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Mechanics and Dynamics of Bacterial Cell Lysis
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ABSTRACT Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting antibiotics.
Although previous studies have clarified the biochemical mechanisms of antibiotic action, a physical understanding of the pro-
cesses leading to lysis remains lacking. Here, we analyze the dynamics of membrane bulging and lysis in Escherichia coli, in
which the formation of an initial, partially subtended spherical bulge (‘‘bulging’’) after cell wall digestion occurs on a characteristic
timescale of 1 s and the growth of the bulge (‘‘swelling’’) occurs on a slower characteristic timescale of 100 s. We show that
bulging can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner membrane,
cell wall, and outer membrane and that the experimentally observed timescales are consistent with model predictions. We
then show that swelling is mediated by the enlargement of wall defects, after which cell lysis is consistent with both the inner
and outer membranes exceeding characteristic estimates of the yield areal strains of biological membranes. These results
contrast biological membrane physics and the physics of thin, rigid shells. They also have implications for cellular morphogen-
esis and antibiotic discovery across different species of bacteria.
INTRODUCTION
Antibiotic resistance is one of the largest threats to global
health, food security, and development today (1). Its
increasing prevalence (2) begs the question of whether phys-
ical principles, which may be more universal than particular
chemical pathways, could inform work on novel therapeu-
tics as has been done for mechanotransduction in eukaryotes
(3) and tissue growth and fluidity (4,5). To elucidate such
principles, a physical understanding of the cell death
pathway caused by many antibiotics, which may comple-
ment the knowledge of related biochemical mechanisms
(6–12), is needed.

In many bacteria, cell shape is conferred by the cell wall,
which resists the internal turgor pressure and is composed of
two- or three-dimensional layers of peptidoglycan (PG)
(13–15). In Gram-negative bacteria such as Escherichia
coli, the two-dimensional cell wall is sandwiched between
the inner membrane (IM) and outer membrane (OM),
whereas in Gram-positive species, the cellular envelope
comprises an IM enclosed by a three-dimensional cell
wall. PG consists of rigid glycan strands cross-linked by
peptide bonds and is maintained through the combined, syn-
chronized activity of enzymes, including transglycosylases
and transpeptidases (13,15–17). Many antibiotics, such as
b-lactams, bind to transpeptidases to inhibit cross-linking.
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Inhibition of peptide bond formation and cell wall synthesis
results in large defects in the cell wall, which precede
bulging of the IM and OM and eventual cell lysis
(6,7,18–20).

In this work, we show how the response of the bacterial
cell envelope to large, micron-scale defects in the cell
wall can be modeled physically. By dissecting the dynamics
of lysis, we reveal salient features—the emergence of
different timescales and the formation of partially sub-
tended, spherical bulges—that require explanation. We
then show that a theoretical model comprising turgor pres-
sure and cell envelope stretching is consistent with these
features. By clarifying aspects of membrane physics, en-
tropy, and water flow, the model illustrates how lysis arises
as a generic, mechanical response and how different cell en-
velope components interact during bulging. We anticipate
these results to be useful for revealing a better understanding
of antibiotic action, probing lysis in other experimental con-
texts, and modeling related systems involving biological
membranes and elastic shells, as discussed further in the
Conclusions.
MATERIALS AND METHODS

Model parameters

We briefly discuss the choice of parameter values in this work here, with

further details provided below and in Table 1. We model the cell wall as

a rigid, orthotropic cylindrical shell with elastic moduli Yw
x ¼ 0:1 N=m
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TABLE 1 Variables Used, or Calculated, in This Work for E. coli and Their Estimated Numerical Ranges

Quantity Estimate Source

Axial cell wall elastic modulus (3D), Ew
x 20–30 MPa (21–23).

Circumferential cell wall elastic modulus (3D), Ew
y 50–75 MPa (21,24).

Cell wall thickness, hw 3–4 nm (23,70).

Axial cell wall elastic modulus (2D), Yw
x 0.06–0.12 N/m Y ¼ Eh

Circumferential cell wall elastic modulus (2D), Yw
y 0.15–0.30 N/m Y ¼ Eh

Cell wall Poisson’s ratio, nwxy 0.2 (23).

Cell wall Poisson’s ratio, nwyx 0.25–1 nwyx ¼ Yw
y n

w
xy=Y

w
x

Cell membrane area stretch modulus, Ka 0.03–0.24 N/m (25).

Turgor pressure, p 0.3–2 atm (21,71,72).

Number of solute molecules, ns (5.7 � 38) � 107 molecules pzkTns=½pðrw0 Þ2Lw0 �
Reference cell wall radius, rw0 0.5 mm –

Reference cell wall length, Lw0 10 mm –

Reference cell wall surface area, Aw 31.4 mm2 Aw ¼ 2prw0 L
w
0

Reference membrane surface area ratio, g ¼ Ai/Aw 1.0–1.2 this work

Membrane bending modulus, kb 10–20 kT (27).

Temperature, T 300 K –

2D, two-dimensional; 3D, three-dimensional.
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(axial direction, x) and Yw
y ¼ 0:2 N=m (circumferential direction, y)

(21–24). The Poisson’s ratios are nwxy ¼ 0:2 and nwyx ¼ 0:4 (23), the reference

cell wall radius is rw0 ¼ 0:5 mm, the reference cell wall length is Lw0 ¼
10 mm, and the reference cell wall area, neglecting the cellular poles, is

Aw ¼ 2prw0 L
w
0 . The area stretch moduli of both the IM and OM are set

to Ki
a ¼ Ko

a ¼ 0:1 N=m (25–27); here and below, we use superscripts to

denote IM (i), OM (o), or cell wall (w) quantities. The membrane bending

rigidity is kib ¼ kob ¼ 20 kT, where k denotes Boltzmann’s constant and

T ¼ 300 K is the temperature (27). The number of solute molecules inside

the cell is taken to be ns ¼ 9.5 � 107, corresponding approximately to a

turgor pressure of p ¼ 0.5 atm for the cellular dimensions considered in

this work (21). To contextualize the choice of parameter values above, Ta-

ble 1 provides estimated ranges of all parameter values found in the

literature.
Bacterial strains and microscopy

The wild-type strain used in this study is E. coli MG1655, and we verified

that the morphological dynamics is statistically indistinguishable in two

other wild-type strains, JOE309 and BW25113. The Supporting Materials

and Methods contains further details regarding bacterial growth, micro-

scopy, and image analysis.
RESULTS AND DISCUSSION

Dynamics of bacterial cell lysis

Inspired by previous work (16), we degraded wild-type
E. coli cell walls with cephalexin, a b-lactam antibiotic, at
a concentration of 50 mg/mL and observed typical cells to
undergo the morphological transitions shown in Fig. 1, A–
C and Video S1. Bulging—defined here as the development
of an initial protrusion, which may be accompanied by a
noticeable shrinking of the cell length—was observed to
occur as fast as 100 ms (16) but on a typical timescale of
1 s. Swelling, defined here as the growth of the protrusion,
was observed to occur on a typical timescale of 100 s
(Fig. 1 D).

In a recent modeling study (28), a critical cell wall pore
size for bulging was found by studying the trade-off be-
tween the bending energy cost of bulging and the pres-
sure-volume energy gained. This trade-off appears to be
irrelevant for determining bulge size in our experiments,
in which it can be shown that the bending energies are negli-
gible compared to the stretching energies, as discussed
below. As we shall see, membrane remodeling and the relax-
ation of the entropic and stretching energies of the cell en-
velope can predict bulging and are consistent with the
separation of timescales shown in Fig. 1 D.
Cell envelope mechanics

We model the cell wall, IM, and OM as linear-elastic shells.
Importantly, we suppose that, on timescales comparable to
that of bulging, the membrane geometries can vary because
of membrane fluidity while conserving their reference sur-
face areas. This contrasts the IM and OM with the rigid
cell wall, whose reference configuration is assumed to be
a cylinder. The free energy of the cell wall, IM, OM, and
the volume enclosed by the IM is as follows:

F ¼ Ew
stretch þ Ei

stretch þ Eo
stretch þ Ew

bend þ Ei
bend þ Eo

bend � TS;

(1)

where the superscripts w, i, and o denote wall, IM, and OM
quantities, respectively; Estretch and Ebend are the stretching
and bending energies, respectively, of an elastic shell; T is
the temperature; and S is the entropy of mixing water and sol-
utes corresponding to the turgor pressure. Here, only water
molecules are assumed to be outside the cell, the solute mol-
ecules are assumed to be enclosed by the IM, and S¼�k(ns ln
xsþ nw ln xw), where k is Boltzmann’s constant, xs and xw are
the number fractions of solute and water molecules inside the
IM, respectively, and ns and nw are the numbers of solute and
water molecules, respectively. Whereas we will assume ns
to be fixed (as discussed below), nw depends on the volume,
Biophysical Journal 116, 2378–2389, June 18, 2019 2379
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FIGURE 1 Experimental observation of mem-

brane bulging, swelling, and lysis. (A) Shown is a

phase-contrast image of a population of E. coli

cells immediately after antibiotic treatment (see

also Video S1). (B) A phase-contrast image of the

same population �1 h after antibiotic treatment

shows that membrane bulging and swelling are

common to most cells. (C) Shown is a phase-

contrast time lapse of a single E. coli cell during

antibiotic killing, with the corresponding stages

of lysis denoted. (D) Histograms of the time for

bulging and the time between bulging and lysis

illustrate the separation of timescales involved.

The population mean, standard deviation (SD),

and cell number (N) are indicated.
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Vi, enclosed by the IM as nw¼ Vi/mw, wheremw is the volume
occupied per water molecule. We also assume the solution to
be ideal anddilute:whilewe assumens¼ 9.5� 107molecules
for a typical cell of the dimensions considered here, nw z
2.6 � 1011 molecules and ns/nw � 10�4.

Because the cell wall, IM, and OM are thin, it is conve-
nient to simplify the stretching energies by integrating
over the thicknesses and working with stress resultants. In
particular, for the cell wall, the planar Young’s moduli can
be expressed in units of force per length. Building on evi-
dence for a larger elastic modulus in the circumferential di-
rection than the axial direction (21,24), we assume an
orthotropic constitutive relation for the cell wall, so that
swxx ¼ Yw

x ðuwxx þ nwyxu
w
yyÞ=ð1� nwxyn

w
yxÞ and swyy ¼ Yw

y ðuwyy þ
nwxyu

w
xxÞ=ð1� nwxyn

w
yxÞ. Here and below, ðYw

x ; Y
w
y ; n

w
xy; n

w
yxÞ are

the two-dimensional Young’s moduli and Poisson’s ratios
of the cell wall. ðsaxx; sayyÞ denote in-plane stresses (or

strains, u) in the axial and circumferential directions,
respectively, of the a component of the cellular envelope
(a˛{i, o, w}); in general, we will also use x and y to denote
orthogonal directions for geometries that are not cylindrical.
Ew
stretch can then be expressed as

Ew
stretch ¼ 1

2

Z �
sw
xx

�2
Yw
x

þ
�
sw
yy

�2
Yw
y

�
 
nwxy

Yw
x

þ nwyx

Yw
y

!
sw
xxs

w
yydA

w;

(2)
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where dA is an area element in the deformed state. Unlike
the rigid cell wall, the IM and OM are fluid and possess
different stretching energies. Consistent with the fact that
fluid membranes cannot support in-plane shears (29), we
take the membrane shear moduli to be zero, so that the
membrane stretching energies comprise of areal penalties
alone,

Ea
stretch ¼ Ka

a

2

Z �
uaxx þ uayy

�2
dAa ¼ Ka

a

2

Z �
DAa

Aa

�2

dAa;

(3)

where a ranges over {i, o}, DA/A is the fractional change in
membrane area, and the equality holds because here and
below, we assume a linear theory in which higher-order
terms in the strains are neglected. For a vanishing shear
modulus, Ka

a is equivalent to the first Lam�e coefficient in
two-dimensional elasticity (30,31). Values of Ka have
been estimated to be in the range of Ka z 0.03–0.24 N/m
for E. coli spheroplasts depending on the external osmolar-
ity and size (25) and Ka z 0.2–0.4 N/m for red blood cells
(RBCs) and giant unilamellar vesicles (27,32), and these
values are expected to be similar for the IM and OM (25).
As shown below, these values imply that the IM and OM
can be as load bearing as the cell wall. Finally, for charac-
teristic parameter values, the bending energies of Eq. 1
are negligible compared to the stretching energies, which
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is usually the case for thin shells (33–35): whereas the
bending energies scale as the third power of thickness, the
stretching energies are linear in thickness. We therefore
discard the bending energies in the expressions below and
verify in the Supporting Materials and Methods that they
do not change our results.
Homogeneity of membrane stresses

Before modeling the mechanics of lysis further, it is conve-
nient to note a few properties of membrane stresses. As the
reference membrane dimensions are allowed to vary
because of fluidity, the strains uxx and uyy may vary. The
stretching energy of Eq. 3 depends only on the trace of
the membrane strain tensor, DA/A ¼ uxx þ uyy. Hence, man-
ifesting the fluid nature of the membranes, mathematically
minimizing Eq. 1 over the reference membrane dimensions
shows that uxx ¼ uyy at equilibrium. Let us write g(x,y) ¼
uxx ¼ uyy to denote the strains as a function of general sur-
face coordinates, (x,y), and note that, in a linear theory, the
area element of the deformed geometry is related to
that of the reference geometry by dAreference ¼ (1 �
2g(x,y))dAdeformed. Consider now the free energy expression
of Eq. 1 and suppose that the cell envelope is in a state of
equilibrium in which the reference membrane area
constraint applies. As Ew

stretch and �TS do not depend on
the reference membrane dimensions, the minimization of
F in Eq. 1 is equivalent to the following:

min
gðx;yÞ

Z
gðx; yÞ2dxdy; (4)

subject to the constraint of a fixed membrane reference area,

A ¼
Z

ð1� 2gðx; yÞÞdxdy; (5)

where A is a constant membrane reference area. Mini-
mizing the functional of Eq. 4 under the constraint of
Eq. 5 shows that g(x,y) is constant. Thus, regardless of
the deformed geometry, the membrane stresses are not
only isotropic (36,37) but also spatially homogeneous at
equilibrium. As we will assume the IM and OM to have
identical material properties and reference areas, the
same argument applies for both the IM and OM and shows
that the stresses in these two layers are everywhere iden-
tical. Intriguingly, the membrane stresses in other contexts,
such as the junctions of epithelial cells and eukaryotic cell
blebs, have also been suggested to be spatially uniform
(38–40).

The homogeneity of the membrane stresses places
constraints on the bulged geometries considered below. In
particular, at equilibrium and without the cell wall, the
stresses sxx ¼ syy ¼ Ka(uxx þ uyy) in a membrane are antic-
ipated to satisfy Laplace’s law,
sxx

kx
þ syy

ky
¼ p; (6)

where x and y are two principal directions, kx and ky are the
two principal radii of curvature, and p is the turgor pressure.
As the stresses are both isotropic and spatially homoge-
neous, we find that the equilibrium shapes of the membranes
possess constant mean curvature. We will use this fact to
constrain the shapes of the bulges we consider below as
spherical caps.
The healthy state

To model the mechanics of lysis, the type of calculation we
undertake below with Eq. 1 will be as follows. We ignore the
cellular poles for simplicity and assume the reference sur-
face area of the IM (and OM), Ai (Ao), and the reference
radius rw0 and length Lw0 of the cell wall to be given. As
the cell wall is rigid, we suppose that the membranes assume
the shape of the cell wall, so that their deformed geometries
are cylinders with radii and lengths (ri,ro) and (Li,Lo),
respectively. This assumption will be supported by the nu-
merical calculations below, which show that the membranes
are in contact with the cell wall. Given the material proper-
ties of the cell envelope,Ai,Ao, rw0 , and L

w
0 , we minimize F

over 1) the deformed cylindrical cell wall dimensions, rw

and Lw, 2) the deformed cylindrical membrane dimensions,
(ri,ro) and (Li,Lo), and 3) the reference membrane cylindrical

dimensions, ðri0; ro0Þ and ðLi0; Lo0Þ, which satisfy the con-

straints 2pri0L
i
0%Ai and 2pro0L

o
0%Ao. The inequalities in

these constraints allow for membrane invaginations and
less membrane surface area to be stretched than is available.
Because of steric exclusion, we further require ri % rw % ro

and Li% Lw% Lo. The 10 foregoing variables and the linear
strain-displacement relations uxx ¼ (L � L0)/L0, uyy ¼ (r �
r0)/r0 then entirely determine F. To summarize,

F e ¼ min
rw ;Lw ;ri ;Li ;ro;Lo;ri

0
;Li

0
;ro
0
;Lo

0

F subject to 2pri0L
i
0%Ai;

2pro0L
o
0%Ao; ri%rw%ro; Li%Lw%Lo

(7)

describes the equilibrium conformation of a healthy, intact
cell.

To simplify the analysis further, we assume the IM and
OM to share the same reference area for the remainder of
this work, so that Ai ¼ Ao and all equations involving the
OM are identical to their counterparts for the IM. We now
solve for the equilibrium state both analytically and numer-
ically, the former by determining the stresses using
Laplace’s law and the reference area constraint and the latter
by undertaking the minimization in Eq. 7 explicitly. For
the former, we start by assuming r ¼ rw ¼ ri ¼ ro and
Biophysical Journal 116, 2378–2389, June 18, 2019 2381
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L ¼ Lw ¼ Li ¼ Lo, so that the envelope layers are in contact,
and suppose the membrane reference area to be limiting, so
that 2pri0L

i
0 ¼ Ai. As the membrane stresses are isotropic

and homogeneous at equilibrium, we set s ¼ sixx ¼
siyy ¼ soxx ¼ soyy. It then follows from Laplace’s law that

pr

2
¼ sw

xx þ 2s; pr ¼ sw
yy þ 2s; (8)

where p ¼ kTns=ðpðrw0 Þ2Lw0 ð1þ uwxx þ 2uwyyÞÞ, and hence-

forth, all equalities will be accurate to the first order in the
strains. Substituting the linear strain-displacement relations
for the cell wall and solving for L and r, we find two simple
expressions,

L ¼ Lw
0 �

kTns

�
2Yw

x n
w
yx � Yw

y

�
2prw0 Y

w
x Y

w
y

þ 2sLw
0

 
Yw
x n

w
yx � Yw

y

Yw
x Y

w
y

!
;

r ¼ rw0 þ
kTns

�
2Yw

x � nwxyY
w
y

�
2pLw

0Y
w
x Y

w
y

þ 2srw0

 
Yw
y n

w
xy � Yw

x

Yw
x Y

w
y

!
:

(9)

It remains to determine s using the reference area
constraint. As uxx ¼ uyy ¼ s/(2Ka) at equilibrium, the refer-
ence area constraint can be expressed as follows:

Ai ¼ 2prL

�
1� s

Ka

�
: (10)

Substituting Eq. 9 into Eq. 10 yields a single equation in s,
for which the solution is as follows:
s ¼
Ka

�
� �Ai � 2prw0 L

w
0

�
Yw
x Y

w
y þ kTns

�
2Yw

x

�
1� nwyx

�
þ Yw

y

�
1� nwxy

��
2prw0 L

w
0

�
2Ka

�
Yx

�
1� nwyx

�
þ Yy

�
1� nwxy

��
þ Yw

x Y
w
y

� ; (11)
in turn, this solution determines all quantities of the equilib-
rium state. Building on evidence of finite excess membrane
area in E. coli (25,41), we plot the predicted value of s in
Eq. 11 against Ai in Fig. 2 A for the parameter values sum-
marized in Materials and Methods and note that, when g ¼
Ai/Aw z 1, the membrane stresses are nonzero and
decreasing in g. For the parameter values considered in
this work, this occurs until g z 1.15, at which point the
equality in Eq. 10 is no longer valid—only the cell wall de-
forms—and the membrane stresses become zero. That the
membrane stresses can be nonzero for smaller g contrasts
with the idea that the cell wall is the only load-bearing struc-
ture of the cellular envelope and is consistent with experi-
mental observations suggesting that the IM and OM can
also be load bearing, as manifested by the known fact that
2382 Biophysical Journal 116, 2378–2389, June 18, 2019
bulging precedes lysis (16). As the IM and OM are fluid,
load bearing by the IM and OM does not contradict the
fact that E. coli cells become spherical without their cell
walls (42–44).

To verify the foregoing calculations, we numerically
minimized Eq. 7 for the parameter values summarized in
Materials and Methods and different values of Ai starting
from g ¼ 1.0. We found that F is minimal when
2pri0L

i
0; 2pr

o
0L

o
0 ¼ Ai and rw ¼ ri ¼ ro z 0.53 mm, Lw ¼

Li ¼ Lo z 9.9 mm, ri0 ¼ ro0z0:52 mm, and Li0 ¼
Lo0z9:7 mm. In this case, all envelope components are in
contact and the stresses are swxxz1:5 mN=m,
swyyz12:6 mN=m, and sixx ¼ soxx ¼ siyy ¼ soyy ¼ Kaðuixx þ
uiyyÞ ¼ Kaðuoxx þ uoyyÞz4:8 mN=m, in good agreement
with the linear theory (Fig. 2 B; Table S1). We then repeated
the foregoing calculations across a range of larger reference
surface areas Ai. We found similar results in all cases, with
the membrane stresses being generally dependent on Ai and
decreasing in agreement with the linear theory (Fig. 2 C; Ta-
ble S1). Below, we will also show that our prediction of
bulging holds over a range of Ai.
The bulged state

We now show that the removal of a piece of cell wall can
result in bulging. Assuming that the membrane reference
surface areas remain unchanged over the timescale of
bulging, we consider a quasiequilibrium state in which
they limit bulging. In contrast to the membrane areas, we
do not assume cell volume to be limiting; as discussed
below, characteristic timescales of water flow are fast in
comparison to bulging. Since osmoregulation is believed
to occur on a timescale of �1 min for osmotic shocks
applied over less than 1 s (45–47), we also assume the num-
ber of solute molecules to remain constant. The free energy
may be lowered by water flow and bulging if the IM and OM
may assume arbitrary geometries. Hence, we wish to mini-
mize F over the cell geometry and the cellular dimensions,
assuming that the membrane reference surface areas are
fixed.

As mentioned above, when F is minimized, net flow of
water into the cytoplasm may be required. The bulk flow
of water from the external milieu to the cytoplasm is thought
to be characterized by the hydraulic conductivity, Lp (48),
defined so that the instantaneous volumetric flow rate
through a membrane is dV/dt ¼ LpAtotDP, where Atot is
the total (strained) membrane surface area and DP is the
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FIGURE 2 Stresses in the cellular envelope. (A)

Shown are the stresses for the cell wall (w) and in-

ner and outer membranes (i and o) as functions of

the reference membrane area ratio, g, with both the

linear theory predictions (Eqs. 8 and 11) and inde-

pendent numerical results plotted. The inner and

outer membranes are assumed to share identical

material properties and exhibit identical stresses.

(B and C) Shown is the bar plot representation of

two points in (A), as well as the stresses across

the entire cell envelope (tot). The dashed lines indi-

cate the linear theory predictions (Eqs. 8 and 11),

whereas the bars indicate numerical results. To

see this figure in color, go online.
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pressure difference across the membrane, hereafter taken to
be the turgor pressure p (45,48). Estimates of Lp vary de-
pending on membrane structure; studies involving osmoti-
cally shocked bacteria (49), liposomes with aquaporin-1,
and RBCs have found Lp z 10�12 m3/N$s, whereas studies
for liposomes and other bilayers without water channels
have indicated Lpz 10�13 m3/N$s (48,50). The larger value
of Lp predicts a volume increase of �20% of the initial cell
volume per second. As our model will predict smaller or
similar volume increases, we will assume that water flow
is not limiting in the analysis below.

We now suppose that an area A of the cell wall is
removed. For simplicity, we assume A to be a circle of radius
rd (Fig. 3 A). As discussed in Homogeneity of membrane
stresses, we consider bulge geometries with a constant
mean curvature. Koiso proved that the only constant mean
curvature surfaces with a circular boundary, which are
only contained on one side of the boundary, are spherical
caps (51). Consistent with the shapes observed in experi-
ments (Figs. 1, A–C and 3 A), we therefore describe the
bulged state by a two-parameter family of geometries in
which a spherical bulge, B, of radius R extrudes from A,
with the degree of extrusion described by the subtended
angle q (Fig. 3 A). At equilibrium, we require that the bulge
fills the defect, so that rd ¼ R sin q.

To simplify the analysis and reduce the number of free
variables below, we assume the cell wall and the membranes
to remain in contact in the cylindrical bulk, so that their
strained dimensions are described by the two parameters
r ¼ rw ¼ ri ¼ ro and L ¼ Lw ¼ Li ¼ Lo. Relaxing this
assumption does not change our results; in particular,
repeating the minimization of Eq. 12 below, but allowing
(rw,ri,ro) and (Lw,Li,Lo) to vary independently while satis-
fying the corresponding steric exclusion constraints, will
result in the same minimizers. As the membrane stresses
are everywhere equal at equilibrium, the membranes must
be in contact in the bulge, so that R and q do not differ for
the IM or OM. The free energy of the bulged state, as de-
noted by the subscript b, is then

F bðrdÞ ¼ min
r;L;R;ri

0
;Li

0
;ro
0
;Lo

0
;

Ri
0
;Ro

0

�
Ei
stretch þ Eo

stretch

	ðABÞ þ
�
Ei
stretch

þ Eo
stretch þ Ew

stretch

	ðAcellÞ � TS
�
Vi
b

�
;

(12)
where the dependence of the stretching energies on the
different geometries are indicated by the areas of the
geometries, AB ¼ 2pR2(1 � cos q) is the strained bulge
area, A ¼ pr2d is the strained area removed, Acell ¼ 2prL �
A is the remaining surface area, ignoring the cellular poles,
SðVi

bÞ is the entropy ofmixing corresponding to an IMvolume
Vi
b ¼ pr2Lþ V�, and V� ¼ pR3ð2� 3cos qþ cos3qÞ=3 is
Biophysical Journal 116, 2378–2389, June 18, 2019 2383
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FIGURE 3 Stresses and energetics of the bulged

conformation. (A) Shown is a schematic of the

bulged conformation (left), in which a circular

cell wall defect of radius rd is introduced to the

strained state and a spherical bulge forms over

the defect (right). (B) Shown are linear theory pre-

dictions for the subtended angle (q), cell radius (r),

and cell length (L) as functions of the membrane

reference area ratio (g) and defect radius (rd) found

by solving the bulging equation, Eq. 17. For large

defect radii corresponding to large cell wall

stresses, the linear theory becomes inaccurate,

and the predictions for the cell length deviate. (C

and D) Shown are stresses for the cell wall (w), in-

ner and outer membranes (i and o), and across the

entire cell envelope (tot) for g ¼ 1.0 and 1.2. The

inner and outer membranes are assumed to share

identical material properties and exhibit identical

stresses. The dashed lines indicate the linear theory

predictions found by solving Eq. 17, whereas the

bars indicate numerical results. To see this figure

in color, go online.
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the bulge volume. In the cylindrical bulk, the strained mem-
brane and cell wall dimensions are related to the reference
dimensions, r0 and L0, in the usual manner by uxx ¼ (L �
L0)/L0 and uyy ¼ (r � r0)/r0. In the bulge, the strained mem-
brane dimensions are related to the reference membrane di-
mensions as uxx,B ¼ uyy,B ¼ (R � R0)/R. Accurate to the first
order in the strains, the constraint on the reference membrane
area for the IM can be expressed as follows:

2pri0L
i
0 �A

�
1� uixx

��
1� uiyy

�þ 2p
�
Ri
0

�2ð1� cosqÞ%Ai;

(13)

and analogously for the OM. When q ¼ 0, the cell exhibits
no bulging in response to the defect over A.

We proceed to solve for the equilibrium state correspond-
ing to Eq. 12 and the associated reference membrane area
constraint both analytically and numerically. The homoge-
neity of membrane stresses and Laplace’s law require the
following:
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(14)
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(15)

where Vi
b ¼ pðrw0 Þ2Lw0 ð1þ uwxx þ 2uwyyÞþ V�, and, as before,

all equalities will be accurate to the first order in the strains.
Substituting the strain-displacement relations for the cell
wall and solving Eqs. 14 and 15, we find the following:
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Assuming the reference area constraint to be an equality, we
note that it uniquely determines the equilibrium state and
can be rewritten as ð2prL� pr2dÞð1� 2uÞ þ ð2pR2ð1�
cos qÞÞð1� 2uÞ ¼ Ai, where, at equilibrium, u ¼ pR/
(8Ka). As the bulge fills A, R sin q ¼ rd. Combining this
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with Eqs. 15 and 16, we re-express the reference area
constraint as a single, transcendental equation involving
the variable q only:
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y tan2ðq=2Þsin2 q. Eq. 17, the bulging

equation, is the main result of this work; its solution for q
determines the equilibrium state and all associated vari-
ables. Numerical solutions of the bulging equation for
different values of rd and Ai are shown in Fig. 3 B. We
find that q increases with Ai and that the cell length, and
not the radius, predominantly shrinks during bulging. For
a typical value of rd ¼ 0.5 mm and g¼ 1.0, these results pre-
dict the formation of a hemispherical bulge with q z 1.6
and R z 0.5 mm, which will be compared with full numer-
ical calculations below.

To gain further intuition for the solutions of the bulging
equation, we considered two simple cases. First, asymptot-
ically expanding the bulging equation around q ¼ p, we
find the following:

qzp� 2rd

ffiffiffiffiffi
p

Ai

r
; (18)

so that, in this limit, large membrane reference areas give
rise to full and large bulges, irrespective of the material
properties of the cell envelope. Indeed, for full bulges, Eq.
18 shows that the subtended angle depends only on the ratio
of defect to reference areas, A/Ai. Second, we considered a
simple case in which Yw

x ¼ Yw
y ¼ Y and neglected Poisson’s

effect. Accurate to the first order in rd/R, the solution of the
bulging equation reduces to the following:
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kTnsð4Ka þ YÞ : (19)

Thus, our model predicts that, for small cell wall defects
relative to the bulge radius, cells with large membrane refer-
ence areas produce full, but small, bulges, whereas cells
with small membrane reference areas produce shallow, but
large, ones. These results are consistent with Fig. 3 B and
the intuition that cells with excess membrane area may
form large bulges by ‘‘throwing away’’ the excess area.
Nevertheless, a comparison to experimental data will sug-
gest the excess membrane area in typical cells to lie in a
limited range (see Model of swelling below).
To support the analytical calculations above, we numeri-
cally computed the minimum of Eq. 12 over the 9 indepen-
dent variables subject to the reference area constraint. We
found that, for a range of Ai, the numerical minimizers of
Eq. 12 are generally well described by the linear theory
(Fig. 3, B–D; Table S1). When rd ¼ 0.5 mm and g ¼ 1.0,
for instance, we find that qz 1.5 and Rz 0.5 mm, in excel-
lent agreement with the linear theory. These results also pre-
dict that the cell length, in contrast to the cell width, shrinks
significantly during bulging (Fig. 3 B). Consistent with our
assumption that water flow is not limiting during bulging,
when rd ¼ 0.5 mm and g ¼ 1.0, the fractional volume in-
crease relative to the healthy state is DV < 1%, whereas
for g ¼ 1.2, DV increases to DV z 25%. As mentioned
above, typical values of Lp for bacteria predict volume in-
creases on the order of DV z 20% per second. Thus, we
conclude that bulging is energetically favorable, and the
observed timescale of bulging is consistent with water
flow into the membrane.
Implications for dynamics

The foregoing analyses show that, for a range of membrane
reference areas, bulging corresponds to an equilibrium state:
the only stable configuration of the cellular envelope is one
in which bulging occurs. In general, our model predicts that
partially subtended, spherical bulges form upon the intro-
duction of cell wall defects (Fig. 3 B) and clarify the result-
ing stresses (Fig. 3, C and D). By elucidating the factors
determining bulge size, our results reveal the importance
of membrane stretching and contrast with Daly et al.’s study
examining critical defect sizes for bulge nucleation (28), in
which the authors studied the trade-off between the bending
energy cost of bulging and the pressure-volume energy
gained.

Our model also assumes that the membranes may slide
against the wall because of the differing strain rates of
envelope components. For instance, uwxx typically decreases
after bulging, whereas uixx and u

o
xx remain approximately un-

changed (Figs. 2, B and C and 3, C and D). Although mol-
ecules such as Braun’s lipoprotein anchor the OM to the cell
wall, the estimated number of such OM-wall anchors
(�106) are few in comparison to the estimated numbers
(�107) of phospholipids (52,53). Hence, free phospholipids
could modulate the reference states and allow for membrane
reorganization. The assumption of sliding is therefore
consistent with physical coupling of the OM to the cell wall.

Importantly, a central prediction of our model is that
bulging arises as a relaxation process. Hence, the timescale
of bulging is determined by the equilibration of F b.
Balancing the energy dissipation with the viscous drag on
the bulge results in a timescale much smaller than 100 ms
(Supporting Materials and Methods), suggesting that the
relaxation time may specifically be limited by membrane
reorganization (54). We anticipate further experiments
Biophysical Journal 116, 2378–2389, June 18, 2019 2385
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(for instance, ones that modulate membrane fluidity during
b-lactam killing) to better clarify the processes limiting
relaxation.
B

FIGURE 4 Statistics of swelling cells. (A) Shown is a plot of the volu-

metric flow rate dV/dt against the total membrane surface area Atot for

112 swelling cells of different lengths and one or two data points per

cell. Bulged cells were fit to cylinders with protruding spheres; see the

Supporting Materials and Methods for details on the image analysis meth-

odology. The scatter indicates cell-to-cell variability. As the slope of a

linear fit to the data is (2 5 5) � 10�9 m3$Pa/N$s, dV/dt does not increase

with Atot as dV/dt ¼ LpAtotp, and we conclude that the cellular volume in-

crease during swelling is not governed by water flow. (B) Shown is a plot of

the moving average of V�=Vi
b, the fractional bulge volume, against the

defect radius rd for the same cells in (A), with 1) the linear theory predic-

tions for different g, as found by solving Eq. 17, and 2) the prediction

corresponding to adding a hemispherical bulge of radius rd irrespective of

the model overlaid. To see this figure in color, go online.
Model of swelling

Having shown that bulging arises as a relaxation process
leading to a metastable state, we now demonstrate that
swelling—the increase of bulge volume over a much longer
timescale of minutes—is consistent with the growth of cell
wall defects. As we anticipate that the energetic trade-offs
considered above remain relevant on the slower timescale
in which cell wall defects grow, the model of bulging also
predicts bulge size during swelling, as shown below. The
significant difference between the timescales of bulging
and swelling (Fig. 1 D) can then be explained by a separa-
tion of timescales due to 1) energetic relaxation and 2)
defect growth.

During swelling, the amount of water uptake is deter-
mined by the same balance of the entropic and stretching
energies of the cellular envelope as above; if lysis did
not occur, then net flow into the cytoplasm would occur un-
til the membranes are sufficiently stretched. In fact, the
small synthesis rate of membrane material relative to water
flow (41) suggests that water flow is not limiting and that
the membranes are always stretched. To support this
notion, we analyzed the swelling of E. coli cells of
different lengths over �10 s and found that the popula-
tion-averaged volumetric flow rate does not depend on
the membrane surface area (Fig. 4 A), as would be the
case if membrane synthesis was fast and water flow
became limiting. In contrast, image analysis reveals that
bulges grow at a rate consistent with Eq. 12 when the
defect radius, rd, also increases, supporting the notion
that the reference membrane areas remain limiting
(Fig. 4 B). This result therefore suggests defect growth to
be the limiting step of bulge growth before lysis.

We next wondered whether the observed range of bulge
volumes suggested a typical value for the excess mem-
brane area; indeed, we found that the empirically
observed fractional bulge volumes in Fig. 4 B suggest
any pre-existing excess membrane area in healthy cells
to be limited. In the case in which g ¼ 1.5, for instance,
the formation of a full bulge of radius R z 1 mm, corre-
sponding to a fractional bulge volume of V�=Vi

bz0:4,
would be energetically favorable even for limitingly small
defect radii as the cell initially ‘‘throws away’’ the excess
membrane area. Nevertheless, as shown in Fig. 4 B, such
large bulge volumes are not observed for defect radii less
than �0.8 mm. Instead, the data are consistent with excess
membrane area in the range of g ¼ 1.0 to g ¼ 1.2, and the
value g ¼ 1.05 provides the best fit (Fig. 4 B). Intrigu-
ingly, the solution of Eq. 17 predicts a sharp increase in
bulge volume when g ¼ 1.05 and rd z 0.3 mm, which
arises from the transition between small and large sub-
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tended angles (Fig. 3 B). For larger values of g such as
g ¼ 1.2, the subtended angles are large across a broader
range of rd (Fig. 3 B), and hence, the predicted depen-
dence of bulge volume on the defect radius becomes
much shallower.

As our model also predicts that the mechanical stresses
in the bulge increase because of increasing bulge size,
swelling may occur until the cell lyses. Since the mean
bulge radius at lysis is R z 0.8 mm, assuming the same
parameter values as in Materials and Methods and that
the number of solutes has not changed due to osmotic
stress responses (45–47,49,55–57) suggests the yield areal
strain of the E. coli IM and OM to be approximately
20%. This estimate is consistent with the empirical range
of RBCs and lipid vesicles that are stretched on the time-
scale of 0.1–100 s (58–60) and exceeds that of RBCs under
quasistatic loading (61). The final step of lysis is, therefore,
consistent with material failure of the IM and OM under
turgor pressure loading.
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CONCLUSIONS

To summarize, we have used a continuum, elastic descrip-
tion of the cellular envelope to model membrane bulging
and found evidence that defect enlargement underlies
swelling. Our results underscore the different roles of
each envelope component in resisting mechanical stresses
and indicate that bulging can arise as a relaxation process
mediated by membrane fluidity and water flow once a wall
defect exists. These findings have implications on cellular
physiology and morphogenesis. Because bulging and
swelling result in eventual lysis and are mediated by cell
wall defects, the existence of large pores in bacterial
cell walls can be deadly.

In many rod-shaped bacteria, including E. coli, the cell
wall is locally and dynamically remodeled by protein
complexes that rotate around the cell, but how these
protein complexes maintain a cell-spanning rod shape is
unknown (62–66). Our work shows that cell wall re-
modeling processes must regulate pore size and suggests
constraints on how PG synthases can hydrolyze pre-
existing PG. Although cell wall remodeling at the
scale of the micron-sized defects considered here occurs
on a slower timescale than that of bulging (22), a growth
mechanism that regulates pore size could preemptively
help cells avoid lysis, in addition to regulating wall thick-
ness and straight, rod-like morphology (33). In general,
our work illustrates that analyzing mechanical instabilities
and failure modes in cells can constrain how physiological
growth pathways function. Conversely, exploiting the
physical consequences of large cell wall defects may
lead to novel approaches for developing new antibiotics.

Beyond bacterial morphogenesis, the combination of
theory and experiment in our work has underscored char-
acteristics of biological membrane physics and the impor-
tance of mechanical stresses in cells. By being free to
change their reference geometries, fluid membranes differ
from rigid, elastic shells, and we have shown that this dif-
ference has physiological implications on cell envelope
mechanics and how mechanical stresses are distributed
between membrane-solid layers. Our study therefore
paves the way for investigating similar interactions of
fluid membranes with elastic surfaces (67) and under-
standing the material nature of living cells across different
contexts.
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49. Çetiner, U., I. Rowe,., S. Sukharev. 2017. Tension-activated channels
in the mechanism of osmotic fitness in Pseudomonas aeruginosa.
J. Gen. Physiol. 149:595–609.

50. Peterlin, P., V. Arrigler, ., H. Diamant. 2012. Law of corresponding
states for osmotic swelling of vesicles. Soft Matter. 8:2185–2193.

51. Koiso, M. 1986. Symmetry of hypersurfaces of constant mean curva-
ture with symmetric boundary. Math. Z. 191:567–574.

52. Silhavy, T. J., D. Kahne, and S. Walker. 2010. The bacterial cell enve-
lope. Cold Spring Harb. Perspect. Biol. 2:a000414.

53. Movva, N. R., K. Nakamura, and M. Inouye. 1980. Regulatory region
of the gene for the ompA protein, a major outer membrane protein of
Escherichia coli. Proc. Natl. Acad. Sci. USA. 77:3845–3849.

54. Evans, E. A., and R. M. Hochmuth. 1976. Membrane viscoelasticity.
Biophys. J. 16:1–11.

55. Reuter, M., N. J. Hayward, ., I. R. Booth. 2013. Mechanosensitive
channels and bacterial cell wall integrity: does life end with a bang
or a whimper? J. R. Soc. Interface. 11:20130850.

56. Bialecka-Fornal, M., H. J. Lee, and R. Phillips. 2015. The rate of
osmotic downshock determines the survival probability of bacterial
mechanosensitive channel mutants. J. Bacteriol. 197:231–237.

57. Boer, M., A. Anishkin, and S. Sukharev. 2011. AdaptiveMscS gating in
the osmotic permeability response in E. coli: the question of time.
Biochemistry. 50:4087–4096.

58. Li, F., C. U. Chan, and C. D. Ohl. 2013. Yield strength of human eryth-
rocyte membranes to impulsive stretching. Biophys. J. 105:872–879.

59. Rand, R. P. 1964. Mechanical properties of the red cell membrane. II.
Viscoelastic breakdown of the membrane. Biophys. J. 4:303–316.

60. Chabanon, M., J. C. S. Ho,., P. Rangamani. 2017. Pulsatile lipid ves-
icles under osmotic stress. Biophys. J. 112:1682–1691.

61. Evans, E. A., R. Waugh, and L. Melnik. 1976. Elastic area compress-
ibility modulus of red cell membrane. Biophys. J. 16:585–595.

62. Garner, E. C., R. Bernard,., T. Mitchison. 2011. Coupled, circumfer-
ential motions of the cell wall synthesis machinery and MreB filaments
in B. subtilis. Science. 333:222–225.

63. Domı́nguez-Escobar, J., A. Chastanet, ., R. Carballido-López. 2011.
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Guide to the SM
For the convenience of readers, here we summarize main text references to the SM and note which SM
sections correspond to which references.

1. The Supporting Material contains further details regarding bacterial growth, microscopy, and image analysis.
See Supporting Materials and Methods.

2. We therefore discard the bending energies in the expressions below and verify in the Supporting Material that
they do not change our results.
See Bending energies are negligible.

3. Balancing the energy dissipation with the viscous drag on the bulge results in a timescale much smaller than
100 ms (Supporting Material), suggesting that the relaxation time may specifically be limited by water flow or
membrane reorganization.
See Timescale of the bulging response against viscous drag.

4. Bulged cells were fit to cylinders with protruding spheres; see the Supporting Material for details on the image
analysis methodology.
See Supporting Materials and Methods.

Supporting Materials and Methods

Bacterial strains and growth
The wild-type strain used in this study is E. coli MG1655, and we verified that the morphological dynamics
is statistically indistinguishable in two other wild-type strains, JOE309 and BW25113. Cells were grown in
liquid LB (LB: 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) supplemented with no antibiotics. LB
media containing 1.5% Difco agar (w/v) was used to grow individual colonies. Cells were taken from an
overnight culture, diluted 100-fold, and grown in LB at 37◦C in a roller drum agitating at 60 rpm to an
absorbance of approximately 0.3 to 0.6 (λ = 600 nm). Cells were then concentrated by centrifugation at 3000
rpm for 5min and resuspended. We added 1µL of the bacterial culture toNo. 1.5 coverslips (24×60mm) and
placed on top a 1mm thick LB agarose (1.5%) pad containing 50 µg/mL of cephalexin, a β-lactam antibiotic,
for imaging. Cephalexin was made fresh before each experiment, and cells were imaged immediately after
placing the pad.

Microscopy
We used a Nikon Ti inverted microscope (Nikon, Tokyo, Japan) equipped with a 6.5 µm-pixel Hamamatsu
CMOS camera (Hamamatsu, Hamamatsu City, Japan) and a Nikon 100x NA 1.45 objective (Nikon, Tokyo,
Japan) for imaging. All cells were imaged at 37◦C on a heated stage. The time between each frame during
timelapse measurements ranged from 10 ms to 2 s, and the duration of timelapses varied from 10 min to 3
h. Images were recorded using NIS-Elements software (Nikon, Tokyo, Japan).

Image analysis
Timelapses were compiled from previous work [1] and from ten replicate experiments described above,
which resulted in rawdata for over 500 cells. Frameswere annotatedmanually in ImageJ (National Institutes
of Health, Bethesda, MD). Bulged cells were fit to cylinders with protruding spheres with radiiR, as shown
in Fig. 3A of the main text, to determine cellular dimensions, bulge radii, defect radii, and subtended bulge
angles. All cells considered bulged in the imaging plane. For Fig. 1D of the main text, a subset of 176 cells
were chosen as cells for which bulging and lysis could be clearly resolved. For Fig. 4 of the main text, a
subset of 112 cells were chosen as cells which bulged on a timescale ∼1 s, for which the cellular dimensions
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could be determined, and for which the relevant statistics could be measured or computed at two or three
time points until ∼10 seconds after bulging. This choice of timescale was made to mitigate the potential
influence of cellular stress responses such as transport of solutes out of the cytoplasm [2], which could
confound volumetric measurements. We applied a trailing moving average filter of 10 points to generate
the moving average curve in Fig. 4B of the main text.

Bending energies are negligible
Throughout this work, we have assumed that the bending energies are negligible compared to the stretching
energies. The bending energy of an isotropic shell is Ebend = 2kb

∫
H2dA. Here kb is the bending rigidity,

H is the mean curvature, a vanishing spontaneous curvature is assumed for all surfaces for simplicity, and
the contribution of Gaussian curvature to the elastic energy is ignored due to the Gauss-Bonnet theorem
and absence of topological change. The bending energy Ewbend of the orthotropic cell wall assumes a more
complicated form involving bending rigidities in the xx, xy, and yy directions [3]. However, here we do not
consider bending deformations of the cell wall. We therefore leave the form of Ewbend unspecified and ig-
nore it in the following. We now consider the addition of these bending energies to the analysis in this study.

Here and below, we assume r = ri = ro and L = Li = Lo, which is consistent with the energetic minimum
found in themain text, but note that substantial variation in r andLdo not significantly change the following
results. The combined bending energy of the bulged state, corresponding to Eq. (12) in the main text, is

E1 =
Acell,b(k

i
b + kob )

2r2
+ 4π(kib + kob )(1− cos θ) + Eneck, (S1)

where Acell,b = 2πrL− A and Eneck is the bending energy of the bulge neck, which we now estimate. For a
spherical bulge joined to a cylinder, the mean curvature diverges at the kink of the neck. In lieu of a perfect
kink, we may suppose instead that the geometry of the neck is described by a partial, circular torus of major
and minor radii D and C (Fig. S1). While such a geometry cannot generally exist at equilibrium due to the
discussion in Homogeneity of membrane stresses, it will be helpful for estimating the strain energy.

For the torus, C can be set to satisfy conservation of membrane reference surface areas, so that the reference
area of the torus is identical to the reference area of the neck that it replaces; however, D is constrained by
the bulge radius to beD ≈ R sin θ. For cases in which the subtended angle θ ≤ π/2, the sector of the toroidal
cross-section needed to bridge the neck can be taken to be ≤ θ with its value dependent on the choice of
C, while for θ > π/2, half of the cross-section suffices over a range of C (Fig. S1). Then, as the area of the
toroidal neck is bounded by Aneck . ( θ2π )× 4π2CD, the bending energy of the toroidal neck satisfies

Eneck .

θπCDkb
(

1
C + 1

D−C

)2
θ ≤ π/2

π2CDkb
2

(
1
C + 1

D−C

)2
θ > π/2.

(S2)

For kb = 20 kT , D ∼ 1 µm, and C ∼ 10 nm, we find that the bending energy corrections indicated in
equation (S1) are of a lower order of magnitude (∼10−17 J) than the energy scale considered in the main text
(∼10−14 J, as shown in Table S1). Note that, while the stretching energy may also increase if the bulge neck
is stretched, for characteristic values of D ∼ 1 µm and C ∼ 10 nm the reference surface area occupied by
the bulge neck is on the order of 1% of that of the bulge. For simplicity, we may therefore suppose the bulge
neck to be unstrained without significantly changing any of the results presented in the main text. Taken
together, these considerations suggest that it is indeed justifiable to neglect the bending energies and the
energetic contribution of the neck; neither do they present energetic barriers to relaxation.

3



Timescale of the bulging response against viscous drag
We show that balancing the energy change computed above with the viscous drag on the bulge implies
a timescale that is smaller than 100 ms, and hence energy dissipation cannot account for the observed
timescale of bulging. The characteristic scale of the free energy change due to bulging in our work is 10−14 J,
while the power dissipation due to viscous drag on an expanding sphere is 16πηṘ2R, where η denotes the
medium viscosity andR is the radius of the sphere [4]. Supposing the viscosity of water, η = 10−3 Pa ·s, and
estimating R = 0.5 µm and Ṙ = 0.5 µm/(100 ms) then results in an energy scale of 10−19 J/s. Equivalently,
a power dissipation of 10−14 J/(100 ms) implies a bulging timescale of ∼ 0.1 ms.

Supporting Movies
Movie S1: Lysis dynamics of E. coli cells. Movie S1 shows a population of wild-type E. coli cells bulging,
swelling, and lysing under antibiotic treatment. The time between frames is 30 seconds, the timelapse covers
a period of approximately 1 hour, and the field of view is 100 µm× 80 µm.

Supporting References
[1] Yao, Z., Kahne, D. & Kishony, R. Distinct single-cell morphological dynamics under beta-lactam antibi-

otics. Mol. Cell 48, 705–712 (2012).

[2] Buda, R. et al. Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity.
Proc. Natl. Acad. Sci. USA 113, E5838–E5846 (2016).

[3] Ventsel, E. & Krauthammer, T. Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker,
Inc., 2001).

[4] Spurk, J. H. Fluid Mechanics: Problems and Solutions (Springer-Verlag, 1997).
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γ 1.0 1.2
Eq. (7) in the main text

rw 0.530 (0.534) 0.539 (0.552)
Lw 9.989 (9.875) 10.555 (10.875)
ri 0.530 (0.534) 0.539 (0.552)
Li 9.989 (9.875) 10.555 (10.875)
ro 0.530 (0.534) 0.539 (0.552)
Lo 9.989 (9.875) 10.555 (10.875)
ri0 0.517 (0.519) 0.539 (0.555)
Li0 9.673 (9.604) 10.555 (10.917)
ro0 0.517 (0.519) 0.539 (0.555)
Lo0 9.673 (9.604) 10.555 (10.917)
Fe -3.5307e-12 (-3.5299e-12) -3.5528e-12 (-3.5442e-12)

Eq. (12) in the main text
r 0.529 (0.530) 0.509 (0.507)
L 9.780 (9.758) 8.940 (9.163)
ri0 0.516 (0.516) 0.489 (0.485)
Li0 9.520 (9.488) 8.585 (8.775)
ro0 0.516 (0.516) 0.489 (0.485)
Lo0 9.520 (9.488) 8.585 (8.775)
Ri0 0.491 (0.486) 1.010 (0.998)
Ro0 0.491 (0.486) 1.010 (0.998)
R 0.504 (0.500) 1.049 (1.042)
θ 1.445 (1.587) 2.645 (2.641)
Fb -3.5342e-12 (-3.5357e-12) -3.6354e-12 (-3.6389e-12)

Table S1: Approximate minimizers (in units of µm or J) found numerically for different values of γ and, for
Eq. (12) in themain text, rd = 0.5 µm. For comparison, the linear theory estimates are shown in parentheses.
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Supporting Figures
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Figure S1: Bending energy at the neck. To avoid the divergence of the bending energy at the neck, we con-
nect the bulge to the cylindrical bulk with a partial torus and estimate the resulting energetic contribution.
The planar diagrams show cross-sections of the axisymmetric geometries.
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