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Real-world data are often imbalanced (long-tailed)

Image recognition / Object detection / Semantic segmentation ...
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Real-world data are often imbalanced (long-tailed)

Image recognition / Object detection / Semantic segmentation ...
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Dilemma; Value of imbalanced labels
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Dilemma: Value of imbalanced labels
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How to exploit the value of imbalanced labels?

“Label bias”|driven by majority classes
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Semi-supervision & Self-supervision help!
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e Positive viewpoint: Semi-supervised learning using imbalanced labels
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Semi-supervision & Self-supervision help!

e Positive viewpoint: Semi-supervised learning using imbalanced labels
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e Negative viewpoint: Self-supervised pre-training in the first learning stage
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Semi-supervised imbalanced learning

Consistent performance gains
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Consistent performance gains

e Semi-supervised imbalanced learning

CIFAR-10-LT SVHN-LT

Standard CE 70.36 80.02

adalagalaolb olod ot [o Yo W -1 WA A QL. .00 L

Superior improvements across various datasets!
(more results in paper)

CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNaturalist 2018
Standard CE 70.36 38.32 38.4 60.7

w/ SSP 76.53 ( ) 43.06 ( ) 45.6 ( ) 64.4 ( )



Summary

e Unlabeled data helps imbalanced learning via a semi-supervised manner
e Self-supervised pre-training can substantially improve imbalanced performance

e Theoretical analysis + large-scale extensive experiments

Check out our code and models at...

e Project website: https://www.mit.edu/~yuzhe/imbalanced-semi-self.html

e Code (relevant data + pretrained models): https://github.com/YyzHarry/imbalanced-semi-self
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