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● Critical applications
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How to exploit the value of imbalanced labels?
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Consistent performance gains
● Semi-supervised imbalanced learning
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Superior improvements across various datasets!
(more results in paper)



Summary

● Unlabeled data helps imbalanced learning via a semi-supervised manner

● Self-supervised pre-training can substantially improve imbalanced performance

● Theoretical analysis + large-scale extensive experiments

Check out our code and models at...

● Project website: https://www.mit.edu/~yuzhe/imbalanced-semi-self.html

● Code (relevant data + pretrained models): https://github.com/YyzHarry/imbalanced-semi-self

https://www.mit.edu/~yuzhe/imbalanced-semi-self.html
https://github.com/YyzHarry/imbalanced-semi-self

