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Abstract
Deep neural networks are vulnerable to adver-
sarial attacks. The literature is rich with algo-
rithms that can easily craft successful adversarial
examples. In contrast, the performance of de-
fense techniques still lags behind. This paper pro-
poses ME-Net, a defense method that leverages
matrix estimation (ME). In ME-Net, images are
preprocessed using two steps: first pixels are ran-
domly dropped from the image; then, the image
is reconstructed using ME. We show that this pro-
cess destroys the adversarial structure of the noise,
while re-enforcing the global structure in the orig-
inal image. Since humans typically rely on such
global structures in classifying images, the pro-
cess makes the network mode compatible with
human perception. We conduct comprehensive
experiments on prevailing benchmarks such as
MNIST, CIFAR-10, SVHN, and Tiny-ImageNet.
Comparing ME-Net with state-of-the-art defense
mechanisms shows that ME-Net consistently out-
performs prior techniques, improving robustness
against both black-box and white-box attacks.

1. Introduction
State-of-the-art deep neural networks (NNs) are vulnerable
to adversarial examples (Szegedy et al., 2013). By adding
small human-indistinguishable perturbation to the inputs,
an adversary can fool neural networks to produce incorrect
outputs with high probabilities. This phenomena raises
increasing concerns for safety-critical scenarios such as the
self-driving cars where NNs are widely deployed.

An increasing body of research has been aiming to either
generate effective perturbations, or construct NNs that are
robust enough to defend against such attacks. Currently,
many effective algorithms exist to craft these adversarial
examples, but defense techniques seem to be lagging behind.
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For instance, the state-of-the-art defense can only achieve
less than 50% adversarial accuracy for `∞ perturbations
on datasets such as CIFAR-10 (Madry et al., 2017). Under
recent strong attacks, most defense methods have shown to
break down to nearly 0% accuracy (Athalye et al., 2018).

As adversarial perturbations are carefully generated struc-
tured noise, a natural conjecture for defending against them
is to destroy their structure. A naive approach for doing so
would randomly mask (i.e., zero out) pixels in the image.
While such method can eliminate the adversarial structure
within the noise through random information drop, it is al-
most certain to fail since it equally destroys the information
of the original image, making NN inference even worse.

However, this naive starting point raises an interesting sug-
gestion: instead of simply applying a random mask to the
images, a preferable method should also reconstruct the
images from their masked versions. In this case, the random
masking destroys the crafted structures, but the reconstruc-
tion recovers the global structures that characterize the ob-
jects in the images. Images contain some global structures.
An image classified as cat should have at least a cat as its
main body. Humans use such global structure to classify
images. In contrast the structure in adversarial perturbation
is more local and defies the human eye. If both training
and testing are performed under the same underlying global
structures (i.e., there is no distributional shift in training and
testing), the network should be generalizable and robust. If
the reconstruction can successfully maintain the underlying
global structure, the masking-and-reconstruction pipeline
can redistribute the carefully constructed adversarial noises
to non-adversarial structures.

In this paper, we leverage matrix estimation (ME) as our
reconstruction scheme. ME is concerned with recovering
a data matrix from noisy and incomplete observations of
its entries, where exact or approximate recovery of a ma-
trix is theoretically guaranteed if the true data matrix has
some global structures (e.g., low rank). We view a masked
adversarial image as a noisy and incomplete realization
of the underlying clean image, and propose ME-Net, a
preprocessing-based defense that reverts a noisy incomplete
image into a denoised version that maintains the underlying
global structures in the clean image. ME-Net realizes ad-
versarial robustness by using such denoised global-structure
preserving representations.
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We note that the ME-Net pipeline can be combined with
different training procedures. In particular, we show that
ME-Net can be combined with standard stochastic gradient
descent (SGD) or adversarial training, and in both cases
improves adversarial robustness. This is in contrast with
many preprocessing techniques which cannot leverage the
benefits of adversarial training (Buckman et al., 2018; Song
et al., 2018; Guo et al., 2017), and end up failing under the
recent strong white-box attack (Athalye et al., 2018).

We provide extensive experimental validation of ME-Net
under the strongest black-box and white-box attacks on
established benchmarks such as MNIST, CIFAR-10, SVHN,
and Tiny-ImageNet, where ME-Net outperforms state-of-
the-art defense techniques. Our implementation is available
at: https://github.com/YyzHarry/ME-Net.

We summarize our contributions as follows:

• We are the first to leverage matrix estimation as a general
pipeline for image classification and defending against
adversarial attacks.

• We show empirically that ME-Net improves the robust-
ness of neural networks under various `∞ attacks:
1. ME-Net alone significantly improves the state-of-the-

art results on black-box attacks;
2. Adversarially trained ME-Net consistently outper-

forms the state-of-the-art defense techniques on white-
box attacks, including the strong attacks that counter
gradient obfuscation (Athalye et al., 2018).

Such superior performance is maintained across various
datasets: CIFAR-10, MNIST, SVHN and Tiny-ImageNet.

• We show additional benefits of ME-Net such as improv-
ing generalization (performance on clean images).

2. ME-Net
We first describe the motivation and high level idea underly-
ing our design. We then provide the formal algorithm.

2.1. Design Motivation

Images contain noise: even “clean” images taken from a
camera contain white noise from the environment. Such
small, unstructured noise seems to be tolerable for modern
deep NNs, which achieve human-level performance. How-
ever, the story is different for carefully constructed noise.
Structured, adversarial noise (i.e., adversarial examples) can
easily corrupt the NN results, leading to incorrect predic-
tion from human’s perspective. This means that to achieve
robustness to adversarial noise, we need to eliminate/reduce
the crafted adversarial structure. Of course, while doing so,
we need to maintain the intrinsic structures in the image that
allow a human to make correct classifications.

We can model the problem as follows: An image is a su-
perposition of: 1) intrinsic true structures of the data in the
scene, 2) adversarial carefully-structured noise, and 3) non-
adversarial noise. Our approach is first to destroy much of
the crafted structure of the adversarial noise by randomly
masking (zeroing out) pixels in the image. Of course, this
process also increases the overall noise in the image (i.e.,
the non-adversarial noise) and also negatively affects the
underlying intrinsic structures of the scene. Luckily how-
ever there is a well-established theory for recovering the
underlying intrinsic structure of data from noisy and incom-
plete (i.e., masked) observations. Specifically, if we think of
an image as a matrix, then we can leverage a well-founded
literature on matrix estimation (ME) which allows us to
recover the true data in a matrix from noisy and incomplete
observations (Candès & Recht, 2009; Keshavan et al., 2010;
Chatterjee et al., 2015). Further, ME provides provable
guarantees of exact or approximate recovery of the true ma-
trix if the true data has some global structures (e.g., low
rank) (Davenport & Romberg, 2016; Chen & Chi, 2018).
Since images naturally have global structures (e.g., an image
of a cat, has a cat as a main structure), ME is guaranteed to
restore the intrinsic structures of the clean image.

Another motivation for our method comes from adversarial
training, where an NN is trained with adversarial examples.
Adversarial training is widely adopted to increase the robust-
ness of neural networks. However, recent theoretical work
formally argues that adversarial training requires substan-
tially more data to achieve robustness (Schmidt et al., 2018).
The natural question is then how to automatically obtain
more data, with the purpose of creating samples that can
help robustness. Our masking-then-reconstruction pipeline
provides exactly one such automatic solutions. By using
different random masks, we can create variations on each
image, where all such variations maintain the image’s under-
lying true global structures. We will see later in our results
that this indeed provides significant gain in robustness.

2.2. Matrix Estimation Pipeline

Having described the intuition underlying ME-Net, we next
provide a formal description of matrix estimation (ME),
which constitutes the reconstruction step in our pipeline.

Matrix Estimation. Matrix estimation is concerned with
recovering a data matrix from noisy and incomplete obser-
vations of its entries. Consider a true, unknown data matrix
M ∈ Rn×m. Often, we have access to a subset Ω of en-
tries from a noisy matrix X ∈ Rn×m such that E[X] = M .
For example, in recommendation system, there are true, un-
known ratings for each product from each user. One often
observes a subset of noisy ratings if the user actually rates
the product online. Technically, it is often assumed that each
entry of X , Xij , is a random variable independent of the

https://github.com/YyzHarry/ME-Net
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Figure 1. The approximate rank of different datasets. We plot
the histogram (in red) and the empirical CDF (in blue) of the
approximate rank for images in each dataset.

others, which is observed with probability p ∈ (0, 1] (i.e.,
missing with probability 1 − p). The theoretical question
is then formulated as finding an estimator M̂ , given noisy,
incomplete observation matrix X , such that M̂ is “close” to
M . The closeness is typically measured by some matrix
norm, ||M̂ −M ||, such as the Frobenius norm.

Over the years, extensive algorithms have been proposed.
They range from simple spectral method such as univer-
sal singular value thresholding (USVT) (Chatterjee et al.,
2015), which performs SVD on the observation matrix X
and discards small singular values (and corresponding singu-
lar vectors), to convex optimization based methods, which
minimize the nuclear norm (Candès & Recht, 2009), i.e.:

min
M̂∈Rn×m

||M̂ ||∗ s.t. M̂ij ≈ Xij , ∀ (i, j) ∈ Ω, (1)

where ||M̂ ||∗ is the nuclear norm of the matrix (i.e., sum of
the singular values). To speed up the computation, the Soft-
Impute algorithm (Mazumder et al., 2010) reformulates the
optimization using a regularization parameter λ ≥ 0:

min
M̂∈Rn×m

1

2

∑
(i,j)∈Ω

(
M̂ij −Xij

)2

+ λ||M̂ ||∗. (2)

In this paper, we view ME as a reconstruction oracle from
masked images, rather than focusing on specific algorithms.

The key message in the field of ME is: if the true data
matrix M has some global structures, exact or approximate
recovery of M can be theoretically guaranteed (Candès &
Recht, 2009; Chatterjee et al., 2015; Chen & Chi, 2018).
This strong theoretical guarantee serves as the foundation
for employing ME to reconstruct structures in images. In

Input image

Add masks

ME

Figure 2. An example of how ME affects the input images. We
apply different masks and show the reconstructed images by ME.

the literature, the most studied global structure is low rank.
Latent variable models, where each row i and each column
j are associated with some features ui ∈ Rr and vj ∈ Rr

and Mij = f(ui, vj) for some function f , have also been
investigated (Chatterjee et al., 2015; Borgs et al., 2017). To
some extent, both could be good models for images.

Empirical Results. Before closing, we empirically show
that images have strong global structures (i.e., low rank).
We consider four datasets: MNIST, CIFAR-10, SVHN, and
Tiny-ImageNet. We perform SVD on each image and com-
pute its approximate rank, which is defined as the minimum
number of singular values necessary to capture at least 90%
of the energy in the image. Fig. 1 plots the histogram and
the empirical CDF of the approximate ranks for each dataset.
As expected, images in all datasets are relatively low rank.
Specifically, the vast majority of images in MNIST, CIFAR-
10, and SVHN have a rank less than 5. The rank of images
in Tiny-ImageNet is larger but still significantly less than the
image dimension (∼10 vs. 64). This result shows that im-
ages tend to be low-rank, which implies the validity of using
ME as our reconstruction oracle to find global structures.

Next, we show in Fig. 2 the results of ME-based reconstruc-
tion for different masks. Evidently, the global structure (the
gate in the image) has been maintained even when p, the
probability of observing the true pixel, is as low as 0.3. This
shows that despite random masking we should be able to
reconstruct the intrinsic global image structure from the
masked adversarial images. Our intuition is that humans use
such underlying global structures for image classification,
and if we can maintain such global structures while weak-
ening other potentially adversarial structures, we can force
both training and testing to focus on human recognizable
structures and increase robustness to adversarial attacks.

2.3. Model

We are now ready to formally describe our technique, which
we refer as ME-Net. The method is illustrated in Fig. 3 and
summarized as follows:
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Figure 3. An illustration of ME-Net training and inference process.

• ME-Net Training: Define a mask as an image transform
in which each pixel is preserved with probability p and set
to zero with probability 1−p. For each training image X ,
we apply n masks with probabilities {p1, p2, . . . , pn},
and obtain n masked images {X(1), X(2), . . . , X(n)}.
An ME algorithm is then applied to obtain reconstructed
images {X̂(1), X̂(2), . . . , X̂(n)}. We train the network
on the reconstructed images {X̂(1), X̂(2), . . . , X̂(n)} as
usual via SGD. Alternatively, adversarial training can
also be readily applied in our framework.

• ME-Net Inference: For each test imageX , we randomly
sample a mask with probability p = 1

n

∑n
i=1 pi, i.e.,

the average of the masking probabilities during training.
The masked image is then processed by the same ME
algorithm used in training to obtain X̂ . Finally, X̂ is fed
to the network for prediction.

Note that we could either operate on the three RGB channels
separately as independent matrices or jointly by concatenat-
ing them into one matrix. In this paper, we take the latter
approach as their structures are closely related. We provide
additional details of ME-Net in Appendix A and B.

3. Evaluation
We evaluate ME-Net empirically under `∞-bounded attacks
and compare it with state-of-the-art defense techniques.

Experimental Setup: We implement ME-Net as described
in Section 2.3. During training, for each image we randomly
sample 10 masks with different p values and apply matrix
estimation for each masked image to construct the training
set. During testing, we sample a single mask with p set to
the average of the values used during training, apply the ME-
Net pipeline, and test on the reconstructed image. Unless
otherwise specified, we use the Nuclear Norm minimization
method (Candès & Recht, 2009) for matrix estimation.

We experiment with two versions of ME-Net: the first ver-
sion uses standard stochastic gradient descent (SGD) to train

the network, and the second version uses adversarial train-
ing, where the model is trained with adversarial examples.

For each attack type, we compare ME-Net with state-of-the-
art defense techniques for the attack under consideration.
For each technique, we report accuracy as the percentage
of adversarial examples that are correctly classified.1 As
common in prior work (Madry et al., 2017; Buckman et al.,
2018; Song et al., 2018), we focus on robustness against `∞-
bounded attacks, and generate adversarial examples using
standard methods such as the CW attack (Carlini & Wagner,
2017), Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015), and Projected Gradient Descent (PGD) which
is a more powerful adversary that performs a multi-step
variant of FGSM (Madry et al., 2017).

Organization: We first perform an extensive study on
CIFAR-10 to validate the effectiveness of ME-Net against
black-box and white-box attacks. We then extend the re-
sults to other datasets such as MNIST, SVHN, and Tiny-
ImageNet. We also provide additional supporting results in
Appendix C, D, E, F, G and J. Additional hyper-parameter
studies, such as random restarts and different number of
masks, can be found in Appendix I, H and K.

3.1. Black-box Attacks

In black-box attacks, the attacker has no access to the net-
work model; it only observes the inputs and outputs. We
evaluate ME-Net against three kinds of black-box attacks:

• Transfer-based attack: A copy of the victim network is
trained with the same training settings. We apply CW,
FGSM and PGD attacks on the copy network to generate
black-box adversarial examples. We use the same attack
parameters as in (Madry et al., 2017): total perturbation
ε of 8/255 (0.031), step size of 2/255 (0.01). For PGD
attacks, we use 7, 20 and 40 steps. Note that we only
consider the strongest transfer-based attacks, i.e., we use
white-box attacks on the independently trained copy to
generate black-box examples.

• Decision-based attack: We apply the newly proposed
Boundary attack (Brendel et al., 2017) which achieves
better performance than transfer-based attacks. We apply
1000 attack steps to ensure convergence.

• Score-based attack: We also apply the state-of-the-art
SPSA attack (Uesato et al., 2018) which is strong enough
to bring the accuracy of several defenses to near zero. We
use a batch-size of 2048 to make the SPSA strong, and
leave other hyper-parameters unchanged.

As in past work that evaluates robustness on CIFAR-10

1 To be consistent with literature, we generate adversarial exam-
ples from the whole dataset and use all of them to report accuracy.
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(a) Vanilla under adv. attack. (b) ME-Net under adv. attack.

Figure 4. Class separation under black-box adversarial attack.
The vectors right before the softmax layer are projected to a 2D
plane using t-SNE (Maaten & Hinton, 2008).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Vanilla, inter-class
ME-Net, inter-class

Vanilla, intra-class
ME-Net, intra-class

(a) Clean data.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Normalized distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Vanilla, inter-class
ME-Net, inter-class

Vanilla, intra-class
ME-Net, intra-class
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Figure 5. The empirical CDF of the distance within and among
classes. We quantitatively show the intra-class and inter-class
distances between vanilla model and ME-Net on clean data and
under black-box adversarial attacks.

(Madry et al., 2017; Buckman et al., 2018), we use the
standard ResNet-18 model in (He et al., 2016). In training
ME-Net, we experiment with different settings for p. We
report the results for p ∈ [0.8, 1] below, and refer the reader
to the Appendix for the results with other p values.

Since most defenses experimented only with transfer-based
attacks, we first compare ME-Net to past defenses under
transfer-based attacks. For comparison, we select a state-
of-the-art adversarial training defense (Madry et al., 2017)
and a preprocessing method (Buckman et al., 2018). We
compare these schemes against ME-Net with standard SGD
training. The results are shown in Table 1. They reveal that
even without adversarial training, ME-Net is much more
robust than prior work to black-box attacks, and can improve
accuracy by 13% to 25%, depending on the attack.

To gain additional insight, we look at the separation between
different classes under black-box transfer-based attack, for
the vanilla network and ME-Net. Fig. 4(a) and 4(b) show
the 2D projection of the vectors right before the output layer
(i.e., softmax layer), for the test data in the vanilla model and
ME-Net. The figures show that when the vanilla model is
under attack, it loses its ability to separate different classes.
In contrast, ME-Net can sustain clear separation between
classes even in the presence of black-box attack.

To further understand this point, we compute the Euclidean
distance between classes and within each class. Fig. 5 plots

Method Training CW FGSM PGD (7 steps)

Vanilla SGD 8.9% 24.8% 7.6%

Madry Adv. train 78.7% 67.0% 64.2%

Thermometer SGD − − 53.5%

Thermometer Adv. train − − 77.7%

ME-Net SGD 93.6% 92.2% 91.8%

Table 1. CIFAR-10 black-box results under transfer-based at-
tacks. We compare ME-Net with state-of-the-art defense methods
under both SGD and adversarial training.

Attacks CW FGSM
PGD

Boundary SPSA
7 steps 20 steps 40 steps

Vanilla 8.9% 24.8% 7.6% 1.8% 0.0% 3.5% 1.4%

ME-Net 93.6% 92.2% 91.8% 91.8% 91.3% 87.4% 93.0%

Table 2. CIFAR-10 extensive black-box results. We show sig-
nificant adversarial robustness of ME-Net under different strong
black-box attacks.

the empirical CDFs of the intra-class and inter-class distance
between the vectors before the output layer, for both the
vanilla classifier and ME-Net. The figure shows results for
both clean data and adversarial examples. Comparing ME-
Net (in red) with the vanilla classifier (in blue), we see that
ME-Net both reduces the distance within each class, and
improves the separation between classes; further this result
applies to both clean and adversarial examples. Overall,
these visualizations offer strong evidence supporting the
improved robustness of ME-Net.

Finally, we also evaluate ME-Net under other strong black-
box attacks. Table 2 summarizes these results demonstrating
that ME-Net consistently achieves high robustness under
different black-box attacks.

3.2. White-box Attacks

In white-box attacks, the attacker has full information about
the neural network model (architecture and weights) and
defense methods. To evaluate robustness against such white-
box attacks, we use the BPDA attack proposed in (Athalye
et al., 2018), which has successfully circumvented a num-
ber of previously effective defenses, bringing them to near
0 accuracy. Specifically, most defense techniques rely on
preprocessing methods which can cause gradient masking
for gradient-based attacks, either because the preprocessing
is not differentiable or the gradient is useless. BPDA ad-
dresses this issue by using a “differentiable approximation”
for the backward pass. As such, until now no preprocessing
method is effective under white-box attacks. In ME-Net, the
backward pass is not differentiable, which makes BPDA the
strongest white-box attack. We use PGD-based BPDA and
experiment with different number of attack steps.
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Method Type Steps Accuracy

Thermometer Prep. 40 0.0%*

PixelDefend Prep. 100 9.0%*

TV Minimization Prep. 100 0.4%

ME-Net Prep. 1000 40.8%

Table 3. White-box attack against pure preprocessing schemes.
We use PGD or BPDA attacks in white-box setting. Compared to
other pure preprocessing methods, ME-Net can increase robustness
by a significant margin. *Data from (Athalye et al., 2018).

For white box attacks, we distinguish two cases: defenses
that use only preprocessing (without adversarial training),
and defenses that incorporate adversarial training. All de-
fenses that incorporate adversarial training, including ME-
Net, are trained with PGD with 7 steps.

Table 3 shows a comparison of the performance of vari-
ous preprocessing methods against the BPDA white-box
attack. We compare ME-Net with three preprocessing de-
fenses, i.e., the PixelDefend method (Song et al., 2018), the
Thermometer method (Buckman et al., 2018), and the total
variation (TV) minimization method (Guo et al., 2017). The
results in the table for (Song et al., 2018; Buckman et al.,
2018) are directly taken from (Athalye et al., 2018). Since
the TV minimization method is not tested on CIFAR-10,
we implement this method using the same setting used with
ME-Net. The table shows that preprocessing alone is vulner-
able to the BPDA white-box attack, as all schemes perform
poorly under such attack. Interestingly however, the ta-
ble also shows that ME-Net’s preprocessing is significantly
more robust to BPDA than other preprocessing methods.
We attribute this difference to that ME-Net’s preprocessing
step focuses on protecting the global structures in images.

Next we report the results of white-box attacks on schemes
that use adversarial training. One key characteristic of ME-
Net is its orthogonality with adversarial training. Note that
many preprocessing methods propose combining adversarial
training, but the combination actually performs worse than
adversarial training alone (Athalye et al., 2018). Since ME-
Net’s preprocessing already has a decent accuracy under the
strong white-box attacks, we envision a further improvement
when combining with adversarial training. We compare
ME-Net against two baselines: we compare against (Madry
et al., 2017), which is the state-of-the-art in defenses against
white-box attacks. We also compare with the Thermometer
technique in (Buckman et al., 2018), which like ME-Net,
combines a preprocessing step with adversarial training. For
all compared defenses, adversarial training is done using
PGD with 7 steps. We also use BPDA to approximate the
gradients during the backward pass. For our comparison we
use ResNet-18 and its wide version since they were used in
past work on robustness with adversarial training. As for

Network Method Type Steps Accuracy

ResNet-18
Madry Adv. train 1000 45.0%

ME-Net Prep. + Adv. train 1000 52.8%

WideResNet

Madry Adv. train 1000 46.8%

Thermometer Prep. + Adv. train 1000 12.3%

ME-Net Prep. + Adv. train 1000 55.1%

Table 4. White-box attack results for adversarial training. We
use 1000 steps PGD or BPDA attacks in white-box setting to
ensure the results are convergent. ME-Net achieves state-of-the-art
white-box robustness when combined with adversarial training.

the attacker, we allow it to use the strongest possible attack,
i.e., it uses BPDA with 1000 PGD attack steps to ensure
the results are convergent. Note that previous defenses
(including the state-of-the-art) only consider up to 40 steps.

Table 4 summarizes the results. As shown in the table,
ME-Net combined with adversarial training outperforms the
state-of-the-art results under white-box attacks, achieving
a 52.8% accuracy with ResNet and a 55.1% accuracy with
WideResNet. In contrast, the Thermometer method that also
uses preprocessing plus adversarial training cannot survive
the strong white-box adversary.

3.3. Evaluation with Different Datasets

We evaluate ME-Net on MNIST, SVHN, CIFAR-10, and
Tiny-ImageNet and compare its performance across these
datasets. For space limitations, we present only the results
for the white-box attacks. We provide results for black-box
attacks and additional attacks in Appendix C, D, E, and F.

For each dataset, we use the network architecture and param-
eters commonly used in past work on adversarial robustness
to help in comparing our results to past work. For MNIST,
we use the LeNet model with two convolutional layers as
in (Madry et al., 2017). We also use the same attack param-
eters as total perturbation scale of 76.5/255 (0.3), and step
size 2.55/255 (0.01). Besides using 40 and 100 total attack
steps, we also increase to 1000 steps to further strengthen
the adversary. For ME-Net with adversarial training, we
follow their settings to use 40 steps PGD during training.
We use standard ResNet-18 for SVHN and CIFAR-10, and
DenseNet-121 for Tiny-ImageNet, and set attack parame-
ters as follows: total perturbation of 8/255 (0.031), step
size of 2/255 (0.01), and with up to 1000 total attack steps.
Since in (Madry et al., 2017) the authors did not examine
on SVHN and Tiny-ImageNet, we follow their methods to
retrain their model on these datasets. We use 7 steps PGD
for adversarial training. We keep all the training hyper-
parameters the same for ME-Net and (Madry et al., 2017).

Fig. 6 shows the performance of ME-Net on the four datasets
and compares it with (Madry et al., 2017), a state-of-the-art
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Figure 6. White-box attack results on different datasets. We compare ME-Net with (Madry et al., 2017) under PGD or BPDA attack
with different attack steps up to 1000. We show both the pure ME-Net without adversarial training, and ME-Net with adversarial training.
For Tiny-ImageNet, we report the Top-1 adversarial robustness.

defense against white-box attacks. We plot both the result
of a pure version of ME-Net, and ME-Net with adversarial
training. The figure reveals the following results. First, it
shows that ME-Net with adversarial training outperforms
the state-of-the-art defense against white-box attacks. In-
terestingly however, the gains differ from one dataset to an-
other. Specifically, ME-Net is comparable to (Madry et al.,
2017) on MNIST, provides about 8% gain on CIFAR-10
and Tiny-ImageNet, and yields 23% gain on SVHN.

We attribute the differences in accuracy gains across datasets
to differences in their properties. MNIST is too simple (sin-
gle channel with small 28×28 pixels), and hence ME-Net
and (Madry et al., 2017) both achieve over 90% accuracy.
The other datasets are all more complex and have 3 RGB
channels and bigger images. More importantly, Fig. 1 shows
that the vast majority of images in SVHN have a very low
rank, and hence very strong global structure, which is a
property that ME-Net leverages to yield an accuracy gain
of 23%. CIFAR-10 and Tiny-ImageNet both have relatively
low rank images but not as low as SVHN. The CDF shows
that 90% of the images in CIFAR have a rank lower than 5,
whereas 90% of the images in Tiny-ImageNet have a rank
below 10. When taking into account that the dimension
of Tiny-ImageNet is twice as CIFAR (64×64 vs. 32×32),
one would expect ME-Net’s gain on these datasets to be
comparable, which is compatible with the empirical results.

3.4. Evaluation against Adaptive Attacks

Since ME-Net provides a new preprocessing method, we
examine customized attacks where the adversary takes ad-
vantage of knowing the details of ME-Net’s pipeline. We
propose two kinds of white-box attacks: 1) Approximate in-
put attack: since ME-Net would preprocess the image, this
adversary attacks not the original image, but uses the exact
preprocess method to approximate/reconstruct an input, and
attacks the newly constructed image using the BPDA proce-
dure (Athalye et al., 2018). 2) Projected BPDA attack: since
ME-Net focuses on the global structure of an image, this
adversary aims to attack directly the main structural space
of the image. Specifically, it uses BPDA to approximate

Method Training Steps Approx. Input Projected BPDA

ME-Net
Pure 1000 41.5% 64.9%

Adversarial 1000 62.5% 74.7%

Table 5. Results of ME-Net against adaptive white-box attacks
on CIFAR-10. We use 1000 steps PGD-based BPDA for the two
newly proposed attacks, and report the accuracy of ME-Net.

the gradient, and then projects the gradient to the low-rank
space of the image iteratively, i.e., it projects on the space
constructed by the top few singular vectors of the original
image, to construct the adversarial noise. Note that these
two attacks are based on the BPDA white-box attack which
has shown most effective against preprocessing. Table 5
shows the results of these attacks, which demonstrates that
ME-Net is robust to these adaptive white-box attacks.

3.5. Comparison of Different ME Methods

Matrix estimation (ME) is a well studied topic with several
established ME techniques. The results in the other sections
are with the Nuclear Norm minimization algorithm (Candès
& Recht, 2009). Here we compare the performance of
three ME methods: the Nuclear Norm minimization algo-
rithm, the Soft-Impute algorithm (Mazumder et al., 2010),
and the universal singular value thresholding (USVT) ap-
proach (Chatterjee et al., 2015).

We train ME-Net models using different ME methods on
CIFAR-10 with ResNet-18. We apply transfer-based PGD
black-box attacks with 40 attack steps, as well as white-
box BPDA attack with 1000 attack steps. We compare the
complexity, generalization and adversarial robustness of
these methods. More details can be found in Appendix H.

Table 6 shows the results of our comparison. The table
shows that all the three ME methods are able to improve
the original standard generalization, and achieve almost
the same test accuracy. The nuclear norm minimization
algorithm takes much longer time and more computation
power. The Soft-Impute algorithm simplifies the process but
still requires certain computation resources, while the USVT
approach is much simpler and faster. The performance of
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Method Complexity Clean Black-box White-box

Vanilla − 93.4% 0.0% 0.0%

ME-Net - USVT Low 94.8% 89.4% 51.9%

ME-Net - Soft-Imp. Medium 94.9% 91.3% 52.3%

ME-Net - Nuc. Norm High 94.8% 91.0% 52.8%

Table 6. Comparisons between different ME methods. We re-
port the generalization and adversarial robustness of three ME-Net
models using different ME methods on CIFAR-10. We apply
transfer-based 40 steps PGD attack as black-box adversary, and
1000 steps PGD-based BPDA as white-box adversary.

Method Training MNIST CIFAR-10 SVHN Tiny-ImageNet

Vanilla Pure 98.8% 93.4% 95.0% 66.4%

ME-Net Pure 99.2% 94.9% 96.0% 67.7%

Madry Adversarial 98.5% 79.4% 87.4% 45.6%

ME-Net Adversarial 98.8% 85.5% 93.5% 57.0%

Table 7. Generalization performance on clean data. For each
dataset, we use the same network for all the schemes. ME-Net
improves generalization for both adversarial and non-adversarial
training. For Tiny-ImageNet, we report the Top-1 accuracy.

different ME methods is slightly different, as more complex
algorithms may gain better performances.

3.6. Improving Generalization

As a preprocessing method, ME-Net also serves as a data
augmentation technique during training. We show that be-
sides adversarial robustness, ME-Net can also improve gen-
eralization (i.e., the test accuracy) on clean data. We distin-
guish between two training procedures: 1) non-adversarial
training, where the model is trained only with clean data,
and 2) adversarial training where the model is trained with
adversarial examples. For each case we compare ME-Net
with the best performing model for that training type. We
show results for different datasets, where each dataset is
trained with the typical model in past work as stated in Sec-
tion 3.3. Table 7 shows the results, which demonstrate the
benefit of ME-Net as a method for improving generalization
under both adversarial and non-adversarial training.

4. Related Work
Due to the large body of work on adversarial robustness, we
focus on methods that are most directly related to our work,
and refer readers to the survey (Akhtar & Mian, 2018) for a
more comprehensive and broad literature review.

Adversarial Training. Currently, the most effective way
to defend against adversarial attacks is adversarial training,
which trains the model on adversarial examples generated
by different kinds of attacks (Madry et al., 2017; Szegedy
et al., 2013; Goodfellow et al., 2015). Authors of (Madry

et al., 2017) showed that training on adversarial examples
generated by PGD with a random start can achieve state-of-
the-art performance on MNIST and CIFAR-10 under `∞
constraint. One major difficulty of adversarial training is
that it tends to overfit to the adversarial examples. Authors
in (Schmidt et al., 2018) thus demonstrated and proved that
much more data is needed to achieve good generalization
under adversarial training. ME-Net can leverage adversarial
training for increased robustness. Further its data augmenta-
tion capability helps improving generalization.

Preprocessing. Many defenses preprocess the images with
a transformation prior to classification. Typical preprocess-
ing includes image re-scaling (Xie et al., 2018), discretiza-
tion (Chen et al., 2018), thermometer encoding (Buckman
et al., 2018), feature squeezing (Xu et al., 2017), image
quilting (Guo et al., 2017), and neural-based transforma-
tions (Song et al., 2018; Samangouei et al., 2018). These
defenses can cause gradient masking when using gradient-
based attacks. However, as shown in (Athalye et al., 2018),
by applying the Backward Pass Differentiable Approxima-
tion (BPDA) attacks designed for obfuscated gradients, the
accuracy of all of these methods can be brought to near
zero. ME-Net is the first preprocessing method that remains
effective under the strongest BPDA attack, which could be
attributed to its ability to leverage adversarial training.

Matrix Estimation. Matrix estimation recovers a data
matrix from noisy and incomplete samples of its entries.
A classical application is recommendation systems, such
as the Netflix problem (Bell & Koren, 2007), but it also
has richer connections to other learning challenges such as
graphon estimation (Airoldi et al., 2013; Borgs et al., 2017),
community detection (Abbe & Sandon, 2015b;a) and time
series analysis (Agarwal et al., 2018). Many efficient algo-
rithms exist such as the universal singular value thresholding
approach (Chatterjee et al., 2015), the convex nuclear norm
minimization formulation (Candès & Recht, 2009) and even
non-convex methods (Jain et al., 2013; Chen & Wainwright,
2015; Ge et al., 2016). The key promise is that as long as
there are some structures underlying the data matrix, such as
being low-rank, then exact or approximate recovery can be
guaranteed. As such, ME is an ideal reconstruction scheme
for recovering global structures.

5. Conclusion
We introduced ME-Net, which leverages matrix estimation
to improve the robustness to adversarial attacks. Extensive
experiments under strong black-box and white-box attacks
demonstrated the significance of ME-Net, where it consis-
tently improves the state-of-the-art robustness in different
benchmark datasets. Furthermore, ME-Net can easily be em-
bedded into existing networks, and can also bring additional
benefits such as improving standard generalization.
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Supplementary Material

A. Pseudo Code for ME-Net

Algorithm 1 ME-Net training & inference
/* ME-Net Training */
Input: training set S = {(Xi, yi)}Mi=1, prescribed masking probability p = {p1, p2, . . . , pn}, network N
for all Xi ∈ S do

Randomly sample n masks with probability {p1, p2, . . . , pn}
Generate n masked images {X(1)

i , X
(2)
i , . . . , X

(n)
i }

Apply ME to obtain reconstructed images {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i }

Add {X̂(1)
i , X̂

(2)
i , . . . , X̂

(n)
i } into new training set S′

end for
Randomly initialize network N
for number of training iterations do

Sample a mini-batch B = {(X̂i, yi)}mi=1 from S′

Do one training step of network N using mini-batch B
end for

/* ME-Net Inference */
Input: test image X , masking probability p = {p1, p2, . . . , pn} used during training
Output: predicted label y
Randomly sample one mask with probability p = 1

n

∑n
i=1 pi

Generate masked image and apply ME to reconstruct X̂
Input X̂ to the trained network N to get the predicted label y

B. Training Details
Training settings. We summarize our training hyper-parameters in Table 8. We follow the standard data augmentation
scheme as in (He et al., 2016) to do zero-padding with 4 pixels on each side, and then random crop back to the original
image size. We then randomly flip the images horizontally and normalize them into [0, 1]. Note that ME-Net’s preprocessing
is performed before the training process as in Algorithm 1.

Dataset Model Data Aug. Optimizer Momentum Epochs LR LR decay

CIFAR-10 ResNet-18
Wide-ResNet

√
SGD 0.9 200 0.1 step (100, 150)

MNIST LeNet × SGD 0.9 200 0.01 step (100, 150)

SVHN ResNet-18
√

SGD 0.9 200 0.01 step (100, 150)

Tiny-ImageNet DenseNet-121
√

SGD 0.9 90 0.1 step (30, 60)

Table 8. Training details of ME-Net on different datasets. Learning rate is decreased at selected epochs with a step factor of 0.1.

ME-Net details. As was mentioned in Section 2.3, one could either operate on the three RGB channels separately as
independent matrices or jointly by concatenating them into one wide matrix. For the former approach, given an image,
we can apply the same mask to each channel and then separately run ME to recover the matrix. For the latter approach,
the RGB channels are first concatenated along the column dimension to produce a wide matrix, i.e., if each channel is of
size 32× 32, then the concatenated matrix, [RGB], is of size 32× 96. A mask is applied to the wide matrix and the whole
matrix is then recovered. This approach is a common, simple method for estimating tensor data. Since this work focuses on
structures of the image and channels within an image are closely related, we adopt the latter approach in this paper.

In our experiments, we use the following method to generate masks with different observing probability: for each image, we
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select n masks in total with observing probability p ranging from a→ b. We use n = 10 for most experiments. To provide
an example, “p : 0.6→ 0.8” indicates that we select 10 masks in total with observing probability from 0.6 to 0.8 with an
equal interval of 0.02, i.e., 0.6, 0.62, 0.64, . . .. Note that we only use this simple selection scheme for mask generation. We
believe further improvement can be achieved with better designed selection schemes, potentially tailored to each image.

C. Additional Results on CIFAR-10
C.1. Black-box Attacks

We provide additional results of ME-Net against different black-box attacks on CIFAR-10. We first show the complete
results using different kinds of black-box attacks, i.e., transfer-based (FGSM, PGD, CW), decision-based (Boundary) and
score-based (SPSA) attacks. For CW attack, we follow the settings in (Madry et al., 2017) to use different confidence values
κ. We report ME-Net results with different training settings on Table 9. Here we use pure ME-Net as a preprocessing
method without adversarial training. As shown, previous defenses only consider limited kinds of black-box attacks. We by
contrast show extensive and also advanced experimental results.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9% 3.5% 1.4%

Madry 79.4% 67.0% 64.2% − − 78.7% − − −
Thermometer 87.5% − 77.7% − − − − − −

ME-Net

p : 0.8→ 1 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.6% 87.4% 93.0%

p : 0.6→ 0.8 92.1% 85.1% 84.5% 83.4% 81.8% 89.2% 89.0% 81.8% 90.9%

p : 0.4→ 0.6 89.2% 75.7% 74.9% 73.0% 70.9% 82.0% 82.0% 77.5% 87.1%

Table 9. CIFAR-10 extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-,
decision-, and score-based attacks.

Further, we define and apply another stronger black-box attack, where we provide the architecture and weights of our trained
model to the black-box adversary to make it stronger. This kind of attack is also referred as “semi-black-box” or “gray-box”
attack in some instances, while we still view it as a black-box one. This time the adversary is not aware of the preprocessing
layer but has full access to the trained network, and directly performs white-box attacks to the network. We show the results
in Table 10.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 85.1% 84.9% 84.0% 82.9% 75.8% 75.2%

p : 0.6→ 0.8 83.2% 82.8% 81.7% 79.6% 81.5% 76.8%

p : 0.4→ 0.6 80.5% 80.2% 79.2% 76.4% 84.0% 77.1%

Table 10. CIFAR-10 additional black-box attack results where adversary has limited access to the trained network. We provide
the architecture and weights of our trained model to the black-box adversary to make it stronger.

C.2. White-box Attacks

C.2.1. PURE ME-NET

We first show the extensive white-box attack results with pure ME-Net in Table 11. We use strongest white-box BPDA
attack (Athalye et al., 2018) with different attack steps. We select three preprocessing methods (Song et al., 2018; Buckman
et al., 2018; Guo et al., 2017) as competitors. We re-implement the total variation minimization approach (Guo et al., 2017)
and apply the same training settings as ME-Net on CIFAR-10. The experiments are performed under total perturbation
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ε of 8/255 (0.031). By comparison, ME-Net is demonstrated to be the first preprocessing method that is effective under
strongest white-box attacks.

Method Type
Attack Steps

7 20 40 100

Vanilla − 0.0% 0.0% 0.0% 0.0%

Thermometer Prep. − − 0.0%* 0.0%*

PixelDefend Prep. − − − 9.0%*

TV Minimization Prep. 14.7% 5.1% 2.7% 0.4%

ME-Net

p : 0.8→ 1 Prep. 46.2% 33.2% 26.8% 23.5%

p : 0.7→ 0.9 Prep. 50.3% 40.4% 33.7% 29.5%

p : 0.6→ 0.8 Prep. 53.0% 45.6% 37.8% 35.1%

p : 0.5→ 0.7 Prep. 55.7% 47.3% 38.6% 35.9%

p : 0.4→ 0.6 Prep. 59.8% 52.6% 45.5% 41.6%

Table 11. CIFAR-10 extensive white-box attack results with pure ME-Net. We use the strongest PGD or BPDA attacks in white-box
setting with different attack steps. We compare ME-Net with other pure preprocessing methods (Buckman et al., 2018; Song et al., 2018;
Guo et al., 2017). We show that ME-Net is the first preprocessing method to be effective under white-box attacks. *Data from (Athalye
et al., 2018).

Further, we study the performance of ME-Net under different ε in Fig. 7. Besides using ε = 8 which is commonly used in
CIFAR-10 attack settings (Madry et al., 2017), we additionally provide more results including ε = 2 and 4 to study the
performance of pure ME-Net under strongest BPDA white-box attacks.
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Figure 7. CIFAR-10 white-box attack results of pure ME-Net with different perturbation ε. We report ME-Net results with different
training settings under various attack steps.

Besides the strongest BPDA attack, we also design and apply another white-box attack to further study the effect of the
preprocessing layer. We assume the adversary is aware of the preprocessing layer, but not use the backward gradient
approximation. Instead, it performs iterative attacks only for the network part after the preprocessing layer. This attack helps
study how the preprocessing affects the network robustness against white-box adversary. The results in Table 12 shows that
pure ME-Net provides sufficient robustness if the white-box adversary does not attack the preprocessing layer.

C.2.2. COMBINING WITH ADVERSARIAL TRAINING

We provide more advanced and extensive results of ME-Net when combining with adversarial training in Table 13. As
shown, preprocessing methods are not necessarily compatible with adversarial training, as they can perform worse than
adversarial training alone (Buckman et al., 2018). Compared to current state-of-the-art (Madry et al., 2017), ME-Net
achieves consistently better results under strongest white-box attacks.
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Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 84.3% 83.7% 83.1% 82.5% 77.0% 75.9%

p : 0.6→ 0.8 82.6% 82.1% 81.5% 80.3% 76.9% 76.4%

p : 0.4→ 0.6 79.1% 79.0% 78.3% 77.4% 77.5% 77.2%

Table 12. CIFAR-10 additional white-box attack results where the white-box adversary does not attack the preprocessing layer.
We remain the same attack setups as in the white-box BPDA attack, while only attacking the network part after the preprocessing layer of
ME-Net.

Network Method Type Clean
Attack Steps

7 20 40 100 1000

ResNet-18

Madry Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 85.5% 57.4% 51.5% 49.3% 48.1% 47.4%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 84.8% 62.1% 53.0% 51.2% 50.0% 49.6%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 84.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Wide-ResNet

Madry Adv. train 87.3% 50.0% 47.1% 47.0% 46.9% 46.8%

Thermometer Prep. + Adv. train 89.9% 59.4% 34.9% 26.0% 18.4% 12.3%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 91.0% 69.7% 58.0% 54.9% 53.4% 52.9%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 88.7% 74.1% 61.6% 57.4% 55.9% 55.1%

Table 13. CIFAR-10 extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to
ensure the results are convergent. We use the released models in (Madry et al., 2017; Athalye et al., 2018) but change the attack steps up
to 1000 for comparison. ME-Net shows significant advanced results by consistently outperforming the current state-of-the-art defense
method (Madry et al., 2017).

D. Additional Results on MNIST
D.1. Black-box Attacks

In Table 14, we report extensive results of ME-Net under different strong black-box attacks on MNIST. We follow (Madry
et al., 2017) to use the same LeNet model and the same attack parameters with a total perturbation scale of 76.5/255 (0.3).
We use a step size of 2.55/255 (0.01) for PGD attacks. We use the same settings as in CIFAR-10 for Boundary and SPSA
attacks (i.e., 1000 steps for Boundary attack, and a batch size of 2048 for SPSA attack) to make them stronger. Note that we
only use the strongest transfer-based attacks, i.e., we use white-box attacks on the independently trained copy to generate
black-box examples. As shown, ME-Net shows significantly more effective results against different strongest black-box
attacks.

We further provide the architecture and weights of our trained model to the black-box adversary to make it stronger, and
provide the results in Table 15. As shown, ME-Net can still maintain high adversarial robustness against stronger black-box
adversary under this setting.

D.2. White-box Attacks

Table 16 shows the extensive white-box attack results on MNIST. As discussed, we follow (Madry et al., 2017) to use 40
steps PGD during training when combining ME-Net with adversarial training. We apply up to 1000 steps strong BPDA-based
PGD attack to ensure the results are convergent. For the competitor, we use the released model in (Madry et al., 2017), but
change the attack steps to 1000 for comparison.



ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation

Method Clean FGSM
PGD CW

Boundary SPSA
40 steps 100 steps κ = 20 κ = 50

Vanilla 98.8% 28.2% 0.1% 0.0% 14.1% 12.6% 3.7% 6.2%

Madry 98.5% 96.8% 96.0% 95.7% 96.4% 97.0% − −
Thermometer 99.0% − 41.1% − − − − −

ME-Net

p : 0.8→ 1 99.2% 77.4% 73.9% 73.6% 98.8% 98.7% 89.3% 98.1%

p : 0.6→ 0.8 99.0% 87.1% 85.1% 84.9% 98.6% 98.4% 88.6% 97.5%

p : 0.4→ 0.6 98.4% 91.1% 90.7% 88.9% 98.4% 98.3% 88.0% 97.0%

p : 0.2→ 0.4 96.8% 93.2% 92.8% 92.2% 96.6% 96.5% 88.1% 96.1%

Table 14. MNIST extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-, decision-,
and score-based attacks.

Method FGSM
PGD CW

40 steps 100 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 93.0% 91.9% 85.5% 98.8% 98.7%

p : 0.6→ 0.8 95.0% 94.2% 93.7% 98.3% 98.2%

p : 0.4→ 0.6 96.2% 95.9% 95.3% 98.3% 98.0%

p : 0.2→ 0.4 94.5% 94.2% 93.4% 96.5% 96.5%

Table 15. MNIST additional black-box attack results where adversary has limited access to the trained network. We provide the
architecture and weights of our trained model to the black-box adversary to make it stronger.

Method Type Clean
Attack Steps

40 100 1000

Madry Adv. train 98.5% 93.2% 91.8% 91.6%

ME-Net

p : 0.8→ 1 Prep. 99.2% 22.9% 21.8% 18.9%

p : 0.6→ 0.8 Prep. 99.0% 47.6% 42.4% 40.8%

p : 0.4→ 0.6 Prep. 98.4% 65.2% 62.1% 60.6%

p : 0.2→ 0.4 Prep. 96.8% 86.5% 83.1% 82.6%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 97.6% 87.8% 81.7% 78.0%

p : 0.6→ 0.8 Prep. + Adv. train 97.7% 90.5% 88.1% 86.5%

p : 0.4→ 0.6 Prep. + Adv. train 98.8% 92.1% 89.4% 88.2%

p : 0.2→ 0.4 Prep. + Adv. train 97.4% 94.0% 91.8% 91.0%

Table 16. MNIST extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to ensure
the results are convergent. We use the released models in (Madry et al., 2017) but change the attack steps up to 1000 for comparison. We
show both pure ME-Net results and the results when combining with adversarial training.

E. Additional Results on SVHN
E.1. Black-box Attacks

Table 17 shows extensive black-box attack results of ME-Net on SVHN. We use standard ResNet-18 as the network, and
use a total perturbation of ε = 8/255 (0.031). We use the same strong black-box attacks as previously used (i.e., transfer-,
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decision-, and score-based attacks), and follow the same attack settings and parameters. As there are few results on SVHN
dataset, we compare only with the vanilla model which uses the same network and training process as ME-Net. As shown,
ME-Net provides significant adversarial robustness against various black-box attacks.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 95.0% 31.2% 8.5% 1.8% 0.0% 20.4% 7.6% 4.5% 3.7%

ME-Net

p : 0.8→ 1 96.0% 91.8% 91.1% 90.9% 89.8% 95.5% 95.2% 79.2% 95.5%

p : 0.6→ 0.8 95.5% 88.9% 88.7% 86.4% 86.2% 95.1% 94.9% 80.6% 94.6%

p : 0.4→ 0.6 94.0% 87.0% 86.4% 85.8% 84.4% 93.6% 93.4% 85.3% 93.8%

p : 0.2→ 0.4 88.3% 80.7% 76.4% 75.3% 74.2% 87.4% 87.4% 83.3% 87.6%

Table 17. SVHN extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-, decision-,
and score-based attacks.

Again, we strengthen the black-box adversary by providing the network architecture and weights of our trained model. We
then apply various attacks and report the results in Table 18. ME-Net can still maintain high adversarial robustness under
this setting.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 83.8% 83.3% 81.3% 78.6% 95.2% 95.0%

p : 0.6→ 0.8 85.8% 85.7% 84.0% 82.1% 94.9% 94.8%

p : 0.4→ 0.6 88.8% 88.6% 87.4% 86.8% 93.5% 93.3%

p : 0.2→ 0.4 86.6% 86.3% 85.7% 85.5% 88.2% 88.2%

Table 18. SVHN additional black-box attack results where adversary has limited access to the trained network. We provide the
architecture and weights of our trained model to the black-box adversary to make it stronger.

E.2. White-box Attacks

For white-box attacks, we set attack parameters the same as in CIFAR-10, and use strongest white-box BPDA attack with
different attack steps (up to 1000 for convergence). We show results of both pure ME-Net and adversarially trained one. We
use 7 steps for adversarial training. Since in (Madry et al., 2017) the authors did not provide results on SVHN, we follow
their methods to retrain a model. The training process and hyper-parameters are kept identical to ME-Net.

Table 19 shows the extensive results under white-box attacks. ME-Net achieves significant adversarial robustness against the
strongest white-box adversary, as it can consistently outperform (Madry et al., 2017) by a certain margin.

F. Additional Results on Tiny-ImageNet
In this section, we extend our experiments to evaluate ME-Net on a larger and more complex dataset. We use Tiny-ImageNet,
which is a subset of ImageNet and contains 200 classes. Each class has 500 images for training and 50 for testing. All
images are 64×64 colored ones. Since ME-Net requires to train the model from scratch, due to the limited computing
resources, we do not provide results on even larger dataset such as ImageNet. However, we envision ME-Net to perform
better on such larger datasets as it can leverage the global structures of those larger images.

F.1. Black-box Attacks

For black-box attacks on Tiny-ImageNet, we only report the Top-1 adversarial accuracy. We use standard DenseNet-
121 (Huang et al., 2017) as our network, and set the attack parameters as having a total perturbation ε = 8/255 (0.031). We
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Method Type Clean
Attack Steps

7 20 40 100 1000

Madry Adv. train 87.4% 52.5% 48.4% 47.9% 47.5% 47.1%

ME-Net

p : 0.8→ 1 Prep. 96.0% 42.1% 27.2% 14.2% 8.0% 7.2%

p : 0.6→ 0.8 Prep. 95.5% 52.4% 39.6% 28.2% 17.1% 15.9%

p : 0.4→ 0.6 Prep. 94.0% 60.3% 48.7% 40.1% 27.4% 25.8%

p : 0.2→ 0.4 Prep. 88.3% 74.7% 61.4% 52.7% 44.0% 43.4%

ME-Net

p : 0.8→ 1 Prep. + Adv. train 93.5% 62.2% 41.4% 37.5% 35.5% 34.3%

p : 0.6→ 0.8 Prep. + Adv. train 92.6% 72.1% 57.1% 49.6% 47.8% 46.5%

p : 0.4→ 0.6 Prep. + Adv. train 91.2% 79.9% 69.1% 64.2% 62.3% 61.7%

p : 0.2→ 0.4 Prep. + Adv. train 87.6% 83.5% 75.8% 71.9% 69.8% 69.4%

Table 19. SVHN extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to ensure
the results are convergent. We show results of both pure ME-Net and adversarially trained ones. ME-Net shows significantly better results
as it consistently outperforms (Madry et al., 2017) by a certain margin.

use the same black-box attacks as before and follow the same attack settings. The extensive results are shown in Table 20.

Method Clean FGSM
PGD CW

Boundary SPSA
7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla 66.4% 15.2% 1.3% 0.0% 0.0% 8.0% 7.7% 2.6% 1.2%

ME-Net

p : 0.8→ 1 67.7% 67.1% 66.3% 66.0% 65.8% 67.6% 67.4% 62.4% 67.4%

p : 0.6→ 0.8 64.1% 63.6% 63.1% 63.1% 62.4% 63.8% 63.6% 61.9% 63.8%

p : 0.4→ 0.6 58.9% 54.8% 51.7% 51.6% 50.4% 58.2% 58.2% 58.9% 58.1%

Table 20. Tiny-ImageNet extensive black-box attack results. Different kinds of strong black-box attacks are used, including transfer-,
decision-, and score-based attacks.

Further, additional black-box attack results are provided in Table 21, where the black-box adversary has limited access to
ME-Net. The results again demonstrate the effectiveness of the preprocessing layer.

Method FGSM
PGD CW

7 steps 20 steps 40 steps κ = 20 κ = 50

ME-Net

p : 0.8→ 1 66.5% 64.0% 62.6% 59.1% 55.8% 56.0%

p : 0.6→ 0.8 61.1% 60.9% 60.7% 59.2% 57.6% 57.6%

p : 0.4→ 0.6 58.8% 58.2% 57.5% 56.9% 58.3% 58.2%

Table 21. Tiny-ImageNet additional black-box attack results where adversary has limited access to the trained network. We
provide the architecture and weights of our trained model to the black-box adversary to make it stronger.

F.2. White-box Attacks

In white-box settings, we set the attack hyper-parameters as follows: a total perturbation of 8/255 (0.031), a step size of
2/255 (0.01), and 7 steps PGD for adversarial training. We still use strongest BPDA attack with different attack steps up
to 1000. We re-implement (Madry et al., 2017) to be the baseline, and keep all training process the same for ME-Net
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and (Madry et al., 2017). Finally, we report both Top-1 and Top-5 adversarial accuracy in Table 22, which demonstrates the
significant adversarial robustness of ME-Net.

Metrics Method Type Clean
Attack Steps

7 20 40 100 1000

Top-1

Madry Adv. train 45.6% 23.3% 22.4% 22.4% 22.3% 22.1%

ME-Net p : 0.8→ 1 Prep. + Adv. train 53.9% 28.1% 25.7% 25.3% 25.0% 24.5%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 57.0% 33.7% 28.4% 27.3% 26.8% 26.3%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 55.6% 38.8% 30.6% 29.4% 29.0% 28.5%

Top-5

Madry Adv. train 71.4% 47.5% 46.0% 45.9% 45.8% 45.0%

ME-Net p : 0.8→ 1 Prep. + Adv. train 77.4% 54.8% 52.2% 51.9% 51.2% 50.6%

ME-Net p : 0.6→ 0.8 Prep. + Adv. train 80.3% 62.1% 57.1% 56.7% 56.4% 55.1%

ME-Net p : 0.4→ 0.6 Prep. + Adv. train 78.8% 66.7% 59.5% 58.5% 58.0% 56.9%

Table 22. Tiny-ImageNet extensive white-box attack results. We apply up to 1000 steps PGD or BPDA attacks in white-box setting to
ensure the results are convergent. We select (Madry et al., 2017) as the baseline and keep the training process the same for both (Madry
et al., 2017) and ME-Net. We show both Top-1 and Top-5 adversarial accuracy under different attack steps. ME-Net shows advanced
results by outperforming (Madry et al., 2017) consistently in both Top-1 and Top-5 adversarial accuracy.

G. Trade-off between Adversarial Robustness and Standard Generalization
In this section, we briefly discuss the trade-off between standard generalization and adversarial robustness, which can
be affected by training ME-Net with different hyper-parameters. When the masks are generated with higher observing
probability p, the recovered images will contain more details and are more similar to the original ones. In this case, the
generalization ability will be similar to the vanilla network (or even be enhanced). However, the network will be sensible to
the adversarial noises, as the adversarial structure in the noise is only destroyed a bit, and thus induces low robustness. On
the other hand, when given lower observing probability p, much of the adversarial structure in the noise will be eliminated,
which can greatly increase the adversarial robustness. Nevertheless, the generalization on clean data can decrease as it
becomes harder to reconstruct the images and the input images may not be similar to the original ones. In summary, there
exists an inherent trade-off between standard generalization and adversarial robustness. The trade-off should be further
studied to acquire a better understanding and performance of ME-Net.

We provide results of the inherent trade-off between adversarial robustness and standard generalization on different datasets.
As shown in Fig. 8, we change the observing probability p of the masks to train different ME-Net models, and apply 7 steps
white-box BPDA attack to each of them. As p decreases, the generalization ability becomes lower, while the adversarial
robustness grows rapidly. We show the consistent trade-off phenomena on different datasets.

0.9 0.7 0.5 0.3
p

92

94

96

98

100

Te
st

 A
cc

ur
ac

y 
(%

)

20

40

60

80

100

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y 

(%
)Trade-off

(a) MNIST

0.9 0.8 0.7 0.6 0.5
p

87

89

91

93

95

Te
st

 A
cc

ur
ac

y 
(%

)

40

45

50

55

60

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y 

(%
)Trade-off

(b) CIFAR-10

0.9 0.7 0.5 0.3
p

80

85

90

95

100

Te
st

 A
cc

ur
ac

y 
(%

)

40

50

60

70

80

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y 

(%
)Trade-off

(c) SVHN

0.9 0.7 0.5
p

50

55

60

65

70

Te
st

 A
cc

ur
ac

y 
(%

)

20

25

30

35

40

Ad
ve

rs
ar

ia
l A

cc
ur

ac
y 

(%
)Trade-off

(d) Tiny-ImageNet

Figure 8. The trade-off between adversarial robustness and standard generalization on different datasets. We use pure ME-Net
during training, and apply 7 steps white-box BPDA attack for the adversarial accuracy. For Tiny-ImageNet we only report the Top-1
accuracy. The results verify the consistent trade-off across different datasets.
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H. Additional Results of Different ME Methods
H.1. Black-box Attacks

We first provide additional experimental results using different ME methods against black-box attacks. We train different
ME-Net models on CIFAR-10 using three ME methods, including the USVT approach, the Soft-Impute algorithm and the
Nuclear Norm minimization algorithm. The training processes are identical for all models. For the black-box adversary, we
use different transfer-based attacks and report the results in Table 23.

PGD CW
Method Complexity Type Clean FGSM

7 steps 20 steps 40 steps κ = 20 κ = 50

Vanilla − − 93.4% 24.8% 7.6% 1.8% 0.0% 9.3% 8.9%

ME-Net - USVT Low Prep. 94.8% 90.5% 90.3% 89.4% 88.9% 93.6% 93.6%

ME-Net - Soft-Imp. Medium Prep. 94.9% 92.2% 91.8% 91.8% 91.3% 93.6% 93.5%

ME-Net - Nuc. Norm High Prep. 94.8% 92.0% 91.7% 91.4% 91.0% 93.3% 93.4%

Table 23. Comparison between different ME methods against black-box attacks. We report the generalization and adversarial
robustness of three ME-Net models using different ME methods on CIFAR-10. We apply transfer-based black-box attacks as the
adversary.

H.2. White-box Attacks

We further report the white-box attack results of different ME-Net models in Table 24. We use 7 steps PGD to adversarially
train all ME-Net models with different ME methods on CIFAR-10. We apply up to 1000 steps strongest white-box BPDA
attacks as the adversary. Compared to the previous state-of-the-art (Madry et al., 2017) on CIFAR-10, all the three ME-Net
models can outperform them by a certain margin, while also achieving higher generalizations. The performance of different
ME-Net models may vary slightly, where we can observe that more complex methods can lead to slightly better performance.

Method Complexity Type Clean
Attack Steps

7 20 40 100 1000

Madry − Adv. train 79.4% 47.2% 45.6% 45.2% 45.1% 45.0%

ME-Net - USVT Low Prep. + Adv. train 85.5% 67.3% 55.8% 53.7% 52.6% 51.9%

ME-Net - Soft-Imp. Medium Prep. + Adv. train 85.5% 67.5% 56.5% 54.8% 53.0% 52.3%

ME-Net - Nuc. Norm High Prep. + Adv. train 85.0% 68.2% 57.5% 55.4% 53.5% 52.8%

Table 24. Comparison between different ME methods against white-box attacks. We adversarially trained three ME-Net models
using different ME methods on CIFAR-10, and compare the results with (Madry et al., 2017). We apply up to 1000 steps PGD or BPDA
white-box attacks as adversary.

I. Additional Studies of Attack Parameters
We present additional studies of attack parameters, including different random restarts and step sizes for further evaluations
of ME-Net. Authors in (Mosbach et al., 2018) show that using multiple random restarts and different step sizes can
drastically affect the performance of PGD adversaries. We consider the same white-box BPDA-based PGD adversary as in
Table 4, and report the results on CIFAR-10. Note that with n random restarts, given an image, we consider a classifier
successful only if it was not fooled by any of these n attacks. In addition, this also significantly increases the computational
overhead. We hence fix the number of attack steps as 100 (results are almost flattened; see for example Fig. 6), and select
three step sizes and restart values. We again compare ME-Net with (Madry et al., 2017).

As shown in Table 25, with different step sizes, the performance of ME-Net varies slightly. Specifically, the smaller the step
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Method Step sizes
Random restarts

10 20 50

Madry

2/255 43.4% 42.7% 41.7%

4/255 43.8% 43.3% 41.9%

8/255 44.0% 43.3% 41.9%

ME-Net

2/255 48.7% 47.2% 44.8%

4/255 49.7% 48.4% 45.2%

8/255 50.8% 49.8% 46.0%

Table 25. Results of white-box attacks with different random restarts and step sizes on CIFAR-10. We compare ME-Net with (Madry
et al., 2017) using three different step sizes and random restart values. We apply 100 steps PGD or BPDA white-box attacks as adversary.

size (e.g., 2/255) is, the stronger the adversary becomes for both ME-Net and (Madry et al., 2017). This is as expected,
since a smaller step size enables a finer search for the adversarial perturbation.

ME-Net leverages randomness through masking, and it would be helpful to understand how random restarts, with a hard
success criterion, affect the overall pipeline. As observed in Table 25, more restarts can reduce the robust accuracy by a few
percent. However, we note that ME-Net can still outperform (Madry et al., 2017) by a certain margin across different attack
parameters. We remark that arguably, one could potentially always handle such drawbacks by introducing restarts during
training as well, so as to maximally match the training and testing conditions. This introduces in unnecessary overhead that
might be less meaningful. We hence focus on other parameters such as the number of attack steps in the main paper.

J. Additional Benefits by Majority Voting
It is common to apply an ensemble or vote scheme during the prediction stage to further improve accuracy. ME-Net naturally
provides a majority voting scheme. As we apply masks with different observation probability p during training, an intuitive
method is to also use multiple masks with the same p (rather than only one p) for each image during inference, and output a
majority vote over predicted labels. One can even use more masks with different p within the training range. By such, the
training procedure and model can remain unchanged while the inference overhead only gets increased by a small factor.

Attack
Steps Method MNIST CIFAR-10 SVHN

Tiny-ImageNet

Top-1 Top-5

40
Standard 94.0% 55.4% 71.9% 29.4% 58.5%

Vote 95.9% 59.3% 76.0% 33.8% 68.9%

100
Standard 91.8% 53.5% 69.8% 29.0% 58.0%

Vote 94.2% 56.2% 73.1% 31.2% 65.4%

1000
Standard 91.0% 52.8% 69.4% 28.5% 56.9%

Vote 92.6% 54.2% 71.4% 29.8% 59.5%

Table 26. Comparison between majority vote and standard inference. For each image, we apply 10 masks with same p used during
training, and the model outputs a majority vote over predicted labels. The standard inference only uses one mask with the mean probability
of those during training. We use 40, 100 and 1000 steps white-box BPDA attack and report the results on each dataset.

In Table 26, we report the majority voting result of ME-Net on different datasets, where voting can consistently improve the
adversarial robustness of the standard one by a certain margin. This is especially helpful in real-world settings where the
defender can get more robust output without highly increasing the computational overhead. Note that by using majority
vote, we can further improve the state-of-the-art white-box robustness.
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K. Hyper-Parameters Study
K.1. Observation Probability p

As studied previously, by applying different masks with different observation probability p, the performance of ME-Net can
change differently. We have already reported extensive quantitative results of different ME-Net models trained with different
p. Here we present the qualitative results by visualizing the effect of different p on the original images. As illustrated in
Fig. 9, the first row shows the masked image with different p, and the second row shows the recovered image by ME. It can
be observed that the global structure of the image is maintained even when p is small.

Masked

images

ME

Figure 9. Visualization of ME result with different observation probability p. First row: Images after applying masks with different
observation probabilities. Second row: The recovered images by applying ME. We can observe that the global structure of the image is
maintained even when p is small.

K.2. Number of Selected Masks

Another hyper-parameter of ME-Net is the number of selected masked images for each input image. In the main paper, all
experiments are carried out using 10 masks. We here provide the hyper-parameter study on how the number of masks affects
the performance of ME-Net. We train ME-Net models on CIFAR-10 using different number of masks and keep other settings
the same. In Table 27, we show the results of both standard generalization and adversarial robustness. We use transfer-based
40 steps PGD as black-box adversary, and 1000 steps BPDA as white-box adversary. As expected, using more masks can
lead to better performances. Due to the limited computation resources, we only try a maximum of 10 masks for each image.
However, we expect ME-Net to perform even better with more sampled masks and better-tuned hyper-parameters.

# of Masks Method Clean Black-box White-box

− Vanilla 93.4% 0.0% 0.0%

p : 0.9 92.7% 82.3% 44.1%
1 ME-Net

p : 0.5 79.8% 59.7% 47.4%

p : 0.8→ 1 94.1% 87.8% 46.5%
5 ME-Net

p : 0.4→ 0.6 86.3% 68.5% 49.3%

p : 0.8→ 1 94.9% 91.3% 47.4%
10 ME-Net

p : 0.4→ 0.6 89.2% 70.9% 52.8%

Table 27. Comparisons between different number of masked images used for each input image. We report the generalization and
adversarial robustness of ME-Net models trained with different number of masks on CIFAR-10. We apply transfer-based 40 steps PGD
attack as black-box adversary, and 1000 steps PGD-based BPDA as white-box adversary.

L. Additional Visualization Results
We finally provide more visualization results of ME-Net applied to clean images, adversarial images, and their differences.
We choose Tiny-ImageNet since it has a higher resolution. As shown in Fig. 10, for vanilla model, the highly structured
adversarial noises are distributed over the entire image, containing human imperceptible adversarial structure that is very
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likely to fool the network. In contrast, the redistributed noises in the reconstructed images from ME-Net mainly focus on the
global structure of the images, which is well aligned with human perception. As such, we would expect ME-Net to be more
robust against adversarial attacks.
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Figure 10. Visualization of ME-Net applied to clean images, adversarial images, and their differences on Tiny-ImageNet. First
column from top to bottom: the clean image, the adversarial example generated by PGD attacks, the difference between them (i.e., the
adversarial noises). Second column from top to bottom: the reconstructed clean image by ME-Net, the reconstructed adversarial example
by ME-Net after performing PGD attacks, the difference between them (i.e., the redistributed noises). Underlying each image is the
predicted class and its probability. We multiply the difference images by a constant scaling factor to increase the visibility. The differences
between the reconstructed clean image by ME-Net and the reconstructed adversarial example by ME-Net after performing PGD attacks,
i.e., the new adversarial noises, are redistributed to the global structure.


