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Abstract—Given significant air pollution problems, air quality
index (AQI) monitoring has recently received increasing atten-
tion. In this paper, we design a mobile AQI monitoring system
boarded on the unmanned-aerial-vehicles, called ARMS, to effi-
ciently build fine-grained AQI maps in real-time. Specifically,
we first propose the Gaussian plume model on the basis of
the neural network (GPM-NN), to physically characterize the
particle dispersion in the air. Based on GPM-NN, we pro-
pose a battery efficient and adaptive monitoring algorithm to
monitor AQI at the selected locations and construct an accu-
rate AQI map with the sensed data. The proposed adaptive
monitoring algorithm is evaluated in two typical scenarios, a
2-D open space like a roadside park, and a 3-D space like a
courtyard inside a building. The experimental results demon-
strate that our system can provide higher prediction accuracy
of AQI with GPM-NN than other existing models, while greatly
reducing the power consumption with the adaptive monitoring
algorithm.

Index Terms—Air quality, fine-grained monitoring, mobile
sensing, unmanned aerial vehicle (UAV).

I. INTRODUCTION

IN A recent report from the World Health Organization [1],
air pollution has become the world’s largest environmental

health risk, as one in eight of global deaths are caused by the
air pollution exposure each year. Air pollution is caused by
gaseous pollutants that are harmful to humans and ecosystem,
especially concentrated in the urban areas of developing coun-
tries. Thus, reducing air pollution would save millions of lives,
and many countries have invested significant efforts on moni-
toring and reducing the emission of air pollutants. Government
agencies have defined air quality index (AQI) to quantify the
degree of air pollution. AQI is calculated based on the concen-
tration of a number of air pollutants (e.g., the concentration
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of PM2.5, PM10 particles, and so on in developing countries).
A higher value of AQI indicates that air quality is “heavily”
or “seriously” polluted, resulting in a greater proportion of
the population may experience harmful health effects [2]. To
intuitively reflect AQI value of locations in either 2-D or 3-D
area, AQI map is defined to offer such convenience [3].

A. Mobile AQI Monitoring

AQI monitoring can be completed by sensors at the govern-
mental static observation stations, generating an AQI map in a
local area (e.g., a city [4]). However, these static sensors only
obtain a limited number of measurement samples in the obser-
vation area and may often induce high costs. For example,
there are only 28 monitoring stations in Beijing. The distance
between two nearby stations is typically several 10 000 m, and
the AQI is monitored every 2 h [5]. To provide more flexi-
ble monitoring and reduce the cost, mobile devices, such as
cell phones, cars, and balloons are used to carry sensors and
process real-time measuring. Crowd-sourced photographs con-
tributed by the mass of cell phones can help depict the 2-D
AQI map in a large geographical region in Beijing [6], with a
range of 4 × 4 km. Mobile nodes equipped with sensors can
provide 100 × 100 m 2-D on-ground concentration maps with
relatively high resolution [7]–[9]. Sensors carried by tethered
balloons can build the height profile of AQI at a fixed observa-
tion height within 1000 m [10]. A mobile system with sensors
equipped in cars and drones can help monitor PM2.5 in open
3-D space [11], with 200-m per measurement.

B. Motivations for Real-Time Fine-Grained Monitoring

Even though current mobile sensing approaches can provide
relatively accurate and real-time AQI monitoring data, they are
spatially coarse-grained, since two measurements are separated
by few hundreds of meters in horizontal or vertical directions
in the 3-D space. However, AQI has intrinsic changes from
meters to meters, and it is preferred to perform AQI monitoring
in the 3-D space surrounding an office building or through-
out a university campus, rather than city-wide [12], [13]. The
AQI distribution in meter-sliced areas, called as fine-grained
areas would be desirable for people, particularly those living
in urban areas. The fine-grained AQI map can help design the
ventilation system for buildings, which for example can guide
teachers and students to stay away from the pollution sources
on campus [14].
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Fig. 1. Illustration of AQI measurement using mobile sensing over UAV.

Due to the high power consumption of mobile devices, one
can only measure a limited number of locations of the entire
space. To avoid an exhaustive measurement, using an estima-
tion model to approximate the value of unmeasured area has
been wildly adopted. In [15], the prediction model is based on
a few public air quality stations and meteorological data, taxi
trajectories, road networks, and point of interests. However,
because they estimate AQI using a feature set based on histor-
ical data, their model cannot respond in real-time to the change
in pollution concentration at an hourly granularity, leading to
large errors at times. In [11], the random walk model is used
for prediction by dividing the whole space into different shapes
of cubes. However, the model may not reflect physical disper-
sion of particles [16], [17], and all locations are measured
without considering the battery life constraint when mobile
devices are used. Mobile sensor nodes used in [7] employ the
regression model as well as graph theory to estimate the AQI
value at unmeasured locations. However, they mainly focus
on 2-D area, and can hardly produce a 3-D fine-grained map.
Neural networks (NNs) are also used for forecasting on the
AQI distribution [18]–[21]. However, its performance in fine-
gained area is not satisfied without considering the physical
characteristic of real AQI distribution.

C. Contributions

In this paper, we design a mobile sensing system based
on unmanned-aerial-vehicles (UAVs), called ARMS, that can
effectively catch AQI variance at meter-level and profile the
corresponding fine-grained distribution. ARMS is a real-time
monitoring system that can generate current AQI map within
a few minutes, compared to the previous methods with an
interval of a few hours. With ARMS, the fine-grained AQI map
construction can be decomposed into two parts. First, we pro-
pose a novel AQI distribution model, named Gaussian plume
model embedding NNs (GPM-NNs), that combines physical
dispersion and nonlinear NN structure, to do predictions of
unmeasured area. Second, we detail the adaptive monitoring
algorithm as well as addressing its applications in a few typi-
cal scenarios. By measuring only selected locations in different
scenarios, GPM-NN is used to estimate AQI value at unmea-
sured locations and generate real-time AQI maps, which can

save the battery life of mobile devices while maintaining high
accuracy in AQI estimation.

The contributions of this paper are summarized as follows.
1) The GPM-NN is highly adaptive in different fine-grained

measurement scenarios, and it can provide higher accu-
racy in creating AQI maps than other existing models.

2) The adaptive monitoring algorithm can guide UAV to
choose optimized trajectory in different scenarios based
on GPM-NN. It can greatly reduce the battery consump-
tion of ARMS, while achieving high accuracy when
constructing real-time AQI maps.

3) The ARMS is the first UAV sensing system for fine-
grained AQI monitoring.

The rest of this paper is organized as follows. In Section II,
we briefly introduce our UAV sensing system. In Section III,
we present our fine-grained AQI distribution model. The
adaptive monitoring algorithm is addressed in Section IV. In
Sections V and VI, we present two typical application scenar-
ios and performance analysis of ARMS, respectively. Finally,
the conclusions are drawn in Section VII.

II. PRELIMINARIES OF UAV SENSING SYSTEM

In this section, first we provide a brief introduction of
ARMS, and then we show how to construct a dataset using
ARMS. To confirm the reliability of the collected dataset,
we compare the collected data and the official AQI measured
by the nearest Beijing government’s monitoring station, i.e.,
the Haidian station [22]. To determine the parameters of our
model, we test possible factors that may influence AQI, such as
wind, locations, etc., and remove those factors that have small
correlations with AQI in the fine-grained scenarios from our
model.

A. System Overview

The architecture of ARMS includes an UAV and an air qual-
ity sensor boarded on the UAV, as shown in Fig. 2. The sensor
is fixed in a plastic box with vent holes, bundled on the bot-
tom of UAV. The sensor uses a laser-based AQI detector [23],
which can provide the concentration within ≤ ±3% moni-
tor error for common pollutants in AQI calculation, such as
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Fig. 2. ARMS system, the front and the back of the sensor board.

PM2.5, PM10, CO, NO, SO2, and O3. The values of these pol-
lutants are real-time recorded, with which we calculate the
corresponding AQI value at measuring locations.

For the UAV, we select DJI Phantom 3 Quadcopter [24]
as the mobile sensing device. The UAV can keep hosting for
at most 15 min due to the battery constraint, which restricts
the longest continuous duration within one measurement. The
GPS sensor on the UAV can provide the real-time 3-D posi-
tion. During one measurement, the UAV is programmed with
a trajectory, including all locations that need to be measured.
Following this trajectory, UAV hovers for 10 s to collect suffi-
cient data to derive the AQI value at each stop, before moving
to the next one.

During one monitoring process, ARMS measures all tar-
get locations and records the corresponding AQI values.
After the measuring process is completed, the data is then
sent to the offline PC and put into the GPM-NN model to
construct the real-time AQI map. Thus, the map construction
process is offline.

B. Dataset Description

Data collected by ARMS are then arranged as a dataset.1

As shown in Fig. 1, we have conducted a measurement study
in both typical 2-D and 3-D scenarios (i.e., a roadside park
and the courtyard of an office building in Peking University),
respectively, from February 11, 2017 to July 1, 2017, for more
than 100 days to collect sufficient data [25].

In the dataset, each .txt file includes one complete measure-
ment over a day in one typical scenario. In each .txt file, each
sample has four parameters, 3-D coordinates (x, y, z) and an
AQI value. Each value represents the measured AQI, while
its coordinates in the matrix reflect the position in different
scenarios. In the 2-D scenario, we assume z = 0, while mea-
suring at an interval of 5 m in x and y directions. In the 3-D
scenario, every row presents fixed position in xy plane, while
every column represents the height at an interval of 5 m in z
direction.

C. Data Reliability

To verify that there is no measurement error, we show the
results of the relationship between our collected data and the

1Dataset can be found online. [Online]. Available: https://github.com/
YyzHarry/AQI_Dataset

Fig. 3. AQI value comparison between official data and data we collected,
for 14 days in March 2017.

official data (i.e., Haidian station [22]), in Fig. 3. Note that
the official data is limited and only for the 2-D space, while
our system is mobile and suitable for the 3-D space profil-
ing. We select 14 consecutive days for about 60 instances of
monitoring from March 14, 2017 to March 27, 2017, to ver-
ify the reliability of our measurement. We use the two-tailed
hypothesis test [26]: H0 : μ1 = μ2 versus H1 : μ1 �= μ2,
where μ1 denotes our average measured data for all days
and μ2 is the average for the official ones. The test result,
P = 0.9999 � 0.05, indicates that there is no significant dif-
ference between the two values, which confirms the reliability
of our measurements.

D. Selection of Model Parameters

According to the previous AQI monitoring results for
coarse-grained scenarios [17], AQI is related to wind (includ-
ing speed and direction), temperature, humidity, altitude, and
spatial locations. But for fine-grained scenarios, correlations
between AQI and these spatial parameters need to be recon-
sidered, due to the heterogenous diffusion in both vertical and
horizontal directions in a small-scale area. In this test, all these
potential parameters are measured by our ARMS with dif-
ferent sensors. To evaluate the real correlation between these
parameters, we adopt the spatial regression according to [27],
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TABLE I
RESULT OF THE HYPOTHESIS TEST

and test the coefficient for each parameter. Mathematically, the
spatio-temporal model is given as

C(si) = z(si)β
T + ε(si) (1)

where C(si) is the particle concentration at position si, z(si) =
(z1(si), . . . , zn(si)) denotes the vector of n parameters at si, and
β = (β1, . . . , βn) is the coefficient vector. ε(si) ∼ N(0, σ 2) is
the Gaussian white-noise process.

Based on our data, we use the least square regression
and implement a hypothesis test for each coefficient βj, as
H0 : βj = 0. The results in Table I indicate that wind
and location are highly related to AQI distribution, whereas
temperature and humidity are not.

III. FINE-GRAINED AQI DISTRIBUTION MODEL

In this section, we provide a prediction model considering
both physical particle dispersion and NN structure. We first
introduce the physical dispersion model for the fine-grained
scenario. Then, we provide a brief introduction of NN we
adopt in modeling, which can adapt to complicated cases, such
as the nonlinearity introduced by extreme weather. Finally, we
embed the dispersion model in NN to design our model.

A. Physical Particle Dispersion Model

We first address the physical particle dispersion model
for fine-grained scenarios. Specifically, we ignore the influ-
ence of temperature and humidity according to discussion in
Section II-D, and select the Gaussian plume model (GPM) in
the particle movement theory [28], to describe the particle’s
dispersion. GPM is widely used to describe particles’ physi-
cal motion [16], [29], and its robustness has been proved in a
small scale system [30]. GPM is expressed as

C(x, y, z) = Q

2πσyσzu
exp

(
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2σ 2
z

)
exp

(
− y2

2σ 2
y

)
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where Q is the point source strength, u is the average wind
speed, and H denotes the height of source.

To adopt GPM into the fine-grained scenario, the GPM is
revised as
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Fig. 4. Model structure of GPM-NN.

where C(�x, u) is the AQI value at location �x, u is the real wind
speed at different locations in the entire space, and H denotes
a variable that reflects the influence of wind direction, which
presents severely polluted areas along z-axis. Pollution mainly
derives as a line source aligned the y-axis, and L denotes
the length of polluted source and λ denotes the particle den-
sity at the source. σy and σz are diffusion parameters in y
and z directions, and are both empirically given. The disper-
sion model in (3) can reflect physical characteristics, but can
hardly deal with unpredictable complicated changes, such as
the nonlinearity introduced by extreme weather.

B. Neural Network Model

The NN model, especially multilayer perceptron, has been
wildly adopted to do estimation for air quality [18]–[21].
They usually train models by using a huge amount of data
to achieve decent performance. All possible influential factors
are involved as the NN input variables for network training.
Other types of NN [31], [32] are proposed for better classifica-
tion with more complex structures. As it has been proved that a
three-layer NN can compute any arbitrary function [33]–[35],
NN is able to present the complicated changes in fine-grained
scenario. However, without considering the physical character-
istics of AQI, the NN model may overfit and perform worse
on the test data than on the training data [18].

C. GPM-NN Model

In order to utilize the advantages of both GPM and NN, we
embed the revised GPM in NN, and put forward GPM-NN
model.

1) Model Description: As shown in Fig. 4, the model struc-
ture contains a linear part (the physical dispersion model) and a
nonlinear part (the NN structure) for fine-grained AQI distribu-
tion, respectively. Let N be the total number of data collected
by ARMS, which is represented by a pair (Xj, tj), where
Xj = [x1 x2 . . . xm]T is the jth sample with a dimensionality
of m variables and tj is the measured AQI value.

1) In the nonlinear NN part, let K denote the total number
of neurons in the hidden layer. The weights for these
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neurons are denoted by W = [W1 W2 · · · WK], where
Wi = [ωi1 ωi2 · · · ωim] is the m-dimensional weight
vector containing the weights between the components
of input vectors and the ith neuron in the hidden layer.
b = [b1 b2 · · · bK] is the bias term of the ith neuron.
The nonlinear part with K neurons in the hidden layer
will have β = [β1 β2 · · · βK] as weights for output
layer and g(·) is the activation function.

2) In the linear part, we use C(�x, u), a constant value
and a Gaussian process as inputs, to reflect the influ-
ence of the physical model. The regression weights are
correspondingly determined as βK+1, βK+2, and 1.

Thus, the mathematical expression of the proposed model
can be written as

t(�x, u) =
K∑

i=1

βig
(
WiXj + bi

)+ βK+1C(�x, u)

+ βK+2 + ε(�x), j = 1, 2, . . . , N (4)

where t(�x, u) is the estimated value of tj and it represents the
model’s output. C(�x, u) is the output of the dispersion model
in (3) and βi are regression coefficients. ε(�x) ∼ N(0, σ 2) is the
measurement error defined by a Gaussian white-noise process.
Since there is a risk that the NN part will overfit and perform
worse on the test data than training data, the estimated AQI
value is expressed as

Cf (�x, u) = Cstatic + t(�x, u) (5)

where Cstatic is the average value of our measured AQI in
a day, which is an invariant to quantify basic distribution
characteristics.

2) Parameter Estimation: As shown in (4), GPM-NN has
(K + 3) parameters, H, β1, β2, . . . , βK+2, which need to be
estimated based on data collected by ARMS. Fifty days’ data
are used for training the nonlinear part of GPM-NN. We use
the least square regression to estimate the parameters. Let S
denote the residual error as

S =
N∑

i=1

∥∥∥∥∥∥Ĉf (�xi, ui) − βK+2 − βK+1C(�x, u) −
K∑

j=1

βjgj

∥∥∥∥∥∥
2

(6)

where i denotes the measuring sample of the ith observation
point, and gj = g(WjXi + bj).

Proposition 1: Equation (6) has a unique minimum point
for estimated parameters β1, β2, . . . , βK+2 and H, when σ 2

z >

max{2z2
i , 2H2

0}.
Proof: See Appendix.

To find the minimum point of the residual error function
S(H, β1, . . . , βK+2), we use the Newton method [36] to solve
the following equations whose analytical solution does not
exist, as:

⎧⎪⎪⎨
⎪⎪⎩

∂S
∂H

= 0

∂S
∂βj

= 0, j = 1, 2, . . . , K + 2.

(7)

When the estimation value of H (denoted as H∗) is deter-
mined, C(�x, u) is correspondingly determined. Denote

J =

⎡
⎢⎢⎢⎢⎣

g(W1X1 + b1) · · · g(WKX1 + bK) C(�x1, u1) 1
g(W1X2 + b1) · · · g(WKX2 + bK) C(�x2, u2) 1

.

.

.
. . .

.

.

.
.
.
.

.

.

.

g(W1XN + b1) · · · g(WKXN + bK) C(�xN , uN) 1

⎤
⎥⎥⎥⎥⎦

N×(K+2)

as the model output matrix, and similarly

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1
β2
...

βK

βK+1
βK+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(K+2)×1

is the vector that needs to be estimated. Hence, the estimated
value of N samples can be written as

T = Jβ. (8)

Note that J is both row-column full rank matrix, which has
a corresponding generalized inverse matrix [37]. As we have
proved (6) has a unique minimum point, we then have

β = (JTJ
)−1

JTJβ

= (JTJ
)−1

JTT

= J†T (9)

where J† = (JTJ)−1JT is known as the Moore–Penrose
pseudo inverse of J. This equation is the least squares solution
for an over-determined linear system and is proved to have the
unique minimum solution [38]. Thus, this equation is equal to
the multivariate equation in (7), by which we can find the
minimum value point of S .

3) Performance Evaluation: To determine the initial value
of the weights W and biases b for the hidden layer, we use
the training data to do preprocessing and acquire the optimal
values. Hence, the model can be completely determined for
describing the AQI distribution in fine-grained scenarios.

For evaluating the performance of GPM-NN, we use aver-
age estimation accuracy (AEA) as the merit, expressed as

AEA = 1

n

n∑
i=1

⎛
⎝1 −

∣∣∣Ĉf (i) − Cf (i)
∣∣∣

Cf (i)

⎞
⎠ (10)

where n denotes the total locations in the scenario, Ĉf (i)
denotes the estimation AQI value in the ith location, and
Cf (i) denotes the real measured value. In Sections V and VI,
we compare the accuracy of AQI map constructed by our
GPM-NN and other existing models.

IV. ADAPTIVE AQI MONITORING ALGORITHM

In this section, we provide the adaptive monitoring algo-
rithm of ARMS. Intuitively, a larger number of measure-
ment locations introduce a higher accuracy of the AQI map.
However, based on the physical characteristic of particle dis-
persion in GPM-NN, we can build a sufficiently accurate
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Fig. 5. Example of the adaptive monitoring algorithm, i.e., complete and selective monitoring.

AQI map by regularly measuring only a few locations. This
process can effectively save the energy, and thus improve
the efficiency of the system. Specifically, an AQI monitor-
ing is decomposed into two steps—complete monitoring and
selective monitoring—for efficiency and accuracy, as shown in
Fig. 5. We first trigger complete monitoring everyday for one
time, to establish a baseline distribution. Then ARMS peri-
odically (e.g., every one hour) measures only a small set of
observation points, which are acquired by analyzing the char-
acteristic of the established AQI map. This process, named as
selective monitoring, is based on GPM-NN to update the real-
time AQI map. By accumulating current measurements with
the previous map, a new AQI map is generated timely. Every
time when selective monitoring is done, ARMS compares the
newly measured results and the most recent measurement. If
there is a large discrepancy between them, which indicates
that the AQI experiences severe environmental changes, we
would again trigger the complete monitoring to rebuild the
baseline distribution. Thus, ARMS can effectively reduce the
measurement effort as well as cope with the unpredictable
spatio-temporal variations in the AQI values.

A. Complete Monitoring

The complete monitoring is designed to obtain a baseline
characteristic of the AQI distribution in a fine-grained area and
is triggered at a day interval.

The entire space can be divided into a set of
5 m × 5 m × 5 m cubes. In the complete monitoring process,
ARMS measures all cubes continuously and builds a baseline
AQI map using GPM-NN. The process is of high dissipation,
and thus is triggered over a long observation period.

B. Selective Monitoring

To reflect changes of the AQI distribution in a small-scale
space over time (e.g., between each hour in a day) [11],
ARMS uses the selective monitoring to capture such dynamics.
The selective monitoring makes use of previous AQI map, by

analyzing the physical characteristics of it, to reduce the mon-
itoring overhead in the next survey and maintain the real-time
AQI map accordingly.

In the selective monitoring process, ARMS measures AQI
value of only a small set of selected cubes and generates AQI
map over the entire fine-grained area. To deal with the inherent
tradeoff between measurement consumption and accuracy, we
put forward an important index called the partial derivative
threshold (PDT), to guide system selecting specific cubes. PDT
is defined as

PDTi =
∣∣∣ ∂Cf

∂xi

∣∣∣−
∣∣∣ ∂Cf

∂xi

∣∣∣
min∣∣∣ ∂Cf

∂xi

∣∣∣
max

−
∣∣∣ ∂Cf

∂xi

∣∣∣
min

(11)

where xi denotes the ith variable in GPM-NN (i =
1, 2, . . . , m), and Cf = Cf (�x, u) denotes the entire distribution
in a small-scale area. |∂Cf /∂xi|min and |∂Cf /∂xi|max denote
the minimum and the maximum value of the partial deriva-
tive for parameter xi, respectively. Note that ∂Cf /∂xi describes
the upper bound of dynamic change degrees we can tolerate,
expressed as

∂Cf

∂xi
= PDTi ·

(∣∣∣∣∂Cf

∂xi

∣∣∣∣
max

−
∣∣∣∣∂Cf

∂xi

∣∣∣∣
min

)
+
∣∣∣∣∂Cf

∂xi

∣∣∣∣
min

0 ≤ PDTi ≤ 1. (12)

For each parameter, there is one corresponding PDT. In gen-
eral, PDT reflects the threshold for dynamic change degrees in
a fine-grained area. Area that has large change rate of model’s
parameters would have a larger PDT value, indicating more
drastic changes. When given a specific PDT, any cube whose
∂Cf /∂xi is above threshold of (12) will be moved into a set
M. Moreover, when PDTi is too small (less than a small const
δ), the corresponding ith cube will also be added into M.
Mathematically, set M is given as

M = {i | PDTi ≥ PDT} ∪ {i | PDTi ≤ δ}. (13)

Remark 1: Elements in M can be the severe changing areas
in a small-scale space (e.g., a tuyere or abnormal building
architecture), or typically the lowest or the highest value that
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can reflect basic features of the distribution. These elements
are sufficient to depict the entire AQI map, and hence are
needed to be measured between two measurements. Thus, by
only measuring cubes in M, ARMS can generate a real-time
AQI map implemented by GPM-NN, while greatly reducing
the measurement overhead.

In general, PDT is adjusted manually for different scenarios.
When PDT is low, the threshold for abnormal cubes declines,
indicating the measuring cubes will increase and the estima-
tion accuracy is relatively high. However, it can cause great
battery consumption. On the other hand, as PDT is high, the
measuring cubes will decrease. This can cause a decline in
accuracy, but can highly reduce consumption. In summary, the
tradeoff between accuracy and consumption should be studied
to acquire a better performance of whole system.

C. Trajectory Optimization

When target cubes in set M are determined, the total
network can be modeled as a 3-D graph G = (V, E) with
a number of |V| target cubes. Hence, finding the minimum
trajectory over these cubes is equal to find the shortest hamil-
tonian cycle in a 3-D graph. This problem is known as the
traveling salesman problem (TSP), which is NP-hard [39].

To solve TSP in this case, we propose a greedy algo-
rithm to find the suboptimal trajectory. In the fine-grained
scenario, ARMS has power consumption and can monitor
no more than n cubes over one measurement. To find the
corresponding trajectory, we focus on how to determine the
next measuring cube based on current location of ARMS. Let
Z = {O0, O1, . . . , O|V|−1} be the set of coverage cubes, with
Oi denotes every observation cube. The aim is to acquire as
many target cubes as possible over the trajectory for higher
AQI estimation accuracy. Considering the significant physi-
cal characteristic of PDT above, our greedy solution can be
formulated as: maximize the next cube’s PDT, as well as min-
imize the traveling cost from current location to next cube.
Hence, finding the optimal trajectory in this case is equal to
an iteration of solving the following optimization problem,
expressed as:

i∗ = arg max
i

∣∣∣∣ PDTi

cost(i)

∣∣∣∣
s.t. Oi ∈ M

Oi ∩
⋃

{O0, O1, . . . , Oi−1} = ∅ (14)

where cost(i) is the consumption for the UAV to traverse from
the (i − 1)th cube to the ith cube, and PDTi is acquired by
analyzing the characteristic of latest AQI map.

For every current location i, the selection of next target cube
follows (14). Note that there are limited target cubes in M,
which are also determined by (12), hence the objective func-
tion aims to generate trajectory point-by-point. Thus, using the
solution of (14), the greedy algorithm can effectively select
key cubes and generate the suboptimal trajectory for ARMS
in different scenarios, respectively.

For analyzing the complexity of our algorithm, there are V
target cubes in total that need to be added from M. When
current location of ARMS is at the ith cube, it needs to

Algorithm 1: Operation of Monitoring Algorithm
/* Complete Monitoring: triggered between days */
for i = 1 to sum(Cube) do

measure the AQI value of Cubei and record;
move to the next cube;

end
generate baseline 3D AQI map B;

/* Selective Monitoring: triggered between hours */
for i = 1 to sum(Cube) do

calculate PDTcubei;
if PDTcubei ≥ PDT | | PDTcubei ≤ δ then

add Cubei to M;
end

end
generate min trajectory D of M;
forall pi ∈ D do

measure the AQI value of Cubei and record;
end
update the realtime AQI map M based on previous B and
D;
if M deviates B by a large σ then

enter the complete monitoring period;
end

compare another |V − i| edges in G to determine the next
measuring cube. Note that every target cube contains m param-
eters (m = 4 in our model), and O(V) = O(n). Thus, the total
operation time is O(m

∑V−1
i=1 |V − i|) = O(n2).

Algorithm 1 describes the whole process of the moni-
toring algorithm. Complete monitoring is triggered between
days and selective monitoring is triggered between hours.
When the monitoring area experiences severe environmen-
tal changes such as the gale, ARMS compares the result of
map built by selective monitoring and the map built last time.
If there is a large deviation σ between them, ARMS would
again trigger the complete monitoring to rebuild the baseline
distribution.

V. APPLICATION SCENARIO I: PERFORMANCE

ANALYSIS IN HORIZONTAL OPEN SPACE

In this section, we implement the adaptive monitoring
algorithm in a typical 2-D scenario, namely the horizontal
open space. We present performance analysis of GPM-NN
and adaptive monitoring algorithm in this typical scenario,
respectively.

A. Scenario Description

When the 3-D space has a limited range in height, ARMS
needs to cover target cubes nearly in the same horizontal
plane. Two distant cubes at the same height may have a
low correlation, as the wind may create different concen-
tration of pollutants in a horizontal plane. This scenario is
commonly considered as a typical 2-D scenario and often
with a horizontal-open space (e.g., a roadside park), as shown
in Fig. 6.
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Fig. 6. Typical application scenario of ARMS in 2-D space (a roadside park).

Fig. 7. Comparison of estimation accuracy between GPM-NN, MLR, and
LI, in 2-D scenario.

B. Performance Analysis

In this section, we first compare the accuracy of GPM-NN
with other existing models by the experimental result in Fig. 7.
Then, Fig. 8 illustrates the influence by different numbers of
neurons in the hidden layer. To study GPM-NN’s performance
when AQI varies, in Fig. 9, we show the relationship between
different AQI values and corresponding estimation accuracy.
In Fig. 10, we present the performance of our monitoring
algorithm versus other selection algorithms. Finally, Fig. 11
shows the tradeoff between system battery consumptions and
estimation accuracy via different PDTs.

1) Model Accuracy: In Fig. 7, we compare three prediction
models, our regression model GPM-NN, linear interpola-
tion (LI) [40], and classical multivariable linear regres-
sion (MLR) [27], respectively, versus different values of PDT.
LI uses interpolation to estimate the AQI value of unde-
tected cubes by other measured cubes, while MLR uses
multiple parameters (e.g., wind, humidity, temperature, etc.)
of measured cubes to do regression and estimation.

In the horizontal open space scenario, we can find that
GPM-NN achieves the highest accuracy. In each curve, we
can see that the AEA decreases as the PDT value increases.
As discussed in Section IV-B, when PDT has a higher thresh-
old, target cubes in set M decline, i.e., the total cubes
measured by ARMS become fewer. Thus, the estimation

Fig. 8. Impact of the number of neurons in the nonlinear part, in 2-D
scenario.

accuracy correspondingly drops. When PDT = 0.1, GPM-
NN performs the best among three models, which proves
the robust and precision of our model. Moreover, as PDT
increases (e.g., PDT = 0.75), GPM-NN still maintains a
high accuracy (almost 80%), while others experience a rapid
decrease. This implies that our model is suitable for adaptive
energy saving monitoring in a fine-grained area.

2) Effects of Neuron Numbers: As we adopt the NN struc-
ture to introduce the nonlinear part for our GPM-NN model,
the number of neurons in the hidden layer can have great
impacts on estimation results. In Fig. 8, we plot the estima-
tion accuracy of different number of neurons in GPM-NN via
PDT, to study their influence.

From Fig. 8, when PDT < 0.1, the monitoring contains all
cubes. When the number of neurons is 0, our model is equal
to the physical model in (3) with regression, which only con-
tains the linear part. By comparing this curve with others, we
can find out that the number of neurons = 0 is worse than the
number of neurons �= 0. By adding the nonlinear part (NN
structure), GPM-NN performs better with higher accuracy.
Moreover, the curve with fewer number of neurons (e.g., the
number of neurons = 10) performs worse than with more neu-
rons (e.g., the number of neurons = 500). In this scenario, we
can find that the number of neurons = 1000 can achieve the
highest estimation accuracy. We ignore the situation where the
number of neurons > 1000, as too many neurons in the hidden
layer can cause overfitting.

3) Effects of Various AQI: In Fig. 9, we plot the estimation
accuracy of GPM-NN with different AQI values (i.e., AQI ≤
50, 50 ≤ AQI ≤ 200, and AQI ≥ 200 [22]), via different
PDTs. From the curves, we can find that in 2-D scenario,
GPM-NN performs the best when AQI ≥ 200. As 50 ≤ AQI ≤
200, GPM-NN also maintains high accuracy, while relatively
worse when AQI is low. This indicates that our model is better
predicting in moderately and highly polluted days, which has
great instructing significance in forecasting severe pollution as
well as prevention. This characteristic is also suitable for the
adaptive monitoring algorithm when AQI is high. Note that
even GPM-NN performs not so good when AQI is low, it still
outperforms other models.
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Fig. 9. Performance of GPM-NN with different AQI values, in 2-D scenario.

Fig. 10. Comparison of the adaptive monitoring algorithm, greedy algorithm,
and sequential selection, in 2-D scenario.

4) Performance of Adaptive Monitoring Algorithm: In this
part, we compare the results of the proposed monitoring algo-
rithm for trajectory planning, versus other algorithms such as
greedy algorithm and sequential selection, by plotting their
battery consumptions over one measurement in Fig. 10. The
greedy algorithm aims to select the nearest target cube in M to
generate the trajectory [9], while sequential selection is done
by selecting cubes from the bottom (or left) to the top (or
right) in order [11].

In the typical horizontal open space, we plot the normalized
battery consumption achieved by three algorithms in Fig. 10,
via different PDTs. The normalized consumption is the cost
percentage achieved by each monitoring method of one total
battery charge (i.e., 15 min). As PDT increases, the consump-
tion would correspondingly decrease, as the target cubes in M
would be fewer. By comparing three curves, we can see that
sequential selection is the most consuming method. Our moni-
toring algorithm performs the best and is better than the normal
greedy algorithm, while 0.1 ≤ PDT ≤ 0.4. After PDT reaches
0.4, the consumption of three methods becomes equal, since
the target cubes in M now is so few that there is no differ-
ence in using these algorithm. Hence, the adaptive monitoring

Fig. 11. Tradeoff between system battery consumption and estimation
accuracy, in 2-D scenario.

algorithm can relatively reduce the power consumption for
monitoring AQI in the 2-D scenario.

5) Tradeoff Between Consumption and Accuracy: In
Fig. 11, we illustrate the tradeoff between the battery con-
sumption and estimation accuracy. To better illustrate the
tradeoff, we use average error as a merit, expressed as

ERR = 1

n

n∑
i=1

(
Ĉf (i) − Cf (i)

Cf (i)

)2

(15)

where n, Ĉf (i), and Cf (i) are the same in (10). We plot the
curves of system’s power consumption and average estimation
error versus PDT.

Fig. 11 illustrates the relationship between the accuracy
and the battery consumption. Intuitively, a larger PDT intro-
duces less power consumption, which proves that with a higher
PDT, consumption declines as the number of measured cubes
decreases. Moreover, when PDT ≥ 0.4, the total consump-
tion of the whole system can be reduced by 90%. The rapid
decline of consumption is also related to the high redundancy
of data in the typical 2-D space as the roadside park. On
the other hand, the average error of ARMS increases as PDT
becomes larger, which confirms the existence of the tradeoff
between power consumption and estimation accuracy. Under
this circumstance, choose PDT = 0.41 can achieve a relatively
high predicting accuracy (over 80%) while greatly reduce the
battery consumption of the system.

VI. APPLICATION SCENARIO II: PERFORMANCE

ANALYSIS IN VERTICAL ENCLOSED SPACE

In this section, we implement the adaptive monitoring algo-
rithm in a typical 3-D scenario, vertical enclosed space.
We then present performance analysis of the GPM-NN and
the adaptive monitoring algorithm in this typical scenario,
respectively.

A. Scenario Description

In the typical 3-D scenario, the 3-D space has target cubes in
various heights. In this type of scenario, the planar area is rel-
atively limited (e.g., the courtyard inside a high-rise building).
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Fig. 12. Typical application scenario of ARMS in 3-D space (courtyard
inside a high-rise building).

As shown in Fig. 12, in such a vertical enclosed space, there is
no significant difference on AQI values between two horizon-
tally neighboring cubes, but the wind may create a discrepancy
of the pollutant concentration on two cubes at different heights.
Hence, the benefit of selecting more cubes vertically out-
weigh the cost of traversing between distant cubes at the same
heights.

B. Performance Analysis

In this section, we present performance analysis of ARMS
in different aspects, as in Section V-B, for typical 3-D scenario.

1) Model Accuracy: In Fig. 13, we compare three
prediction models. In the vertical enclosed space scenario,
GPM-NN still maintains the highest accuracy among three
models via different PDTs. Compared to 2-D scenario, LI
decreases rapidly as PDT increases, which indicates the het-
erogenous in 3-D AQI distribution. Moreover, when PDT =
0.8, GPM-NN would experience a violent decline. This phe-
nomenon is caused by the inherent characteristic of PDT.
When PDT is high, the corresponding number of target cubes
in M becomes so few that the predicting accuracy can sig-
nificantly drop, even if only one point unmeasured (e.g., ten
cubes with PDT = 0.75 and nine cubes with PDT = 0.8).
This result can provide the basis for choosing the suitable PDT
value.

In conclusion, GPM-NN performs better in both 2-D and
3-D fine-grained scenarios, with high estimation accuracy even
if measuring cubes are few.

2) Effects of Neuron Numbers: In Fig. 14, we study the
effects of the number of neurons in a typical 3-D scenario.
When PDT < 0.1, the result is the same as in the 2-D scenario,
that each curve performs the best. As PDT increases, the curve
with the number of neurons = 0 declines most rapidly like that
in Fig. 8. Also, the curve with fewer number of neurons (e.g.,
the number of neurons = 10) performs worse than with more
neurons (e.g., the number of neurons = 100/1000) as well. In
this scenario, we can find that the number of neurons = 500
can achieve the highest estimation accuracy, which is different
from the result in the 2-D scenario.

In conclusion, our GPM-NN model (with combination of
linear and nonlinear part) is robust and better than that with

Fig. 13. Comparison of estimation accuracy between GPM-NN, MLR, and
LI, in 3-D scenario.

Fig. 14. Impact of the number of neurons in the nonlinear part, in 3-D
scenario.

Fig. 15. Performance of GPM-NN with different AQI values, in 3-D scenario.

only linear part. Moreover, the number of neurons in the hid-
den layer can effectively influence the model’s performance,
and the optimal value is different in various scenarios.

3) Effects of Various AQI: In Fig. 15, we again plot the
estimation accuracy of GPM-NN with different AQI values in
the 3-D scenario. From the curves, we can find that GPM-NN
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Fig. 16. Comparison of the adaptive monitoring algorithm, greedy algorithm,
and sequential selection, in 3-D scenario.

Fig. 17. Tradeoff between system battery consumption and estimation
accuracy, in 3-D scenario.

also performs the best when moderately and highly polluted,
while relatively worse when AQI is low.

In conclusion, GPM-NN can maintain better estimation
accuracy when the AQI value is moderate and high, which
is suitable for the operation of our ARMS.

4) Performance of Adaptive Monitoring Algorithm: In the
3-D scenario as vertical enclosed space, Fig. 16 shows the
consumption of three algorithms, our monitoring algorithm,
greedy algorithm and sequential selection, via different PDTs.
From the figure, we can see when PDT is low, sequential
selection consumes much more than those of our method and
greedy algorithm. This indicates that when scenario becomes
3-D, the cube selection can be more complicated and a suitable
selection method can highly reduce the battery consumption.
Moreover, adaptive monitoring algorithm also performs the
best among three methods, and it is better than the greedy algo-
rithm when PDT ≤ 0.8. As PDT becomes high, the normalized
consumption of three algorithms is closer, and becomes equal
when PDT ≥ 0.8. Thus, the adaptive monitoring algorithm
can effectively save the battery life for monitoring AQI in
3-D scenario.

5) Tradeoff Between Consumption and Accuracy: In
Fig. 17, we plot the tradeoff in the 3-D scenario as horizontal

enclosed space. This typical 3-D scenario is more common
in real measurement, and hence the result is more instruc-
tive. As PDT becomes higher, the average error grows rapidly
as consumption can drop fairly. Given the average error, for
example, when ERR = 0.04 (AEA is about 80%), the corre-
sponding PDT = 0.51, and thus the power consumption can
be reduced to as little as 37%. Hence, by choosing suitable
PDT value for monitoring, the measuring efforts can greatly
scale down.

VII. CONCLUSION

In this paper, we have designed a UAV sensing system,
ARMS, to construct fine-grained AQI maps. A novel fine-
grained AQI distribution model GPM-NN has been proposed
based on NN and physical model, to help generate a real-time
AQI map with data collected by ARMS. To reduce the battery
consumptions of ARMS, we have proposed the adaptive mon-
itoring algorithm to efficiently update real-time AQI maps.
For the 2-D and 3-D scenarios, we have applied the adap-
tive monitoring algorithm, respectively. By using the proposed
index PDT, the system can well balance the intrinsic trade-
off between the estimation accuracy and power consumption.
Experimental results have shown that GPM-NN can achieve
a higher accuracy in AQI map construction than other exist-
ing models, and the number of neurons in the hidden layer
of GPM-NN should also be adjusted in various scenarios
to acquire better performance. Moreover, the adaptive mon-
itoring algorithm can generate the trajectory while greatly
saving the battery life of the UAV, and ARMS can well bal-
ance the tradeoff between accuracy of AQI map and battery
consumptions.

APPENDIX

PROOF OF PROPOSITION 1

For βj where j ∈ [1, K + 2], we have
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2
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i=1 1 = 2N > 0, j = K + 2.

(16)

Hence, ∂S/∂βj are all convex functions, with j ∈ [1, K + 2].
As for variable H, the second order partial derivative can
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where C = (Ĉf (�xi, ui) − Cstatic − βK+2 −∑K
j=1 βjgj) and β ′ =

(λ/
√

2π)βK+1(1 − 2Q(L/2σy)). Then we have
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Let ti = exp(−[((zi − H)2)/2σ 2
z ]), each item of the summa-

tion is equivalent to a quadratic function Qi(ti) = ait2i + biti.
Note that ti ∈ (0, 1], and ti = 0 is one zero point of Qi(ti).
To satisfy the proposition that ∂2S/∂H2 always has positive
value, the problem becomes
⎧⎪⎪⎪⎨
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ai = 2β
′2(zi − H)2

u2
i σ

6
z

− β
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bi = C
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∀i ∈ [1, N]

which can be simplified as⎧⎨
⎩

σ 2
z > max

i
2(zi − H)2

σ 2
z > max

i
(zi − H)2.

(17)

We define H ∈ [0, H0], where H0 is the upper bound for
a fine-grained measurement. Hence, by choosing appropriate
diffusion parameter σz as σ 2

z > max{2z2
i , 2H2

0}, we have

∂2S
∂H2

= 2
N∑

i=1

Qi(ti)

= 2
N∑

i=1

(
ait

2
i + biti

)

= 2
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i=1

(
b2

i

4|ai| − |ai|
(

ti + bi

2ai

)2
)

> 0 ∀ti ∈ (0, 1].

Therefore, ∂S/∂H is also a convex function, which indi-
cates that (6) has a minimum as well as a unique value,
correspondingly.
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