this linear strategy, �′′
i ( · ) < 0 if n > 2. �

A notable feature of the equilibrium in Proposition B1 is that it is indepen-
dent of (and hence robust to) assumptions about values and CDS positions.

The equilibrium strategy in Proposition B1 clearly converges to the compet-
itive equilibrium strategy in equation (7) as the number n of traders tends
to infinity. The factor n−2

n−1 in equation (B2) captures the equilibrium amount
of “demand reduction” due to traders’ price impact in the finite market. This
factor is canceled out in the determination of the equilibrium price in equation
(B3), and hence the equilibrium price is the same as the competitive price. The
final allocation from this equilibrium for trader i is

ri + xi(p∗) = n − 2
λ(n − 1)

(vi − p∗) − 1
n − 1

Qi, (B8)

and the efficient allocation for trader i is

1
λ

(vi − p∗). (B9)

The difference between the two allocations is on the order of O(1/n).
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