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SUMMARY

Anisotropic models are recognized as a more realistic repre-
sentation of the subsurface where complex geological environ-
ment exists. These models are widely needed by all kinds of
migration and interpretation schemes. However, anisotropic
model building is still a challenging problem in the industry.
In this paper, we propose an approach to building anisotropic
models from surface seismic data based on the theory of Wave-
Equation Migration Velocity Analysis (WEMVA). Because
of the ambiguity between depth and δ , we parametrize our
model space using only NMO velocity (Vnmo) and the anel-
lipticity parameter η . We present a synthetic data example
of anisotropic WEMVA applied to the shallow part of the
Hess anisotropic synthetic VTI model. The results show that
anisotropic WEMVA is effective in resolving the anisotropic
perturbation; however, a unique solution to the inversion re-
quires additional constraining information.

INTRODUCTION

Since first reported in exploration seismology in the 1930s
(McCollum and Snell, 1932), anisotropy has become increas-
ingly important in seismic imaging and exploration. Until now,
the transverse isotropic (TI) model has been the most com-
monly used in seismic imaging. Postma (1955) and Helbig
(1956) showed that a sequence of isotropic layers on a scale
much smaller than the wavelength leads to an anisotropic me-
dium. If the layers are horizontal, the medium is defined as
a vertical TI (VTI) medium. A VTI medium is commonly
formed because of the thin bedding during the deposition. If
the layers become dipping during the deformation, a tilted TI
(TTI) medium is formed. Many authors (Shan, 2009; Fletcher
et al., 2009; Zhang and Zhang, 2009; Fei and Liner, 2008) have
developed migration and processing schemes for VTI and TTI
media; however, the challenge of estimating the anisotropy
model remains the bottleneck for the exploration workflow.

The existing anisotropic model-building schemes are mostly
based on measuring the non-hyperbolic moveout along the trav-
eltime curve to flatten the common image gathers (CIG) (Zhou
et al., 2003, 2004; Yuan et al., 2006; Cai et al., 2009). How-
ever, traveltime ray-based methods are prone to errors and un-
realistic results when multi-pathing exists in areas of com-
plex overburden. Hence, we propose to apply Wave-Equation
Migration Velocity Analysis (WEMVA) for anisotropic model
building.

WEMVA has been widely studied in isotropic velocity build-
ing and can be implemented either in the data space (Taran-
tola, 1984; Woodward, 1992) or in the image space (Sava and
Biondi, 2004a,b; Shen, 2004; Shen and Symes, 2008; Guerra
et al., 2009). Several advantages drive us to use the image-
space WEMVA instead of data-space WEMVA (Full-Waveform

Inversion): first, the migrated image is often much cleaner than
the recorded wavefields; second, the objective function is di-
rectly related to the final image. Therefore, we choose to ex-
tend image-space WEMVA from isotropic velocity building to
anisotropic model building.

In this paper, we first generalize the methodology of image-
space WEMVA from an isotropic medium to an anisotropic
medium and explain our parameterization. We show that the-
oretically the gradient of the tomographic objective functional
for an isotropic medium can be modified to describe an anisotropic
medium by simply adding a term for additional parameters.
Finally, we test our inversion scheme on a shallow part of the
Hess anisotropic synthetic dataset.

MIGRATION VELOCITY ANALYSIS FOR ANISOTROPIC
PARAMETERS

Anisotropic MVA is a non-linear inversion process that aims
to find the background anisotropic model that minimizes the
residual field ∆I in the image space. The residual image is
derived from the background image I, which is computed with
current background model. To form the image, both the source
and receiver wavefields are downward continued using the one-
way wave equations in the shot-profile domain. Assuming that
the shear velocity is much smaller than the P-wave velocity,
one way of formulating up-going and down-going one-way
acoustic wave equations for VTI is shown as follows (Shan,
2009): (

∂

∂ z
∓ iΛ

)
P = 0, (1)

where P = P(x,y,z,ω) is the wavefield in the space-frequency
domain and Λ discribes the dispersion relationship in terms of
P-wave vertical slowness s0 and Thomsen parameters ε and δ

(Thomsen, 1986):

Λ = ωs0

√
ω2s2

0 − (1+2ε)|k|2

ω2s2
0 −2(ε −δ )|k|2

, (2)

where k = (kx,ky) is the spatial wavenumber vector.

Many authors (Tsvankin and Thomsen, 1994; Alkhalifah and
Tsvankin, 1995) have shown that P-wave traveltime can be
characterized by the NMO slowness, sn, and the anellipticity
parameter η . Therefore, the one-way wave-equation in terms
of sn, η and δ is:(

1√
1+2δ

∂

∂ z
∓ iΛ′

)
P = 0 (3)

where

Λ
′ = ωsn

√
1− |k|2

ω2s2
n −2η |k|2

. (4)

Notice that in the dispersion relationship in Equation 3, δ and
the derivative in depth ∂

∂ z , are coupled with each other. This
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Anisotropic MVA

is a thoeretical proof of the well-accepted observation that δ

cannot be determined by the surface seismic data. To constrain
this parameter, we need well information to add the depth di-
mension into the inversion.

Now, if we apply the change of variables

dz̄ =
√

1+2δdz (5)

and neglect the derivatives of δ , Equation 3 becomes(
∂

∂ z̄
∓ iΛ′

)
P = 0. (6)

Therefore, we formulate the image-space migration velocity
analysis problem with NMO slowness sn and anisotropic pa-
rameters η and δ , but we invert only for sn and η .

Notice that when η = 0, dispersion relationship ( Equation 4)
is the same as the isotropic dispersion relationship, and the
corresponding one-way wave equation ( Equation 6) is almost
the same as for the isotropic case except for a depth stretch
caused by δ . This is to say an elliptic anisotropic wavefield
inversion is almost equivalent to an isotropic wavefield inver-
sion. Plessix and Rynja (2010) demostrated the same conclu-
sions for full-waveform inversion (FWI). Figure 1 compares
the original NMO velocity to the streched NMO velocity. No-
tice that the geological features are stretched downward for
positive δ . Because we ignore δ in the inversion, we expect
the inverted NMO velocity to be more similar to the stretched
NMO velocity than to the original one.

Figure 1: (a) Original NMO velocity for the anisotropic Hess
model; (b) Stretched NMO velocity according to δ .

In general, the residual image is defined as (Biondi, 2008)

∆I = I−F(I), (7)

where F is a focusing operator. In the least-square sense, the
tomographic objective function can be written as follows:

J =
1
2
||∆I||2 =

1
2
||I−F(I)||2. (8)

To perform MVA for anisotropic parameters, we first need to
extend the tomographic operator from the isotropic medium

(Shen, 2004; Sava, 2004; Guerra et al., 2009) to the anisotropic
medium. We define the wave-equation tomographic operator
T for anisotropic models as follows:

T =
∂ I
∂m

∣∣∣∣
m=m̂

=
∂ I
∂ sn

∣∣∣∣
sn=ŝn

+
∂ I
∂η

∣∣∣∣
η=η̂

(9)

where m is the anisotropy model, which in this case includes
NMO slowness sn and aellipticity parameter η ; m̂ is the back-
ground anisotropy model, consisting of the background NMO
slowness ŝn and background aellipticity η̂ ; and I is the image.

This wave equation tomographic operator T is a linear operator
that relates the model perturbation ∆m to the image perturba-
tion ∆I as follows:

∆I = T∆m. (10)

In the shot-profile domain, both source and receiver wavefields
are downward continued using the one-way wave equation (
Equation 6):{ (

∂

∂ z + iΛ′)D(x,xs) = 0
D(x,y,z = 0,xs) = fsδ (x−xs)

, (11)

and { (
∂

∂ z + iΛ′)U(x,xs) = 0
U(x,y,z = 0,xs) = Q(x,y,z = 0,xs)

, (12)

where D(x,xs) is the source wavefield at the image point x =
(x,y,z) with the source located at xs = (xs,ys,0); U(x,xs) is the
receiver wavefield at the image point x with the source located
at xs; fs is the source signature, and fsδ (x− xs) defines the
point source function at xs, which serves as the boundary con-
dition of Equation 11; and Q(x,y,z = 0,xs) is the recorded shot
gather for the shot located at xs, which serves as the boundary
condition of Equation 12.

The dispersion relationship in Equation 4 can be approximated
with a rational function by Taylor series and Padé expansion
analysis (Shan, 2009):

Λ
′ = ωsn

(
1− a|k|2

ω2s2
n −b|k|2

)
, (13)

where, to the second order, a = 0.5,b = 0.25 + 2η . Equation
13 using binomial expansion can be further expanded to poly-
nomials:

Λ
′ = ωsn −

a
ω2s2

n
|k|2 − ab

ω4s4
n
|k|4. (14)

Now it is trivial to take the derivative of Λ′ with respect to sn
and η .

The background image is computed by applying the cross-
correlation imaging condition:

I(x,h) =
∑

xs

∑
ω

D(x−h,xs)U(x+h,xs), (15)

where the overline stands for complex conjugate, and h =(hx,hy,hz)
is the subsurface half-offset.
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Anisotropic MVA

Perturbing the wavefields in Equation 15 and ignoring the higher-
order term, we can get the perturbed image as follows:

∆I(x,h) =
∑

xs

∑
ω

(
∆D(x−h,xs)Û(x+h,xs)+

D̂(x−h,xs)∆U(x+h,xs)
)

, (16)

where D̂(x−h,xs) and Û(x+h,xs) are the background source
and receiver wavefields computed with the background model
m̂(x); and ∆D(x−h,xs) and ∆U(x + h,xs) are the perturbed
source wavefield and perturbed receiver wavefield, which are
the results of the model perturbation ∆m(x).

To evaluate the adjoint tomographic operator T∗, which maps
from the image perturbation to the model perturbation, we first
compute the wavefield perturbation from the image perturba-
tion using the adjoint imaging condition:

∆D(x,xs) =
∑

h

∆I(x,h)Û(x+h,xs)

∆U(x,xs) =
∑

h

∆I(x,h)D̂(x−h,xs). (17)

The perturbed source and receiver wavefields satisfy the fol-
lowing one-way wave equations, linearized with respect to NMO
slowness and η :{ (

∂

∂ z + iΛ′)∆D(x,xs) =
(
−i ∂Λ′

∂m D̂(x,xs)
)

∆m∗(x)
∆D(x,y,z = 0,xs) = 0

, (18)

and{ (
∂

∂ z + iΛ′)∆U(x,xs) =
(
−i ∂Λ′

∂m Û(x,xs)
)

∆m∗(x)
∆U(x,y,z = 0,xs) = 0

. (19)

where m is the row vector [sn η ].

During the inversion, the model perturbation is unkown, and
in fact must be estimated. Therefore, we obtain the image per-
turbation by applying a focusing operator (Equation 7) to the
current background image. Then the perturbed image is con-
volved with the background wavefields to get the perturbed
wavefields (Equation 17). The scattered wavefields are ob-
tained by applying the adjoint of the one-way wave-equations
18 and 19. Finally, the model-space gradient is obtained by
cross-correlating the upward propagated scattered wavefields
with the modified background wavefields (the terms in the paren-
theses on the right-hand sides of equations 18 and 19).

OBJECTIVE FUNCTION

As mentioned in the previous section, we estimate the opti-
mum earth model by minimizing a user-defined image pertur-
bation. There are many ways to define the objective function.
Here we use the Differential Semblance Optimization (DSO)
method (Shen, 2004) as the criterion:

F(I) = (1−O)I, (20)

where 1 is the identity operator and O is the differential oper-
ator along the angle axes in the ADCIGs. In the subsurface-
offset domain, the objective function (Equation 8) reads:

J =
1
2
||hI(x,h)||2, (21)

where h is the subsurface-offset, and I(x,h) is the image gather
in the subsurface-offset domain. This operator is preferred
by many researchers since it is a fully automated procedure,
with no picking required. However, for isotropic migration ve-
locity analysis, many authors (Vyas and Tang, 2010; Fei and
Williamson, 2010) observe undesired artifacts generated by the
DSO operator and suggest that a differential operator along h
can help compensate for the phaseshift caused by the velocity
perturbation. Therefore, we use the modified DSO operator as
follows:

J =
1
2
||hDI(x,h)||2, (22)

where D is a differential operator in h. Taking the derivative in
the subsurface offset domain is equivalent to an α weighting
in the angle domain. Therefore, the objective function (Equa-
tion 22) also emphasizes the contribution of the large angle
information, which is crucial for velocity analysis.

To regularize the inversion, we smooth the gradient using B-
spline operator. The smoothed gradient is formulated as:

ĝ = BB∗g, (23)

where g and ĝ are the original and the smoothed gradient, re-
spectively; B is the B-spline projection operator. Then the
spacing of the B-spline nodes controls the smoothness of the
model update. Practically, we can choose different B-spline
parameters for velocity and η .

NUMERICAL TEST

We test our inversion scheme on the shallow part of the Hess
synthetic anisotropic model, as denoted by the gray square in
Figure 1. The initial model is a 1D gradient isotropic model
from the seabed. Figure 2 compares the inversion results with
the true models. The ratio of intial velocity and inverted veloc-
ity over the true stretched NMO velocity are shown in Figure
2(a) and 2(b), respectively. The inversion successfully reduces
the error in velocity from 20% to less than 5%. Notice that the
error in velocity generally follows the dip in the image. This
suggests that we should use better smoothing operators such
as dip filters (Hale, 2007) or steering filters (Clapp, 2000) to
regularize the inversion.

On the other hand, the η update (Figure 2(d)) is in general
larger than the true η model (Figure 2(c)). A trade-off is ob-
served at depth of 1200m, where the inverted velocity is lower
but η is much bigger than the true. This result illustrates the
null space of our inversion problem since the reflector around
1200m is well-focused in the inverted image (Figure 3(b)). The
higher value of η and the higher velocity in the deeper part of
the model explain the smiling event in the subsurface-offset
image at depth of 2300m in Figure 3(b). This problem can
probably be resolved by increasing the angle coverage at depth
and allowing more iterations in the inversion.
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Anisotropic MVA

Figure 3 compares the subsurface-offset images using the ini-
tial model (a), the updated model (b) and the true model (c).
After the inversion, the reflectors are focused at zero subsurface-
offset, and the depths of the reflectors are closer to the true
depths. However, due to the insufficient angle coverage at
depth, both the velocity and η are inaccurate. Therefore, the
deepest reflector is not perfectly focused in the subsurface-
offset domain.
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Figure 2: (a) Ratio of initial velocity over true velocity; (b)
Ratio of inverted velocity over true velocity; (c) True η model;
(d) Inverted η model.

CONCLUSION AND DISCUSSION

We have presented a new methodology for performing image-
domain migration velocity analysis in anisotropic media. Our
method is a natural extension of isotropic MVA theory and re-
tains the same properties as the isotropic MVA. We demostrate
our method on a 2-D synthetic data set. After inversion, we ob-
tain better-focused subsurface-offset images and better-defined
depths. By including the geological information and the wider-
offset data, we should be able to eliminate the model error at
depth.

Experience shows that the DSO operator has a layer-stripping
effect during the iterations. One cause of this effect is the un-
balanced amplitude for the reflectors in depth. Therefore, an
illumination-corrected image is preferred to compensate for
this effect. On the other hand, a residual-moveout-based ob-
jective function (Sava, 2004; Sava and Biondi, 2004a,b) could
avoid the problem.

Compared with ray-based image-space model-building meth-
ods, our wavefield-based image-space method is computation-
ally more intensive. However, the wavefield method better ap-
proximates wave propagation in complex areas. We can also
utilize the phase-encoded target-oriented image-space wave-
field tomography technique to reduce the computational cost.
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Figure 3: Subsurface offset images using the initial model (a),
the updated model (b) and the true model (c).

Finally, by introducing another parameter η into the MVA in-
version, we now have a larger model space and hence a larger
null space with respect to the same data. Therefore, the surface
reflection seismic data is inadequate for resolving a unique
earth model. Other information, such as borehole measure-
ment, geological interpretation, and rock physics prior knowl-
edge (Li et al., 2011), is necessary to obtain a consistent, unique
and reliable earth model.
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