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The Michaelis–Menten (MM) fundamental formula describes how
the rate of enzyme catalysis depends on substrate concentration.
The familiar hyperbolic relationship was derived by timescale sep-
aration for a network of three reactions. The same formula has
subsequently been found to describe steady-state input–output
responses in many biological contexts, including single-molecule
enzyme kinetics, gene regulation, transcription, translation, and
force generation. Previous attempts to explain its ubiquity have
been limited to networks with regular structure or simplify-
ing parametric assumptions. Here, we exploit the graph-based
linear framework for timescale separation to derive general
structural conditions under which the MM formula arises. The
conditions require a partition of the graph into two parts, akin
to a “coarse graining” into the original MM graph, and con-
straints on where and how the input variable occurs. Other
features of the graph, including the numerical values of param-
eters, can remain arbitrary, thereby explaining the formula’s
ubiquity. For systems at thermodynamic equilibrium, we derive
a necessary and sufficient condition. For systems away from
thermodynamic equilibrium, especially those with irreversible
reactions, distinct structural conditions arise and a general charac-
terization remains open. Nevertheless, our results accommodate,
in much greater generality, all examples known to us in the
literature.

Michaelis–Menten formula | input–output response | linear framework |
complex network | nonequilibrium

The Michaelis–Menten (MM) formula may be expressed as

f (x )=
Ax

B + x

, [1]

where x is the input, f (x ) is the steady-state output, and A,B
are constants (i.e., they are independent of x ) which are positive
and depend on the system under study. Leonor Michaelis and
Maud Menten introduced Eq. 1 in their foundational work on
enzyme kinetics (1, 2). They derived the formula for a network
of three reactions (Fig. 1A) in which an enzyme, E , catalyzes
the conversion of substrate, S , to product, P . Their derivation
relied on assuming a timescale separation in which the inter-
mediate enzyme–substrate complex, ES , is a “fast” component,
which reaches steady state rapidly in comparison with the “slow”
components, S and P . Irving Langmuir independently derived
the same formula to describe adsorption onto a planar surface
(3) and the right-hand side of Eq. 1 is sometimes referred to as
the “Langmuir isotherm.”

It has been appreciated gradually that Eq. 1 holds in far greater
generality than the simple contexts considered by Michaelis and
Menten and Langmuir. Table 1 summarizes the broad range of
contexts known to us in which Eq. 1 has been found. These exam-
ples suggest a ubiquity in the MM formula, which transcends
the variety of contexts, molecular components, and mechanisms
under which it arises. It is this ubiquity which the present paper
seeks to explain. Similar ubiquity has been explored for the
empirical observation of sigmoidal input–output responses (4).

Here, we seek answers in the architecture of the underlying
molecular mechanisms, rather than the statistics of measure-
ment and information. Our results encompass, in substantial
generality, all of the examples in Table 1.

Several theoretical studies have attempted to identify appro-
priate regimes in which the MM formula appears (7–13, 30–36).
Such studies have largely relied on simplifying assumptions,
such as symmetric or regular networks (7, 11–13, 30, 35, 36)
or restriction to networks in which the steady state is one of
thermodynamic equilibrium (12, 13). Numerical studies have
suggested that the MM formula generally does not arise away
from equilibrium (37–40).

We approach the problem using the graph-based “lin-
ear framework” for timescale separation. The framework is
described in refs. 41 and 42, applied to biological problems in
refs. 43–46, and reviewed in ref. 47. We briefly describe its salient
features here, with more details below.

In the linear framework, both macroscopic, deterministic sys-
tems, such as enzymes in well-mixed compartments, and micro-
scopic, stochastic systems, such as individual molecular motors,
can be described in the same way, by a graph (Fig. 1B). The
vertices usually represent fast components or states, which are
assumed to reach steady state under a timescale separation. The
directed edges represent reactions between components or tran-
sitions between states. The influence of the slow components
is incorporated into the edge labels, which specify the reaction
rates.

Such a graph yields a linear differential equation for the con-
centrations or probabilities of the vertices. In the stochastic
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Fig. 1. MM network and graph. (A) Enzyme E catalyzes formation of prod-
uct P from substrate S through the intermediate enzyme–substrate complex
ES, with the indicated rate constants for mass-action kinetics. (B) Corre-
sponding linear framework graph. The vertices are the fast components in
the timescale separation, E and ES, with the slow component, S, appearing
in the edge label. The colors refer to Fig. 2.

context, this is the master equation of the underlying Markov
process. The linear dynamics gives the framework its name
and is common to all applications but the slow components
in the labels, which introduce nonlinearities, are dealt with in
ways that depend on the context. Here, we assume that slow
components are effectively constant over the timescale of the
fast dynamics. Under this timescale separation, the dynamical
equation reaches a steady state, which can be expressed alge-
braically in terms of the edge labels, without having to know
in advance the numerical values of parameters or eigenval-
ues. This holds in generality for any graph (42) although we
are concerned here with graphs for which the steady state is
essentially unique (below). If the steady state is at thermo-
dynamic equilibrium, the resulting expressions are equivalent

to those of equilibrium statistical mechanics. Importantly, they
remain valid away from equilibrium (48, 49), which permits
a unified approach. The steady-state output response can be
described in terms of these expressions as a rational function
of the input variable (Eq. 2). The results below give condi-
tions under which this rational function assumes the simple form
in Eq. 1.

The conditions we find relate to whether the graph can be
“split” into two subgraphs and where the input variable occurs
with respect to this partition. They leave many other details
unspecified, which explains the ubiquity of the MM formula and
its independence from underlying mechanistic details.

Results
Linear Framework. We introduce here some notation and termi-
nology; for full details and more background, see SI Appendix,
section S1 and refs. 41, 42, 44, and 45. We consider finite di-
rected graphs with labeled edges and no self-loops (hereafter,
“graphs”). As noted above, vertices typically represent fast com-
ponents or states, edges represent reactions or transitions, and
labels represent rates, with units of (time)�1. The labels may
include contributions from slow components that are not rep-
resented by vertices but interact with them (Fig. 1B). We assume
that all graphs are connected, so that they cannot be decom-
posed into parts between which there are no edges. Vertices are

Table 1. Contexts in which the MM formula or Langmuir isotherm (Eq. 1) arises

Context Formula Input Output Ref(s).*

Adsorption ✓1 = ↵µ
v1 +↵µ Adsorbate concentration, µ Fractional adsorption, ✓1 (3)

Bulk enzyme catalysis V =
[S]

[S] + k Substrate concentration, [S] Product production rate, V (1, 5, 6)

Single-molecule catalysis 1
hti =

�2[S]
[S] +CM

Substrate concentration, [S] Turnover rate, 1/hti, where hti is (7, 5, 8–14)
mean turnover time

Transcription v =
Vmax[NTP]
KM + [NTP] NTP concentration, [NTP] Pause-free velocity, v (15, 16)

Translation hti= 1
Vmax

+ KM
Vmax

1
[tRNA]

Aminoacyl tRNA Average dwell time, hti (17–19)

concentration, [tRNA]

Linear motor v =
!f!h

!f +!h +!s
!h, proportional to ATP Average velocity, v (20–24)

concentration

Rotary motor V =
Vmax[ATP]
[ATP] +KM

ATP concentration, [ATP] Mean angular velocity, V (25–27)

Chemotaxis phosphorylation v =
kS

cat[E]tot[S]
KS

m + [S]
ATP concentration, [S] Phosphorylation rate, v (28)

Chromatin remodeling [ADP](t)= Vmax[D]t
KM + [D]

Base pair concentration, [D] ADP concentration at time t, (29)

[ADP](t)

SI Appendix, Table S1 provides more details and explains which of our results applies to which reference.
*The first reference for each entry uses the formula shown.
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denoted by indexes 1, . . . ,N , and an edge from i to j by i ! j .
To specify the label, we write i

a! j or `(i ! j )= a .
The graphs considered here are strongly connected. This

means that, given any two distinct vertices, i , j , there is a path
of edges directed from i to j : i = i1 ! i2 ! · · ·! ip�1 ! ip = j .
For a strongly connected graph, the linear dynamics described
above has a unique steady state, up to a scalar multiple. If the
steady-state concentration or probability of vertex i is denoted
by u

⇤
i , then the linear framework provides an expression for u

⇤
i

in terms of the edge labels. If x denotes the concentration of the
input variable (x = [S ] in Fig. 1B), then u

⇤
i is a rational function

of x , or a ratio of polynomials,

u

⇤
i

u

tot

=
a0 + a1x + · · ·+ akx

k

b0 + b1x + · · ·+ bnx
n
. [2]

Here, ai , bi are nonnegative coefficients which depend on the
parameters other than x in the edge labels, k n and u

tot

is
the total concentration of all vertices (u

tot

=1 if u

⇤ denotes
probability).

A steady state, u

⇤, is one of thermodynamic equilibrium
when detailed balance is satisfied. This means that the graph
is reversible, so that, if i ! j , then also j ! i , and each pair of
reversible edges is independently in flux balance, so that `(i !
j )u⇤

i = `(j ! i)u⇤
j . In this case, the ratio of edge labels, denoted

(i ! j )= `(i ! j )/`(j ! i), becomes the salient parameter and
can be interpreted in terms of the free energy difference between
states i and j . Eq. 2 is then seen to correspond to the prescription
of equilibrium statistical mechanics, with the denominator being
the partition function. As noted above, however, Eq. 2 contin-
ues to hold away from equilibrium, providing thereby a form of
nonequilibrium statistical mechanics.

If a reversible graph forms a tree, with no proper cycles of
reversible edges (i.e., cycles with at least three vertices), then it
always satisfies detailed balance. Free energy may be dissipated
in some reactions but there is no entropy production because that
arises only from proper cycles (49).

For the results below, we consider the input–output response
of a graph to be the steady-state concentration or probability of
a specific vertex, u⇤

i , as given by Eq. 2. In some applications the
output is a property like an inverse mean first passage time of
a Markov process, which can be identified with a steady-state
output flux from an appropriate vertex, ku⇤

i , with k being some
rate (50). The output may also be a sum of the form,

P
j kju

⇤
j ,

over suitable vertices j . To show that this satisfies the MM for-
mula, it is sufficient to show that each u

⇤
j does so and that the

denominator in Eq. 1 is the same for all j . This will emerge from
the arguments below and we leave it to the reader to draw the
appropriate conclusion for the particular context.

Partitions and Splitting. We introduce here the concepts needed
for the main results. Given a graph G , with vertices forming
the set ⌫(G), a partition of G is a pair of subgraphs whose ver-
tex subsets V0, V1 form a nontrivial disjoint partition of ⌫(G):
V0,V1 6= ;, V0 [V1 = ⌫(G), and V0 \V1 = ; (Fig. 2). An edge
i ! j is splitting for a partition if its source and target vertices lie
in different subgraphs; it splits V0 from V1 if i 2V0 and j 2V1

and it splits V1 from V0 if i 2V1 and j 2V0. A partition is analo-
gous to a “coarse graining” into the original MM graph in Fig. 1B,
with V0 and V1 corresponding to vertices E and ES , respectively.

In the examples summarized in Table 1, edge labels are usu-
ally simple expressions, such as ax or b, where a and b are
constants independent of x . However, more complicated expres-
sions in x can arise in the linear framework (43, 44, 51), so it
may be helpful to allow for greater generality. A quantity, �,
such as an edge label or a ratio of edge labels, is said to be a
monomial in x if �= ax

d , where d 2R and a does not depend

Fig. 2. Partitions and splitting. A partition is shown schematically, with a
graph made up of two disjoint subgraphs, V0 (white) and V1 (gray), whose
individual structures can be arbitrary, as suggested by the “cloud” outlines,
with magenta edges splitting V0 from V1, blue edges splitting V1 from V0,
and labels omitted for clarity.

on x . The degree of a monomial is the corresponding expo-
nent of x : deg�= d . Monomials often have integer degrees,
d 2Z, but the added generality of d 2R may also be useful.
The product or ratio of monomials is also a monomial, with
deg (�1�2)= deg (�1)+ deg (�2) and deg��1 =�deg�.

MM at Thermodynamic Equilibrium. We first consider the case
when a graph G is at thermodynamic equilibrium, so that it
is reversible. We say that G has monomial ratios if (i ! j )
is a monomial in x for all edges i ! j . This allows complexity
in the individual labels, as long as it cancels out in the ratio:
If `(i ! j )= x

p
f (x ) and `(j ! i)= x

q
f (x ), for any f (x ), then

i ! j has a monomial ratio and deg(i ! j )= p� q . We use the
notation X \Y for the complement of Y in X , or those elements
of X which are not in Y , X \Y = {i 2X , i 62Y }.

Proposition 1. Let G be a reversible graph with monomial ratios

at thermodynamic equilibrium. If G is partitioned by V0 and V1

so that deg(i ! j )= 1 for all edges splitting V0 from V1 and

deg(i ! j )= 0 for all nonsplitting edges, then all vertices in V1

satisfy the MM formula. Conversely, if some vertex satisfies the

MM formula and V1 ✓ ⌫(G) consists of all such vertices, then

V0 = ⌫(G)\V1 and V1 form a partition of G for which deg(i !
j ) has the same properties. In either direction, all vertices with the

MM formula have the same denominator.
Proofs of Proposition 1 and other results below are in SI

Appendix, sections S2–S6. The partition shown in Fig. 2 falls
under Proposition 1 provided the graph is reversible and sat-
isfies detailed balance and the only label ratios with x are on
the splitting edges, with the magenta edges having degree 1 and
the blue edges correspondingly having degree −1. The coarse-
graining analogy described above becomes closer here, with x =
[S ] appearing only in the labels on edges from V0 to V1, just as in
Fig. 1B.

Sequence graphs, which consist of a series of vertices with
nearest neighbors joined by reversible edges, as in Fig. 3A, have
been used to model enzyme kinetics (5, 8–10, 52), gene regu-
lation (16), and molecular motors (8, 25, 26). Since sequence
graphs are trees, they satisfy detailed balance, as noted above,
and can be considered to be at thermodynamic equilibrium. In
the cited applications, the partitions break the sequence into two
adjoining parts (Fig. 3A) and the requirements on the degrees
of the label ratios conform to Proposition 1, from which the MM
formula arises.

Several authors have independently shown that the MM for-
mula arises for two sequence graphs connected in parallel (Fig.
3B), in the regime in which thermodynamic equilibrium holds
(7, 11–13, 27). The application has mainly been to single-
molecule enzyme kinetics, with the vertices along the sequences
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Fig. 3. Graph structures for application examples, showing partitions into
V0 (white box) and V1 (gray box), with the splitting edges in magenta
and blue and labels omitted for clarity. In the applications cited in the
text, the input variable occurs to degree 1 in the labels on magenta edges
and nowhere else, although our results offer greater generality. Dashed
edges indicate potential intervening vertices. (A) A sequence graph, as
used in refs. 8, 16, and 52, to which Proposition 1 applies. (B) Parallel
sequences provide a model of single-molecule enzyme kinetics, as explained
in the text and used in refs. 7 and 11–14. If thermodynamic equilibrium is
assumed, Proposition 1 applies. Away from equilibrium, additional paramet-
ric assumptions give rise to the graphs shown in C–F (SI Appendix, Table S1
and Fig. S2.) Proposition 2 applies to C and D, Proposition 3 applies to E, and
Proposition 4 applies to F.

representing different enzyme and enzyme–substrate conforma-
tions (Fig. 1B). In this case, the input variable is found only on
the magenta edges. Accordingly, these derivations of the MM
formula at equilibrium follow from Proposition 1, with V0 and
V1 being the two sequence subgraphs.

MM Away from Equilibrium, with Reversible Edges. We now con-
sider a reversible graph, G , which may not be at thermodynamic
equilibrium. We say that G has monomial labels if, for each edge
i ! j , `(i ! j ) is a monomial in x . This is more restrictive than
the monomial ratios required for Proposition 1. We say that G
is x -acyclic if no label in any proper cycle of edges depends on
x , so that deg `(i ! j )= 0 if i ! j lies on a proper cycle. This
constraint implies that if an edge on which x occurs is removed, the
graph becomes nonstrongly connected. This leads to the kind of
structure depicted in Fig. 4A, in which the edges with x in their
labels (blue or magenta) link subgraphs through a subtree, with
the subgraphs being arbitrarily complicated. As mentioned above,
entropyproductiontakesplaceoncycles, sobeingx -acyclic implies
thatthevariablex doesnotcontributetoentropyproductionwithin
the graph. With these restrictions, the MM formula arises under
the same conditions as in Proposition 1.

Proposition 2. Let G be a reversible graph with monomial labels

that is x -acyclic. If G is partitioned by V0 and V1 so that deg(i !
j )= 1 for all edges splitting V0 from V1 and deg(i ! j )= 0 for

all nonsplitting edges, then all vertices in V1 satisfy the MM formula.
Conversely, if some vertex satisfies the MM formula and V1 ✓ ⌫(G)
consists of all such vertices, then V0 = ⌫(G)\V1 and V1 form a

partition of G for which deg(i ! j ) has the same properties. In

either direction, all vertices with the MM formula have the same

denominator.
As noted above, the parallel sequence graph in Fig. 3B has

been used to model enzyme catalysis at the single-molecule level.

If the graph is at thermodynamic equilibrium and the input
variable occurs only on the magenta edges, then the graph sat-
isfies the conditions of Proposition 1. When the graph is away
from equilibrium, it cannot satisfy the conditions of Proposition

2 because it is not x -acyclic. However, parametric regimes have
been identified in which the MM formula does emerge away
from equilibrium (7, 11, 14). In these regimes, the bound, or
the unbound, enzyme changes conformations very slowly, giving
rise to the graphs in Fig. 3 C and D, respectively (SI Appendix,
Table S1 and Fig. S2). These graphs are both x -acyclic and the
emergence of the MM formula follows from Proposition 2.

MM Away from Equilibrium, with Irreversible Edges. In many appli-
cations in which a system is away from thermodynamic equilib-
rium, certain reactions or transitions are treated as effectively
irreversible. If the corresponding graph acquires an irreversible
edge, it would not fall under the scope of either Proposition 1 or
Proposition 2. The emergence of the MM formula now becomes
much more delicate and, in contrast to the results above, we
can identify only certain sufficient conditions. A restrictive case,
which nonetheless applies to some examples (8, 15, 21, 29), is
relegated to SI Appendix, Proposition S1.

Proposition 3. Let G be a strongly connected graph with monomial

labels. If G is partitioned into V0 and V1 so that deg `(i ! j )= 1
for all edges with i 2V0 and deg `(i ! j )= 0 for all edges with i 2
V1, then all vertices in V1 satisfy the MM formula with the same

denominator.
Fig. 4B shows the kind of graph structure to which Proposition

3 applies, with the x -containing labels only on the magenta edges.
In contrast to Proposition 2, the x -containing labels may be on
proper cycles but are now required to be present on, and only
on, the outgoing edges from any vertex in V0.

A

B C

Fig. 4. Graphs and partitions illustrating the generality of Propositions 2–
4. Reversibility is indicated by two-headed arrows and labels are omitted
for clarity. (A) Reversible graph structure to which Proposition 2 applies.
The input variable x occurs only on the magenta or blue edges, which
are splitting for the partition and which also lie on a subtree, so that
removal of such an edge leads to loss of strong connectivity. (B) Graph
structure to which Proposition 3 applies. Here, x occurs only on the out-
going edges from vertices in V0, which are colored magenta. (C) Graph
structure to which Proposition 4 applies. The single vertex in V1 is a
sink and the labels on the edges to the sink (magenta) and from the
sink (blue) are monomial labels, constrained as stated in Proposition 4,
while the labels on all other edges (black) may be arbitrary algebraic
expressions in x.
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In single-molecule enzyme studies, one of the nonequilibrium
parametric regimes in which the MM formula emerges gives rise
to a graph like that in Fig. 3E, which satisfies the conditions of
Proposition 3 with V0 being only a single vertex. In this applica-
tion, the conformational fluctuations of the unbound enzyme are
assumed to be extremely fast, so that there is effectively only a
single conformation corresponding to the single vertex in V0, and
substrate binding induces slower conformational fluctuations (SI

Appendix, Table S1 and Fig. S2) (7, 11, 14). Graphs satisfying the
conditions of Proposition 3 have also arisen in four other appli-
cations. First, modified versions of the sequence graph in Fig.
3A have been used to model enzyme kinetics both macroscopi-
cally (6) and at the single-molecule level (8–10). Here, V0 is a
single vertex corresponding to the unbound enzyme and there
are multiple bound enzyme conformations which change or fluc-
tuate along a sequence, from which irreversible transitions can
return to the single vertex in V0. Second, they have been used
in studies of the ribosome (17–19), in which the MM formula
was found for the average ribosome velocity as a function of
aminoacyl tRNA concentration. Here, V0 is a single vertex corre-
sponding to the bare ribosome conformation and tRNA binding
gives irreversible outgoing edges from this vertex. Third, they
have been used in studies of molecular motors, where the MM
formula was found for the velocity of a molecular motor as a
function of ATP concentration (20–24). Here, the vertices in
V0 correspond to motors with ATP hydrolysis giving outgoing
edges from these vertices. Fourth, they have been used to study
regulation in bacterial chemotaxis, where the MM formula was
found for the phosphorylation rate of the histidine kinase CheA
as a function of ATP concentration (28). Here, V0 is a single
vertex corresponding to the free kinase and ATP binding gives
outgoing edges from this vertex. In all these studies, the emer-
gence of the MM formula follows from Proposition 3, although
none of them have exploited the generality it offers, as suggested
in Fig. 4B.

Our final result requires one more concept: A vertex j is a
sink if there exists an incoming edge i ! j , from all other vertices
i in G .

Proposition 4. Let G be a strongly connected graph that is parti-

tioned by V0 and V1 = {j}, with V1 containing only a single vertex,
j , which is a sink. Suppose that all edges to and from j have mono-

mial labels for which deg `(i ! j )= d and deg `(j ! i)= d � 1
and that, furthermore, `(i ! j ) does not depend on i . Then u

⇤
j

satisfies the MM formula.
No restriction is placed on the labels of edges other than those

to and from the sink vertex. Fig. 4C shows the kind of graph
structure that satisfies Proposition 4. In studies of single-molecule
enzyme kinetics, another parameter regime was identified in
which the MM formula arises (7, 11, 14). Here, the confor-
mational fluctuations of the bound enzyme are assumed to be
extremely fast, so that there is effectively only a single confor-
mation, and the on-rates for substrate binding are assumed to
be independent of the unbound conformation, giving rise to the
graph in Fig. 3F (SI Appendix, Table S1 and Fig. S2). These are
exactly the assumptions required for Proposition 4, with the sink
vertex being the unique bound conformation.

Discussion
The MM formula has been found to arise under timescale sep-
aration in a surprising variety of biological contexts (Table 1).
Previous attempts to explain its ubiquity have largely focused on
regular networks, such as the parallel sequence network in Fig.
3B, and identification of specific parameter regimes. In contrast,
our approach considers general graphs and gives conditions in
terms of graph structure and the location of the input variable
(Propositions 1–4 and SI Appendix, Proposition S1). Most other

details—the sizes and topologies of subgraphs, the arrangements
of vertices and edges, and the numerical values of labels—prove
to be irrelevant to the algebraic nature of the MM formula
(Fig. 4). Instead, these details influence the quantities A and B

in Eq. 1.
Our results provide a series of rules for determining whether

or not the MM formula arises. If a graph is at thermodynamic
equilibrium, then the MM formula holds, if, and only if, there is
a partition of the graph for which the input variable, x , is found
in the label ratios only on splitting edges in one direction and
only to degree 1, as described in Proposition 1. This is analo-
gous to a coarse graining into the original MM graph in Fig.
1B. If the graph is not at thermodynamic equilibrium but is still
reversible, then it is important to check whether x occurs in a
label on any proper cycle. If not, then the MM formula holds if,
and only if, the same coarse graining can be found as at equilib-
rium, as described in Proposition 2. If the graph is not x -acyclic
or if it has irreversible edges, then the situation is more subtle.
The MM formula holds if one of the special structural conditions
in Proposition 3, Proposition 4, or SI Appendix, Proposition S1 is
satisfied.

Eq. 2 offers a way to understand how the MM formula arises.
Recall that the denominator of this rational function general-
izes the partition function of equilibrium statistical mechanics.
In Proposition 1 and SI Appendix, Proposition S1, the partition
function takes the restricted form b0 + b1x while the numer-
ator is a1x (SI Appendix, Proposition S1 and sections S2 and
S6), from which MM formula follows easily. In Propositions 2

and 3, the partition function takes the form bn�1x
n�1 + bnx

n ,
while the numerator is anx

n (SI Appendix, sections S3 and S4).
Here, n is related to the structure of the graph. The MM for-
mula follows by canceling x

n�1 in the ratio. In Proposition 4, the
partition function factorizes as p(x )(c+ dx ), with the numera-
tor being p(x )ax , where p(x ) is a polynomial in x (SI Appendix,
section S5). The MM formula arises by canceling p(x ) in the
ratio. The subtlety away from thermodynamic equilibrium is that
the partition function can factorize in this way, which is partic-
ularly challenging to analyze; Proposition 4 is the most difficult
of our results, despite the restrictive assumption of a single
sink vertex. SI Appendix, section S7 and Fig. S1 gives further
examples in which nontrivial factorizations of the partition func-
tion occur, which are not covered by Propositions 1–4 and SI

Appendix, Proposition S1. It remains an interesting open prob-
lem to fully characterize those graphs which give rise to the MM
formula.

Eq. 2 tells us that the input–output response of a graph-
based system is a rational function of x . Propositions 1–4 and
SI Appendix, Proposition S1 provide conditions under which this
rational function takes its simplest form. Conditions can also
be found which more broadly constrain the algebraic complex-
ity of a response function (45, 46). A general advantage of the
graph-based linear framework that we have exploited here is
that it does not depend on numerical calculations or simula-
tions, which require all details of the system to be specified and
parameter values to be estimated. It focuses instead on the topo-
logical features of the graph, thereby rising above many of the
mechanistic details. This capability is particularly well suited to
analyzing biomolecular systems, in which many of the details may
be obscure or unavailable, and it seems likely that more results
of this kind remain to be uncovered.

Materials and Methods
Detailed proofs of Propositions 1–4 and SI Appendix, Proposition S1
and examples falling outside the scope of these results are given in SI
Appendix, sections S2–S7 and Fig. S1.
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In this Supporting Information, we first provide background
on the linear framework and then restate and give full proofs
of Props. 1-4 from the main text. We also state and prove
Prop. S1, which covers a restricted case and give examples
falling outside the scope of our results. Finally, Table S1 lists
applications in which the Michaelis-Menten formula arises and
explains how each of these follows from our results. This
tabulation covers all examples known to us with the exception
of [1], which is based on a continuum treatment. Concepts
and notation are taken from the main text, which should be
consulted for more details.

1. Calculating steady states in the linear framework

Further information about the linear framework is available
in [2–6]. Given a labelled, directed graph, as described in the
main text, if each edge is treated as a chemical reaction under
mass-action kinetics, with the label as the rate, then, because
an edge has only a single source vertex, the resulting dynamics
is linear and can be described in matrix form by,

du

dt

= L(G)u . [S1]

Here, G is the graph, u is a vector of component concentrations
or state probabilities and L(G) is the Laplacian matrix of
G. This matrix can be thought of as a discrete version of
the Laplacian operator [7], so that Eq. S1 is like a discretised
di�usion equation. As noted in the main text, in the stochastic
setting, Eq. S1 is the master equation, or Kolmogorov forward
equation, of the underlying Markov process. Since material
is only moved between vertices, there is a conservation law,q

i

u

i

(t) = u

tot

, with u

tot

= 1 in the stochastic setting.
Calculating steady states of Eq. S1 hinges on two results.

First, if G is strongly connected, then there is a unique steady
state up to a scalar multiple. Second, if G is strongly connected,
a representative steady state, fl(G), is given by the Matrix-
Tree Theorem (MTT). To state this, let �

i

(G) denote the set
of spanning trees rooted at i (Fig. S1). A spanning tree is a
subgraph of G which includes each vertex of G (spanning) and
has no cycles when edge directions are ignored (tree). It is
rooted at i if i has no outgoing edges in the tree. A subgraph is
a rooted spanning tree if, and only if, there is a unique directed
path to the root from any other vertex. A strongly-connected
graph has at least one spanning tree rooted at each vertex. If
X is any subgraph of G, such as a spanning tree, let q(X) be
the product of all its labels, q(X) =

r
j

a
ækœX

a. The MTT
states that

fl

i

(G) =
ÿ

T œ�i(G)

q(T ) [S2]

is a steady state of Eq. S1, so that L(G)fl(G) = 0.

If G is strongly connected, then any steady state, u

ú, sat-
isfies u

ú = ⁄fl(G) for some scalar ⁄. It follows from the
conservation law that

u

ú
i

=
3

fl

i

(G)
fl1(G) + · · · + fl

N

(G)

4
u

tot

. [S3]

By following this prescription, Eq. 1 in the main text is easily
derived from Fig. 1B in the main text: fl

E

= k≠1 + k2, fl

ES

=
k1x, where x = [S] is the input variable, so that A = (k2u

tot

)
and B = (k≠1 + k2)/k1, with u

tot

being the total amount of
enzyme.

If a graph is reversible, there is a mapping between the
spanning trees rooted at any two vertices, �

i,j

: �
i

(G) æ
�

j

(G), defined as follows. Let T œ �
i

(G). Choose the unique
path in T from j to the root i and reverse all its edges. This
gives a spanning tree rooted at j, �

i,j

(T ) œ �
j

(G), for which
Lemma 1. �

i,j

is a bijection and �≠1
i,j

= �
j,i

.
If a steady state, u

ú, is one of thermodynamic equilibrium,
so that detailed balance holds, then, as explained in the main
text, the graph must be reversible and each pair of reversible
edges is independently in flux balance, with ¸(i æ j)uú

i

=
¸(j æ i)uú

j

. Eq. S2 then simplifies dramatically. Choose any
path of reversible edges from a reference vertex, taken by
convention to be vertex 1, to vertex i, 1 = i1 � i2 � · · · �
i

p

= i, and let µ

i

(G) be the product of the label ratios along
the path,

µ

i

(G) =
p≠1Ÿ

k=1

Ÿ(i
k

æ i

k+1) . [S4]

It is a consequence of detailed balance that µ

i

(G) does not
depend on the choice of path from 1 to i. Indeed, detailed
balance is equivalent to the cycle condition, which states that,
for any cycle of reversible edges in G, the product of labels
going clockwise around the cycle equals the product going
counterclockwise. The independence of µ

i

(G) from the chosen
path follows immediately. Accordingly, if T œ �

i

(G), then by
taking the unique path in T from 1 to i, we see that q(T ) =
µ

i

(G)q(�
i,1(T )). Summing over all T œ �

i

(G) and using
Lemma 1, it follows from Eq. S2 that fl

i

(G) = µ

i

(G)fl1(G), so
that fl(G) is a scalar multiple of µ(G). Eq. S3 then simplifies,
with µ(G) taking the place of fl(G). Since Ÿ(i æ j) can be
interpreted in terms of the free energy di�erence between
i and j, this corresponds to the prescription of equilibrium
statistical mechanics and the denominator of Eq. S3 becomes
the partition function (for the grand canonical ensemble under
our assumptions regarding the “slow” components). Note,
however, that Eq. S3 also holds away from equilibrium, so its
denominator provides a nonequilibrium partition function.

1To whom correspondence should be addressed. E-mail: jeremy@hms.harvard.edu
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2. Proof of Proposition 1

Proposition 1. Let G be a reversible graph with monomial
ratios at thermodynamic equilibrium. If G is partitioned by
V0 and V1 so that deg Ÿ(i æ j) = 1 for all edges splitting V0
from V1 and deg Ÿ(i æ j) = 0 for all non-splitting edges, then
all vertices in V1 satisfy the MM formula. Conversely, if some
vertex satisfies the MM formula and V1 ™ ‹(G) consists of all
such vertices, then V0 = ‹(G)\V1 and V1 form a partition of
G for which deg Ÿ(i æ j) has the same properties. In either
direction, all vertices with the MM formula have the same
denominator.
Proof. Let i be any vertex in the graph and consider any path
of reversible edges from 1 to i, 1 = i1 � i2 � · · · � i

p

= i, as
for Eq. S4. By hypothesis and Eq. S4, the quantity µ

i

(G) is a
monomial in x. Its degree can be calculated as follows. Recall
that, by convention, 1 œ V0. If i œ V0, then, since the path
must return to V0, if there is a reversible edge, i

j

� i

j+1, in
which i

j

æ i

j+1 separates V0 from V1, then it must eventually
be followed by a reversible edge i

k

� i

k+1 in which i

k

æ i

k+1
separates V1 from V0. By hypothesis, deg(Ÿ(i

j

æ i

j+1)) = 1
and deg(Ÿ(i

k

æ i

k+1)) = ≠1, so that the contribution of x

cancels in Eq. S4. Hence, deg(µ
i

(G)) = 0. If i œ V1, a similar
argument shows that deg(µ

i

(G)) = 1.
Now recall from §1 that the representative steady state,

fl(G), as given by the Matrix-Tree Theorem (Eq. S2), satisfies
fl(G) = µ(G)fl1(G). Hence, µ(G) can be used in place of fl(G)
to calculate a steady state in Eq. S3, so that,

u

ú
i

=
3

µ

i

(G)
µ1(G) + · · · + µ

N

(G)

4
u

tot

. [S5]

If i œ V1, then it follows from the argument above that µ

i

(G) =
A

i

x and µ1(G)+ · · ·+µ

N

(G) = Cx+D, where A

i

, C, D œ R
>0

are independent of x. It follows from Eq. S5 that u

ú
i

=
u

tot

(A
i

/C)x/(x + (D/C)), which is the MM formula, with
the denominator being independent of i.

Conversely, let V1 ™ ‹(G) be the set of those vertices of
G which have the MM form. By hypothesis, V1 ”= ÿ. Choose
i œ V1, so that, by hypothesis, u

ú
i

= A

i

x/(x + B

i

), where
A

i

, B

i

> 0 and may potentially depend on i. Omitting the
symbol G for convenience, we can rewrite Eq. S5 above to
yield,

µ1
µ

i

+ · · · + µ

N

µ

i

= u

tot

A

i

+ B

i

u

tot

A

i

x

. [S6]

Note that each summand on the left is a monomial with a
degree. Letting x æ Œ, we see that no summand on the left
has positive degree and some summands have degree 0. Let
U1 ™ ‹(G) contain those indices k for which deg(µ

k

/µ

i

) = 0,
so that U1 ”= ÿ, and let U0 = ‹(G)\U1. Multiplying Eq. S6 by
x and taking the limit x æ 0, we see that U0 ”= ÿ and that
deg(µ

k

/µ

i

) = ≠1 for all k œ U0. In other words, if deg(µ
i

) = r,
then deg(µ

k

) = r if k œ U1 and deg(µ
k

) = r ≠ 1 if k œ U0. It
now follows from Eq. S5 above, dividing above and below by
x

r≠1, that U1 contains exactly those vertices satisfying the
MM formula, so that U1 = V1 and so also U0 = V0. Hence,
neither V0 nor V1 is empty and so V0, V1 is a partition of G.
Note also that, since deg(µ1) = 0 and 1 œ V0, it must be that
r = 1, which shows the consistency with the first part of the
argument above.

Now choose any edge i æ j in G. If this edge is non-splitting
then deg(µ

i

) = deg(µ
j

), with the common value being 0 or 1

depending on whether the edge lies in V0 or V1, respectively.
Since a path of reversible edges from 1 to i may be extended
by i � j to j, it follows from Eq. S4 that deg(Ÿ(i æ j)) = 0. If
i æ j separates V0 from V1, then deg(µ

i

) = 0 and deg(µ
j

) = 1,
so that, by a similar argument, deg(Ÿ(i æ j)) = 1. Since the
conditions of the first part of the Proposition are satisfied, all
vertices satisfying the MM formula must also have the same
denominator. This completes the proof.

3. Proof of Proposition 2

Proposition 2. Let G be a reversible graph with monomial
labels that is x-acyclic. If G is partitioned by V0 and V1 so
that deg Ÿ(i æ j) = 1 for all edges splitting V0 from V1 and
deg Ÿ(i æ j) = 0 for all non-splitting edges, then all vertices
in V1 satisfy the MM formula. Conversely, if some vertex
satisfies the MM formula and V1 ™ ‹(G) consists of all such
vertices, then V0 = ‹(G)\V1 and V1 form a partition of G for
which deg Ÿ(i æ j) has the same form. In either direction, all
vertices with the MM formula have the same denominator.
Proof. Let i be any vertex in G. Since each label is a
monomial in x by hypothesis, so too is q(X) for any subgraph
X of G and it follows from the Matrix-Tree Theorem (Eq. S2)
that the quantity fl

i

(G) is a sum of monomials in x. We show
first that fl

i

(G) is itself a monomial in x. Let T œ �
i

(G) be
any spanning tree rooted at i and let n(T ) = deg q(T ). If T

is the only spanning tree rooted at i, then G must itself be a
tree, which, as noted in the main text, always satisfies detailed
balance, so the result follows from Prop. 1. Otherwise, choose
another tree T

Õ œ �
i

(G). If n(T Õ) ”= n(T ) then there must
be an edge, k æ l, with deg(¸(k æ l)) ”= 0, which is found
on only one of the trees. If k æ l is appended to the other
tree, it must necessarily lie on a proper cycle. But then, since
¸(k æ l) depends on x, G is not x-acyclic. Hence, n(T ) does
not depend on T œ �

i

(G). It follows from Eq. S2 that fl

i

(G)
is a monomial in x, as claimed.

Now consider any two vertices i, j in G and let T œ �
i

(G).
Recalling from Lemma 1 that the map, �

i,j

: �
i

(G) æ �
j

(G)
is bijective, and letting ˝ denote the unique directed path
from j to i, we see that,

n(T ) = n(�
i,j

(T )) +
ÿ

kælœ˝

deg(Ÿ(k æ l)) . [S7]

If i and j belong to the same subset of the partition into V0
and V1, then the number of edges in ˝ which split V0 from
V1 must equal the number of edges in ˝ which split V1 from
V0. By hypothesis, the former edges satisfy deg Ÿ(k æ l) = 1
and the latter edges satisfy deg Ÿ(k æ l) = ≠1. Hence, the
summation term in Eq. S7 must be zero. Since this holds for
any T œ �

i

(G), we see that deg fl

i

(G) = deg fl

j

(G), as long
as i and j are both in the same subset of the partition. Let
p = deg fl1(G), so that deg fl

i

(G) = p for all i œ V0. A very
similar argument to the one above shows that, if i œ V1, then
deg fl

i

(G) = p + 1.
It follows that, if i œ V1, we can write fl

i

(G) = A

i

x

p+1 and
fl1(G)+ · · ·+fl

N

(G) = Cx

p+1 +Dx

p, where A

i

, C, D œ R
>0 do

not depend on x. By Eq. S3, u

ú
i

= u

tot

A

i

x

p+1
/(Cx

p+1 +Dx

p).
Dividing above and below by Cx

p, we see that u

ú
i

assumes the
form of Eq. 1 in the main text, with the denominator being
x + D/C which is independent of i. Hence, any vertex in V1
satisfies the MM formula with the same denominator.
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Conversely, let V1 ™ ‹(G) be the set of those vertices of G

which have the MM form. By hypothesis, V1 ”= ÿ. Consider any
i œ V1. By hypothesis, u

ú
i

= A

i

x/(x + B

i

), where A

i

, B

i

> 0
and may depend on i. Omitting the symbol G for convenience,
we can rewrite Eq. S3 as,

fl1
fl

i

+ · · · + fl

N

fl

i

= u

tot

A

i

+ B

i

u

tot

A

i

x

. [S8]

Since G is x-acyclic by hypothesis, we know from the argument
in the first paragraph of the proof that fl

i

(G) is a monomial
in x for any i in G, so that the same is true for any summand
on the left hand side of Eq. S8. Using a very similar argument
as in the proof of Prop. 1 above, of letting x æ Œ in Eq. S8
and multiplying both sides of Eq. S8 by x and letting x æ 0,
we see that V0 = ‹(G)\V1 ”= 0, so that V0, V1 is a partition of
G, and that deg fl

i

(G) = p if i œ V0 and deg fl

i

(G) = p + 1 if
i œ V1.

Consider now any edge k æ i in G. Choose T œ �
i

(G). If
k æ i is not in T , we can remove the unique edge in T that is
outgoing from k and append the edge k æ i in its place. The
resulting subgraph is still a spanning tree that is rooted at i.
Hence, we can always choose T œ �

i

(G) so that that k æ i

is an edge in T . It follows that q(T ) = Ÿ(k æ i)q(�
i,k

(T )),
where �

i,k

(T ) œ �
k

(G). Hence,

deg q(T ) = deg(Ÿ(k æ i)) + deg q(�
i,k

(T )) .

If k æ i is a non-splitting edge, then k and i belong to
the same subgraph in the partition and we know from the
argument above that deg q(T ) = deg fl

i

(G) = deg fl

k

(G) =
deg q(�

i,k

(T )). Hence, deg Ÿ(k æ i) = 0, as required. If k œ
V0 and i œ V1 then, by a similar argument, deg q(T ) = p+1 and
deg q(�

i,k

(T )) = p so that, deg Ÿ(k æ i) = 1, also as required.
Since the conditions of the first part of the Proposition are
satisfied, all vertices satisfying the MM formula must have the
same denominator. This completes the proof.

4. Proof of Proposition 3

Proposition 3. Let G be a strongly connected graph with
monomial labels. If G is partitioned into V0 and V1 so that
deg ¸(i æ j) = 1 for all edges with i œ V0 and deg ¸(i æ j) = 0
for all edges with i œ V1, then all vertices in V1 satisfy the
MM formula with the same denominator.
Proof: Suppose i œ V1. Choose any tree T œ �

i

(G). Since
T is spanning, each vertex j œ V0 is in T and has a unique
outgoing edge on the path in T from j to i. Recall from Eq. S2
that q(T ) is the product of the labels on the edges of T . By
hypothesis, deg q(T ) = m, where m is the number of vertices in
V0. It follows from Eq. S2 that fl

i

(G) = x

m

c

i

, where deg c

i

= 0.
Now suppose i œ V0. By a similar argument, fl

i

(G) = x

m≠1
c

i

.
Hence, the steady-state input-output response, as given by
Eq. S3, becomes, for any vertex i œ V1,

u

ú
i

= x

m

c

i

x

m≠1(
q

kœV0
c

k

) + x

m(
q

lœV1
c

l

)
. [S9]

This yields Eq. 1 of the main text upon cancelling x

m≠1, with
the denominator being independent of i. This completes the
proof.

5. Proof of Proposition 4

Proposition 4. Let G be a strongly connected graph that
is partitioned by V0 and V1 = {j}, with V1 containing only a
single vertex, j, which is a sink. Suppose that all edges to and
from j have monomial labels for which deg ¸(i æ j) = d and
deg ¸(j æ i) = d ≠ 1 and that, furthermore, ¸(i æ j) does not
depend on i. Then u

ú
j

satisfies the MM formula.
Proof. If j æ l is an outgoing edge to the sink vertex, j,
let G

l

denote the subgraph of G obtained by removing from
G all other outgoing edges from j and keeping j æ l. Note
that G

l

is connected, since it retains the incoming edges to
j, but may not be strongly connected. If S is any subset of
vertices, let �

S

(G) denote the set of spanning trees rooted
at the vertices of S, so that �

S

(G) = fi
iœS

�
i

(G). The proof
hinges on characterising the set �

V0 (G
l

). Since, by hypothesis,
every vertex in V0 has an incoming edge to j, and there is an
edge j æ l in G

l

, it is easy to see that G

l

has at least one
spanning tree that is rooted at l œ V0, so �

V0 (G
l

) ”= ÿ.
Note first that any spanning tree of G that is rooted at

i œ V0 has a unique outgoing edge from j. Hence, we have the
decomposition,

�
V0 (G) =

€

jælœG

�
VO (G

l

) , [S10]

with the sets on the right-hand side being pairwise mutually
disjoint. Second, there is a map, ’ : �

V0 (G
l

) æ �
j

(G
l

) defined
as follows. Choose T œ �

V0 (G
l

) and suppose that T is rooted
at i œ G

l

. There is a unique directed path in T from j to i,
which must start with the edge j æ l, since that is the only
outgoing edge from j in G

l

. Remove j æ l from T and adjoin
the edge i æ j, which exists because j is a sink vertex. It is
clear that the resulting subgraph, ’(T ), is a spanning tree of
G

l

that is now rooted at j. Now choose T œ �
j

(G
l

). There is
a unique directed path in T from l to j, which terminates in
some incoming edge to j, say i æ j. Note that i may be the
same as l. Remove i æ j from T and adjoin the edge j æ l.
It is clear that the resulting subgraph is a spanning tree of G

l

that is rooted at i œ V0 and that this operation is inverse to
’. Hence, ’ defines a bijection between �

V0 (G
l

) and �
j

(G
l

).
Furthermore, for any T œ �

V0 (G
l

),

¸(l æ j)q(T ) = ¸(j æ l)q(’(T )) . [S11]

Summing up Eq. S11 over all T œ �
V0 (G

l

) and using the fact
that ’ is a bijection, we find that,

¸(l æ j)

A
ÿ

iœV0

fl

i

(G
l

)

B
= ¸(j æ l)fl

j

(G
l

) . [S12]

Now note that any spanning tree of G that is rooted at j

cannot contain an outgoing edge from j. Therefore, for any
outgoing edge j æ l, �

j

(G
l

) = �
j

(G), so that fl

j

(G
l

) = fl

j

(G).
Furthermore, by hypothesis, ¸(l æ j) does not depend on l.
Hence, summing up Eq. S12 over all incoming edges to the
sink, l æ j, and using Eq. S10, we find that,

¸(l æ j)

A
ÿ

iœV0

fl

i

(G)

B
=

A
ÿ

læjœG

¸(j æ l)

B
fl

j

(G) . [S13]
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By hypothesis, deg ¸(l æ j) = d and deg ¸(j æ l) = d ≠ 1.
Hence, we can rewrite Eq. S13 as,

ÿ

iœV0

fl

i

(G) = Mfl

j

(G)
x

, [S14]

where M does not depend on x. It follows from Eq. S3 that,

u

ú
j

= fl

j

(G)u
tot!q

iœV0
fl

i

(G)
"

+ fl

j

(G)
= xu

tot

x + M

,

which has the Michaelis-Menten form, as required. This com-
pletes the proof.

6. MM away from equilibrium, with irreversible edges

We note here a simple result that does not fall under the scope
of Props. 1-4. It covers certain examples, as noted in Table S1,
but has very restrictive conditions.
Proposition S1. Let G be a strongly connected graph with
monomial labels. If G is partitioned into V0 and V1 so that
there exists only one edge, k æ l, splitting V0 from V1, with
deg ¸(k æ l) = 1, and deg ¸(i æ j) = 0 for all other edges,
then all vertices in V1 satisfy the MM formula with the same
denominator.
Proof. Choose any vertex i in G and any tree T œ �

i

(G).
By hypothesis, deg q(T ) = 1 if k æ l œ T and deg q(T ) = 0 if
k æ l ”œ T . Hence, fl

i

(G) = a

i

x+b

i

, where deg a

i

= deg b

i

= 0.
Since, by hypothesis, k æ l is the only way to reach vertices in
V0 on a spanning tree rooted at a vertex in V1, deg q(T ) = 1 for
all such trees. Hence, whenever i œ V1, fl

i

(G) = a

i

x and b

i

= 0.
On the other hand, k æ l is outgoing from k and so cannot
be on any spanning tree rooted at k. Hence, fl

k

(G) = b

k

with
a

k

= 0. The result follows from Eq. S3.

7. Examples of other graphs

Fig. S1 shows two graphs which lie beyond the scope of
Props. 1-4 and S1 and contain vertices having the MM form.
Fig. S1A shows a reversible graph which does not satisfy the
conditions of Prop. 1 because it is away from equilibrium, nor
the conditions of Prop. 2 because it is not x-acyclic. Similarly,

it does not satisfy the labelling conditions of Props. 3-4 and
S1. The quantities fl

k

(G) can be calculated by the MTT in
Eq. S2, using the rooted spanning trees shown in Fig. S1A.
We find that,

fl1(G) = be

2 + ce

2 + bex + cex

fl2(G) = abe + ace + abx + bdx

fl3(G) = bde + cde + acx + cdx

fl4(G) = aex + dex + ax

2 + dx

2
,

so that, by Eq. S3,

u

ú
4 =

3
fl4(G)

fl1(G) + fl2(G) + fl3(G) + fl4(G)

4
u

tot

= u

tot

(a + d)(e + x)x
(a + d)(e + x)x + (b + c)(a + d + e)(e + x)

= u

tot

(a + d)x
(a + d)x + (b + c)(a + d + e) .

This has the Michaelis-Menten form (Eq. 1 of the main text),
with A = u

tot

and B = (b + c)(a + d + e)/(a + d).
Fig. S1B shows a graph with irreversible edges which does

not satisfy the conditions of Props. 3 and S1 because it cannot
be partitioned correctly or the conditions of Prop. 4 because
neither vertex 1 nor vertex 2 are sinks. We find that,

fl1(G) = x

2

fl2(G) = x

2

fl3(G) = x

2 + ax ,

so that, by Eq. S3,

u

ú
1 = u

ú
2 =

3
fl1(G)

fl1(G) + fl2(G) + fl3(G)

4
u

tot

= u

tot

x

2

x(3x + a)

= u

tot

x

3x + a

.

This has the Michaelis-Menten form (Eq. 1 of the main text),
with A = u

tot

/3 and B = a/3.
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Fig. S1. Graphs having the MM formula but falling outside the scope of Props. 1-4 and S1. See the text above for further details. (A) A reversible graph for which vertex 4
satisfies the MM formula. The spanning trees rooted at vertex 4 (circled) are shown below. The spanning trees rooted at other vertices can be obtained by the method of
Lemma 1. (B) An irreversible graph for which vertices 1 and 2 satisfy the MM formula. All rooted spanning trees are shown below, with the root vertices circled.
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ESj
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k   [S]   1j

k    +k–1j 2j

α   i1 α   1i β   i1 β   1i

α   ji α   ij β   ji βij

k   [S]   

ESnEn
k   [S]   1n

k    +k–1n 2n

α  nj α   jn β   nj βjn

Fig. S2. A model of single-molecule enzyme kinetics, as considered in [16, 17, 21]. The free enzyme is denoted by E, the substrate by S, the enzyme-substrate complex by
ES and distinct conformations by subscripts i and j running from 1 to n. Note that there are no self-loops, so that, effectively, –ii = —ii = 0 for all i. Various parametric
regimes of this model, as listed in Table S1, give rise to the MM formula, with substrate concentration being the input variable, x = [S]. The graphs arising from these
parametric regimes, which fall under the scope of Props. 1-4, are shown in Fig. 3 of the main text.

7


