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SUMMARY

The quantitative concepts used to reason about
gene regulation largely derive from bacterial studies.
We show that this bacterial paradigm cannot explain
the sharp expression of a canonical developmental
gene in response to a regulating transcription factor
(TF). In the absence of energy expenditure, with reg-
ulatory DNA at thermodynamic equilibrium, informa-
tion integration across multiple TF binding sites can
generate the required sharpness, but with strong
constraints on the resultant ‘‘higher-order coopera-
tivities.’’ Even with such integration, there is a ‘‘Hop-
field barrier’’ to sharpness; for n TF binding sites, this
barrier is represented by the Hill function with the Hill
coefficient n. If, however, energy is expended to
maintain regulatory DNA away from thermodynamic
equilibrium, as in kinetic proofreading, this barrier
can be breached and greater sharpness achieved.
Our approach is grounded in fundamental physics,
leads to testable experimental predictions, and sug-
gests how a quantitative paradigm for eukaryotic
gene regulation can be formulated.

INTRODUCTION

The molecular machinery which transcribes DNA into RNA is

general purpose. Deciding which gene to transcribe requires

regulatory DNA sequence information, which is interpreted by

sequence-specific, DNA-binding transcription factors (TFs).

Quantitative measurements of TF-DNA and TF-TF interactions

in bacteria (Ptashne, 2004), together with analysis of the under-

lying physics (Ackers et al., 1982), have introduced fundamental

quantitative concepts like ‘‘affinity’’ and ‘‘cooperativity’’ to

explain the regulated recruitment of RNA polymerase to a

gene. This bacterial paradigm has been widely used to interpret

experimental results even outside the bacterial domain. How-

ever, eukaryotic transcription differs considerably from bacterial

transcription; as a result, this raises the question of whether the

bacterial paradigm is sufficient to explain how eukaryotic genes

are regulated.

Bacterial TF sequence motifs have an average length of 16

base pairs, and those in eukaryotes are only half as long (Wun-

derlich and Mirny, 2009), suggesting that eukaryotes depend
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on combinatorial integration of many small packets of informa-

tion. Such information integrationmight be implemented through

nucleosomes or by multi-protein co-regulators, such as Medi-

ator or CBP/p300, that make multiple contacts between TFs

and the transcriptional machinery (Spitz and Furlong, 2012).

Also, while bacterial gene regulation appears not to require en-

ergy from donors like ATP, making it reasonable to assume

that it takes place at thermodynamic equilibrium, eukaryotic

gene regulation depends on energy expenditure to reorganize

chromatin, displace nucleosomes, post-translationally modify

regulatory proteins, andmethylate DNA. This qualitative appreci-

ation of eukaryotic complexity has been difficult to translate into

rigorous, well-defined concepts and new kinds of experiments

that can explain the role of these molecular mechanisms in

gene regulation.

Quantitative models grounded in physics could fill this critical

gap. The physics-based ‘‘thermodynamic formalism’’ developed

for bacteria assumes that regulation takes place at thermody-

namic equilibrium. This formalism has been codified (Bintu

et al., 2005) and applied to gene regulation in Drosophila, yeast,

and human cells (Segal and Widom, 2009; Sherman and Cohen,

2012). However, the molecular complexity found in eukaryotes,

especially the complexity that implements the information inte-

gration and energy expenditure described above, has not been

incorporated into these models.

Questions about the sufficiency of the bacterial paradigm have

been accumulating (Coulon et al., 2013), but the absence of a

compelling example and the lack of appropriate concepts

make it easy to fall back on what is familiar. Here, we present a

compelling example of insufficiency and introduce appropriate

quantitative concepts, rigorously based on the underlying phys-

ics, with which to reason about eukaryotic gene regulation.

We bring together three ingredients that exemplify a general

approach to the problem. First, we focus on a property of gene

regulation that can be described quantitatively; second, we iden-

tify a biological system in which that property has been

measured; and, third, we exploit a mathematical framework

that allows us to analyze both equilibrium and non-equilibrium

systems.

The quantitative property on which we focus is the sharpness

of gene expression in response to a TF, or the extent to which a

small change in TF concentration can lead to a larger change in

gene expression. Sharpness has been investigated in several

biological systems, but is particularly evident in developmental

patterning. The zygotic gap gene hunchback (hb) is expressed

in an anterior region of the early Drosophila embryo under
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A B C Figure 1. Sharpness in Development and

Cooperativity Mechanisms

(A) Top: Drosophila embryo stained for Hb

expression. Bottom: plot adapted from Figure 4A

of Gregor et al. (2007) showing mean ± SE of Hb

and Bcd from several embryos (blue) and a fit to

the Hill function H5 (red).

(B) Examples of indirect, long-distance coopera-

tivity, adapted from Figure 1 of Spitz and Furlong

(2012).

(C) Top: pairwise cooperativity between two sites.

Bottom: higher-order cooperativity of order three.
regulation by the maternal morphogen Bicoid (Bcd) (Figure 1A).

The expression levels of Hb and Bcd proteins are related to

each other in a way closely approximated by a simple algebraic

expression (Gregor et al., 2007):

½Hb�
½Hb�max

z
x5

1+ x5
: (1)

Here, the concentration of Hb, denoted ½Hb�, is normalized to its

maximal level, and x denotes Bcd concentration, normalized to

the value at which half-maximal Hb expression is reached, so

that x = ½Bcd�=½Bcd�0:5. Equation 1 describes the hb gene regula-

tion function, which quantitatively expresses how the output of

hb depends on ½Bcd�.
The expression in Equation 1 is a Hill function, Ha(x) = xa /

(1 + xa), for which the Hill coefficient, a, has the value a= 5.

Increasing Hill coefficients imply increasing sharpness. In Equa-

tion 1, the sharpness represented by a= 5 reflects the precision

with which individual nuclei use Bcd to determine their position

along the anterior-posterior axis and create the tight boundary

between Hb ‘‘on’’ and Hb ‘‘off.’’

Gregor et al. (2007) explain how the sharpness in Equation 1

arises by saying that it is ‘‘consistent with the idea that Hb

transcription is activated by cooperative binding of effectively

five Bcd molecules.’’ This reflects the conventional bacterial

paradigm, in which sharpness is accounted for at thermody-

namic equilibrium by pairwise cooperativity between TFs,

whereby TF binding at one site influences the affinity of TF

binding at another site (Ptashne, 2004). With n binding sites

and pairwise cooperativity, it is widely believed, as Gregor

et al. (2007) suggest, that sharpness corresponding to a Hill

coefficient of n can be achieved, without requiring any expendi-

ture of energy.

To examine this idea, we use a recently introduced mathemat-

ical framework that generalizes the thermodynamic formalism to

accommodate mechanisms that expend energy (Ahsendorf
et al., 2014). We show that for regulatory

DNA at thermodynamic equilibrium with

only pairwise cooperativity, the experi-

mentally measured sharpness described

in Equation 1 cannot be biochemically

realized, no matter how many TF binding

sites are present. The widely held belief

that the bacterial paradigm can be
extrapolated in this way is not rigorously justified. We believe

this is a compelling example of its insufficiency.

Information integration through nucleosomes or co-regulators

could yield indirect, long-distance forms of cooperativity (Fig-

ure 1B), which could link multiple TF binding sites. To account

for this, we introduce the concept of ‘‘higher-order cooperativ-

ity’’ at thermodynamic equilibrium (Figure 1C). If such coopera-

tivities are present, greater levels of sharpness become possible.

With n binding sites and higher-order cooperativities, a Hill

coefficient of n or more still remains out of reach, but a Hill

coefficient less than n can be achieved. Furthermore, not just

the Hill coefficient but also the overall shape of the gene regula-

tion function (GRF) can match what is found experimentally:

with enough binding sites, GRFs can be found that are statisti-

cally indistinguishable in shape from the Hill functions in

Equation 1. However, these GRFs lie on the edge of what can

be biochemically achieved and impose stringent quantitative

constraints on the mechanisms responsible for higher-order

cooperativity.

Higher-order cooperativities improve sharpness but reveal

fundamental barriers to what can be achieved without the

expenditure of energy. The existence of such barriers was first

suggested in Hopfield’s work on kinetic proofreading (Hopfield,

1974; Ninio, 1975). He showed, in effect, that if a biochemical

systemoperates at thermodynamic equilibrium, then physics im-

poses a barrier to how well a given information processing task

can be accomplished. (In his case, the task was achieving fidelity

in transcription and translation.) The only way to bypass this bar-

rier is to expend energy andmaintain the system away from equi-

librium. Kinetic proofreading is one way to do this.

Here, we identify a ‘‘Hopfield barrier’’ for sharpness in gene

regulation. With n binding sites, a Hill coefficient of n sets the

Hopfield barrier; at thermodynamic equilibrium, no GRF can

reach it, even with higher-order cooperativities. If, however, en-

ergy is expended to maintain regulatory DNA away from equilib-

rium, then much greater sharpness can be achieved.
Cell 166, 234–244, June 30, 2016 235
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Figure 2. Linear Framework Model

(A) The graph G3 showing the 8 microstates and the associated labeled,

directed edges, with middle-layer labels omitted for clarity.

(B) The essential parameters at thermodynamic equilibrium. The association

constants Ki;S have units of ðconcentrationÞ�1, and ki and ui;S are non-

dimensional. SWfig is the set in which site i has been added to the sites in S.

(C) The higher-order cooperativity ui;S measures whether binding of T to site i,

when T is already bound to the sites in S, shows reduced affinity ðui;S < 1Þ,
unchanged affinity ðui;S =1Þ, or enhanced affinity ðui;S > 1Þ, as compared to

binding to site i, when no other sites are bound.
RESULTS

The Rationale for the Model
We introduce a mathematical model for analyzing gene regula-

tion. As with all models, the conclusions depend on the assump-

tions (Gunawardena, 2014). Our assumptions are guided by the

example of hb, but the model is general and not restricted to this

example. The anterior expression pattern of hb is believed to be

regulated by, at least, three enhancers (Perry et al., 2011). Both

the classical P2 enhancer, which is promoter proximal, and a

shadow enhancer, located�3 kb upstream, drive broad anterior

patterns early in embryo development. Later, the central stripe

enhancer drives expression near the middle of the embryo.

Bcd is a transcriptional activator for the P2 and shadow en-

hancers; the stripe enhancer is also targetted by transcriptional

repressors. The stripe enhancer has no effect on sharpness early

in nuclear cycle 14 (Perry et al., 2012), when the data on which

Equation 1 is based (Gregor et al., 2007) were acquired.

Accordingly, we focus on a single TF, binding to a specified

but arbitrary number of sites and functioning solely as a tran-

scriptional activator. TF binding sites can be anywhere on the

genome and are not assumed to be confined to a single

enhancer; thus, our analysis is not limited to the 5–7 Bcd binding

sites thought to be present in the hb P2 enhancer.
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Molecular mechanisms other than TF binding and unbinding,

such as nucleosomes or co-regulators, are not directly repre-

sented in our model, but their influence is captured through their

effects on rate constants and the dependence of these con-

stants on the state of DNA (‘‘microstate’’, see below). This per-

mits general conclusions to be drawn without knowing the

specific mechanisms at work in a particular gene but does not

allow us to assign mechanisms to the effects we find. Other

molecular features, such as post-transcriptional mechanisms

or network effects like feedback, could influence sharpness,

but these are not thought to be relevant for Bcd regulation

of hb. Addressing such features in future work may yield further

insights into sharpness.

A Graph-Based Model of Gene Regulation
We recently developed a graph-based ‘‘linear framework’’ for

modeling gene regulation (Ahsendorf et al., 2014). We use this

to formulate a general model of a gene responding to a TF, called

T, binding as a monomer to a number, n, of sites. Oligomeriza-

tion of a TF in solution can contribute to gene-expression sharp-

ness, but it is not thought to be significant in Bcd regulation of hb

(Lebrecht et al., 2005; Gregor et al., 2007), and we do not

consider it here. In this section and the next, we discuss the

quantitative details of how T binds and unbinds, how cooperativ-

ity is defined, and how T influences transcription.

The model consists of the labeled, directed graph, Gn (Fig-

ure 2A). The vertices ofGn represent the microstates, or patterns

of T bound to DNA, with the binding sites labeled by the numbers

1;/;n. The edges represent binding or unbinding of T from the

microstates. Each edge has a label describing the rate of the cor-

responding reaction. The label on a binding edge is the product

of the concentration of T, ½T �, and an on-rate for binding, ai;S,

where i is the binding site and S is the subset of sites at which

T is already bound. Subsets are denoted fi1;/; ikg, where the

site indices, i1;/; ik , are drawn from the numbers 1;/;n. The la-

bel on an unbinding edge is an off-rate, bi;S0 , where S0 is the sub-

set of sites to which T is bound and i is one of the sites in S0.
Importantly, the on-rates, ai;S, and the off-rates, bi;S0 , can

depend on the site of binding or unbinding, i, as well as on the

pattern of existing binding to a subset of sites, S or S0. This re-

flects the potential influence of background mechanisms, such

as nucleosomes or co-regulators, and allows higher-order coop-

erativities to be introduced below.

The linear framework describes how such a graph gives rise to

a stochastic master equation for the probabilities of the micro-

states. As in the thermodynamic formalism, we make the basic

assumption that regulatory DNA is at steady state. However, un-

like the thermodynamic formalism, the linear framework allows

steady-state probabilities to be calculated regardless of whether

or not the system is at thermodynamic equilibrium (Ahsendorf

et al., 2014); see the Experimental Procedures and the Supple-

mental Information.

Higher-Order Cooperativities and the Exchange
Formula
Higher-order cooperativity betweenmultiple TFbinding sitesmay

be important in gene regulation, but thermodynamic formalism

models have usually been limited to pairwise cooperativity. This



is not a fundamental limitationbut arises from technical difficulties

with the principle of detailed balance, which imposes algebraic

constraints on higher-order cooperativities (Supplemental Infor-

mation) that have not beenworked out within the thermodynamic

formalism. Detailed balance, or ‘‘microscopic reversibility,’’ is a

fundamental requirement arising from the time-reversal symme-

try of the laws of physics (Mahan, 1975). The constraints are a

serious obstacle because they mean that the numerical values

of higher-order cooperativities cannot be chosen independently.

Thus, it is important to determine these constraints (Equation 2)

and to thereby identify a subset of cooperativities for which the

numerical values are independent (Equation 3).

If the regulatory system described byGn can reach thermody-

namic equilibrium, the relevant parameters are the association

constants Ki;S (Figure 2B), of which there are n2n�1 (Supple-

mental Information). To define higher-order cooperativities at

equilibrium, we compare the binding of T to site i when T is

already bound at the sites in S ðKi;SÞ to the binding of T to site i

when T not bound elsewhere (Ki;B, where B denotes the empty

set). This yields a non-dimensional higher-order cooperativity,

ui;S =Ki;S=Ki;B, for which the value indicates whether or not there

is positive or negative cooperativity or independence (Figure 2C).

To non-dimensionalize the remaining association constants, we

define ki =Ki;B=K1;B,

The number of sites in S is called the order of ui;S and denoted

#S; it specifies how many sites collaborate to influence binding.

Pairwise cooperativity corresponds to order 1. Thermodynamic

formalism models set ui;S = 1 for #S> 1. In this case, detailed

balance reduces to a symmetry requirement on pairwise cooper-

ativities, ui;fjg =uj;fig (see Equation 2). With only pairwise cooper-

ativity, there are only nðn� 1Þ=2 parameters, instead of n2n�1;

this greatly simplifies thermodynamic formalism calculations.

We prove that, because of detailed balance, higher-order co-

operativities must satisfy the ‘‘exchange formula’’ (Supplemental

Information),

ui;SWfjguj;S = uj;SWfigui;S; (2)

which summarizes the algebraic constraints among the cooper-

ativities. Here, i, j are sites not in S, while the notation SWfvg, for
v = i or v = j, denotes the addition of v to the sites in S. We further

prove that, if we retain only those ui;S for which i is less than all

the sites in S (abbreviated i < S), then the parameters

K1;B; ki ði > 1Þ; ui;S ði < SÞ; (3)

of which there are 2n � 1, are algebraically independent, and all

the Ki;S can be calculated from them using Equation 2 (Supple-

mental Information). We can thus vary the parameters in Equa-

tion 3 independently and be confident that detailed balance

holds. These fundamental results provide the basis for the equi-

librium calculations that follow.

Equilibrium Gene Regulation Functions
To calculate a gene regulation function (GRF), wemake the same

basic assumption as in the thermodynamic formalism and

consider the overall rate of transcription to be an average over

the steady-state probabilities of the microstates. For this, we
must specify the rate of transcription in each microstate, about

which surprisingly little is known for eukaryotic genes. As ex-

plained above, we assume that T acts as a transcriptional acti-

vator (Supplemental Information), so that the binding of T does

not reduce the expression level. We consider three expression

strategies which work for any number of sites (Figure 3A): all-

or-nothing, in which transcription only occurs when all sites are

bound; one-or-more, in which transcription occurs when at least

one site is bound; and average binding, in which transcription is

proportional to the number of bound sites.

It is computationally infeasible to explore all expression strate-

gies, but these three strategies broadly sample the spectrum of

possibilities (Supplemental Information). All-or-nothing and one-

or-more are extreme opposites, while average binding is an

intermediate strategy. All-or-nothing is widely used in thermody-

namic formalism models, and average binding corresponds to

the ‘‘fractional saturation’’ used in models of protein allostery

(Monod et al., 1965; Mirny, 2010).

The level of protein expression after normalization to its

asymptotic maximum is a rational function of x = ½T �, denoted
fnðxÞ, which has the form, for the all-or-nothing strategy (Supple-

mental Information),

fnðxÞ= cnx
n

1+ c1x +/+ cnxn
: (4)

The coefficients ck are given (Supplemental Information) by a

sum of products

ck =

 X
1%i1 </< ik%n

 Yk
j = 1

kijuij ;fij +1 ;/;ikg
!!

ðK1;BÞk ; (5)

which involves only the independent parameters in Equation 3

and allows higher-order cooperativity of any order up to the

maximum of n� 1. For the other strategies (Figure 3A), only

the numerator of Equation 4 changes (Supplemental Informa-

tion). The GRFs discussed in this paper are strictly increasing

functions (Supplemental Information). For the all-or-nothing

strategy at equilibrium, they also appear to be sigmoidal

(‘‘S shaped’’), so that the derivative of the GRF has only a single

maximum, but this is not so in general (Figure 3B).

The algebraic form of the Hill function, Ha(x) = xa / (1 + xa), is

closest to that of the GRF for the all-or-nothing strategy in Equa-

tion 4 (Supplemental Information). If a< n, it is clear that the

former cannot algebraically resemble the latter because the de-

grees of their respective denominator polynomials are different.

If a= n, algebraic resemblance is only possible, and then only

approximately, if the parameters in the GRF are given implau-

sible numerical values (Supplemental Information). We see that

Hill functions are not GRFs. However, the question posed by

Equation 1 is whether a GRF can match the shape of a Hill func-

tion. This is a more delicate problem.

Position and Steepness as Quantitative Measures of
Shape
To determine the match between a GRF and a Hill function, we

introduce two quantitativemeasures of shape.We first normalize

the concentration scale of x = ½T �, in a similar way to Equation 1,
Cell 166, 234–244, June 30, 2016 237
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Figure 3. Gene Expression Strategies and

Shape Measures

(A) The graph G3, with pairs of reversible edges as

unlabelled single lines for clarity, illustrating three

expression strategies for a transcriptional acti-

vator. Each microstate is annotated with a number

describing the corresponding rate of gene

expression, with the maximal rate normalized to 1.

(B) Plot of a hypothetical GRF (black), together with

its derivative (red) showing steepness ðrÞ and po-

sition ðgÞ, as defined in Equation 6. The derivative

can have multiple local maxima, and r and g are

defined at the global maximum.
by taking x0:5 to be the concentration at which fn is half-maximal,

so that fnðx0:5Þ= 0:5, and setting y = x=x0:5. The normalized GRF

is gnðyÞ= fnðyx0:5Þ, where y and gnðyÞ are now both non-dimen-

sional quantities. Note that for HaðxÞ, x0:5 = 1, so that Hill func-

tions are already normalized.

To quantify shape, we take the maximum derivative, rðgnÞ
(‘‘steepness’’), and the position of the maximum derivative

gðgnÞ (‘‘position’’),

rðgnÞ= max
yR0

dgn

dy
; gðgnÞ= z such that

dgn

dy

����
y = z

= rðgnÞ; (6)

which are also non-dimensional quantities (Figure 3B). The

advantage of g and r is that they can be calculated from gn, in

contrast to a numerical fit to a Hill function, which is subject to

statistical noise. Two GRFs with the same g and r (‘‘matched’’)

are not identical but have similar sharpness. Considering only

onemeasure of sharpness, such as r, can bemisleading (below).

Impact of Higher-Order Cooperativity on Sharpness
We first determined the position and steepness of a GRF in the

all-or-nothing strategy with n= 5 sites, allowing higher-order co-

operativity of any order. Although g and r depend only on the co-
238 Cell 166, 234–244, June 30, 2016
efficients ck in Equation 5, these aggre-

gated parameters have no biochemical

meaning and we seek instead to under-

stand how g and r depend on the affinities

and cooperativities in Equation 3, which

are defined in terms of molecular interac-

tions. Because of normalization, g and r

do not depend on K1;B (Supplemental In-

formation), so we set K1;B = 1 in units of

ðconcentrationÞ�1 and chose ki and ui;S

to be in the range ½10�3; 103� by random

logarithmic sampling. We believe this

range is generous, but most of our results

do not depend on it (below; Supplemental

Information).

A sample of 105 GRFs chosen in this

way reveals that position and steepness

are not independent but are constrained

within a crescent-shaped region in which

the highest steepness is found at the ex-

tremes of position (Figure 4A). On the
left of the region, high steepness occurs only for very low position

and the resultant GRFs are highly degenerate: when these GRFs

are fitted to Hill functions, they yield a Hill coefficient of a= 1

(inset at top and caption). The marginal distribution (top) shows

that these degenerate GRFs account for nearly half of all GRFs

in this parameterisation. Degeneracy underscores the impor-

tance of considering g together with r.

The upper edge of the crescent-shaped region has low prob-

ability. We therefore used, for Figure 4 and those that follow, a

biased sampling algorithm to identify the boundary of the region

(Supplemental Information), with the same parameter range

but with the GRFs filtered so that gðgnÞ lies in the interval

½0:5gðHnÞ;1:5gðHnÞ�. This focuses on the GRFs of interest and

avoids the degeneracy near gðgnÞ= 0. We found the gray bound-

ary in Figure 4A.

The right-hand edge of the gray boundary coincides with that

of the randomly sampled region in a series of line segments.

Strikingly, the ‘‘Hill line’’ on which Hill functions are located

(magenta curve) lies just to the right of this boundary. We see

that a GRF cannot have greater position than a Hill function

of the same steepness, so that the Hill functions define a

barrier. The line segments on the boundary of the region touch

the Hill line at their corners and these occur, surprisingly, at
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Figure 4. Position and Steepness for n=5 Sites

(A) Probability density function (blue points) of ðgðg5Þ; rðg5ÞÞ, obtained by random sampling, with the respective marginal distributions (top and right). The inset

(top) shows the GRF of the marked point, annotated with the value a obtained by fitting toHa. The gray line marks the boundary of the position-steepness region,

obtained by a biased sampling algorithm (Supplemental Information). The magenta line is the locus of ðgðHaÞ; rðHaÞÞ for varying a (the ‘‘Hill line’’), with the integer

values of a marked by magenta crosses and numbers.

(B) Higher-order cooperativities (left), plotted on a logarithmic scale, for the GRFs closest in ðg; rÞ distance to the integer Hill coefficients (magenta crosses) in (A),

with the Hill coefficient annotated on the left (magenta). The corresponding curve (right) is annotated with the value a, obtained by fitting to Ha.

(C) Position-steepness boundaries with the parameter range [10�p, 10p] for varying p. At the top are the higher-order cooperativities (left) and curve (right) for the

marked GRF closest to H5 within the p= 5 region, plotted as in (B).

(D) Position-steepness regions for all three expression strategies; see also Figures 6 and S1.

See also Figure S1.
exactly the integer values, 2, 3, 4, of the Hill coefficient. When

the GRFs which are closest to these points are fitted to Hill

functions, the estimated Hill coefficients correspond very

closely to the integer values (Figure 4B, right). Such a close cor-

respondence in fitted shape is unexpected in view of the lack of

algebraic resemblance between GRFs and Hill functions, as
discussed above. The emergence of bona fide GRFs which

closely match the shape of Hill functions with integer Hill coef-

ficients is intriguing in view of the coefficient 5 found in Equa-

tion 1. However, this shape matching requires high levels of

positive and negative higher-order cooperativity of all orders

(Figure 4B, left).
Cell 166, 234–244, June 30, 2016 239
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Figure 5. Pairwise Cooperativity Only

(A and B) Each panel uses the color-code in the center and shows the Hill line in magenta. (A) Position-steepness regions for the all-or-nothing strategy. (B)

Position-steepness regions for the one-or-more (top) and average-binding (bottom) strategies. The biased sampling algorithm had to be modified to find the

average-binding regions (Supplemental Information).
The boundary of the position-steepness region lies below H5

and approaches it at the tip of a cusp. Changing the parameter

range does not alter the line segments in the boundary, but the

tip of the cusp approaches closer toH5 as the range is increased

(Figure 4C). The GRF closest to H5 has a fitted Hill coefficient

close to 5 (top, right), although not as close as for integer values

less than 5. This still requires high levels of positive and negative

higher-order cooperativity of all orders (top, left).

Each expression strategy reveals a different trade-off between

position and steepness (Figure 4D). The Hill line also presents a

barrier to the one-or-more strategy but from the opposite side,

while the average-binding strategy straddles the Hill line. For the

one-or-more strategy, the position-steepness region approaches

at cusps the Hill functions whose coefficients are integers less

than 5 (Figure 4D) but, in contrast to the all-or-nothing strategy,

the region does not touch the Hill line and the integer-valued Hill

functions are not closely matched to the nearest GRFs unless

the parameter range is increased (data not shown). The barrier

presented by the Hill line seems, therefore, to act differently in

the all-or-nothing and one-or-more strategies. Regardless of the

expression strategy, H5 offers a barrier to all strategies with

n= 5 sites: each region lies below it and only approaches it at

the tip of a cusp as the parameter range is increased.

The features found above are reproduced for different

numbers of sites (Figure S1 for n= 7 sites).

Pairwise Cooperativity Alone Permits Limited
Sharpness
Thermodynamic formalism models have typically been limited

to pairwise cooperativity. We restricted ourselves to pairwise

cooperativity by setting ui;S = 1 for#S> 1. We found that the po-

sition-steepness region for the all-or-nothing strategy increases

initially with increasing n but then shrinks in extent and no GRF
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approaches close to H5 (Figure 5A). The one-or-more and

average-binding strategies do not even get close to H3

(Figure 5B).

Thus, in contrast to common assumptions, pairwise coopera-

tivity alone is insufficient for sharp responses in eukaryotic

genes. None of the expression strategies considered here can

account for H5 in Equation 1 with only pairwise cooperativity,

no matter how many sites are available.

Non-equilibrium GRFs Exceed the Equilibrium
Sharpness Barriers
If the system is maintained away from thermodynamic equilib-

rium by energy expenditure, detailed balance no longer holds.

The non-equilibrium GRF for the all-or-nothing strategy then

takes the form (Supplemental Information)

fnen ðxÞ= dnx
n +/+d2n�1x

2n�1

e0 + e1x +/+ e2n�1x2
n�1

; (7)

where the coefficients of the highest order term, x2
n�1, in the

numerator and the denominator are equal, so that d2n�1 =

e2n�1. GRFs for the other strategies differ only in the numerator

(Supplemental Information). The denominator of Equation 7

shows a striking increase in degree, from n to 2n � 1, in compar-

ison to that of the equilibrium fn in Equation 4, despite the number

of sites being the same.

The parameters in Figure 2B are no longer meaningful away

from equilibrium and the coefficients di and ei in Equation 7 are

expressions in the rate constants ai;S and bi;S0 . For reasons dis-

cussed below, the largest number of sites that we can feasibly

analyze is n= 3 (Supplemental Information).

We took non-dimensional parameters ai;S=a1;B and bi;S0=b1;f1g
in the range ½10�2;102�, deliberately restricting the range so that,



Figure 6. The Non-equilibrium Case for n= 3 Sites

Position-steepness regions for all expression strategies, showing the equilibrium (blue) and non-equilibrium (black) boundaries. The horizontal scale for the one-

or-more strategy is extended.

See also Figure S2.
if the system were at equilibrium, it would be comparable with

the previous equilibrium analysis (Supplemental Information).

Because of normalization, the steepness and position of gne
n

are independent of the values of a1;B and b1;f1g (Supplemental In-

formation), so we set a1;B = 1 and b1;f1g = 1 in their respective

units. For each expression strategy, we found (Figure 6) that

the non-equilibrium position-steepness region is much enlarged

(black boundary) compared to the corresponding equilibrium

region for the same number of sites (blue boundary). The non-

equilibrium regions now include the Hill line up to H3 and the

all-or-nothing region can reach as far as H5 if the parameter

range is increased (Figure S2A).
The limitation to n= 3 sites arises from loss of detailed balance,

which leads to a dramatic increase in the complexity of the coef-

ficients in Equation 7 (Supplemental Information; see the Discus-

sion). This complexity is algebraic, not numerical. To compute

position-steepness regions, cooperativities are treated as sym-

bols whose numerical values are assigned by sampling. Sym-

bolic calculation of the GRF is extremely expensive away from

equilibrium but numerical calculation of individual GRFs pre-

sents no particular difficulty.

Symbolic treatment of parameters is informative because it

reveals the structure of the non-equilibrium GRF (Equation 7).

The denominator of this GRF increases in degree exponentially
Cell 166, 234–244, June 30, 2016 241



with n but the denominator of the equilibrium GRF (Equation 4)

increases only linearly. This discrepancy arises from loss of

detailed balance (Supplemental Information). With n= 3 sites,

the non-equilibrium position-steepness region comfortably ex-

ceeds the equilibrium region (Figure 6). Because of the exponen-

tial increase in the degree of the GRF denominator, when there

are n= 5 sites, or however many sites are relevant for Bcd regu-

lation of hb, the discrepancy in the position-steepness regions

will be even greater and the non-equilibrium region will extend

well beyond H5.

In confirmation of this, we used numerical parameter values to

find a non-equilibrium GRF on n= 5 sites, with parameters in the

same range, ½10�2; 102�, as in Figure 6, whose position and

steepness match that ofH6 (Figure S2B). If the parameter range

is increased to ½10�3; 103�, then there is a GRF on four sites, for

which position and steepness match that of H5:7 (Figure S2B).

Being away from equilibrium makes it much easier to achieve

the sharpness required for Equation 1.

DISCUSSION

Eukaryotic gene regulation lies at the nexus of many of the cen-

tral issues in modern biology, including multi-cellular develop-

ment (Davidson, 2006), the evolution of complexity (Carroll,

2008), cellular reprogramming (Takahashi and Yamanaka,

2016) and synthetic biology (Keung et al., 2015). The extraordi-

nary molecular complexity implicated in such regulation con-

tinues to present a formidable challenge. It has made it difficult

to see the wood for the trees, to discern general principles and

to unravel how different molecular mechanisms contribute to

specific forms of information processing.

In this paper, we have presented compelling evidence that the

bacterial paradigm, upon which it has been so convenient to

default, is not sufficient for reasoning about eukaryotic genes

and we have introduced appropriate quantitative concepts for

doing so. We have done this by taking seriously the lessons of

the bacterial paradigm itself. The paradigm relied on analyzing

the physics of interaction between TFs and DNA. What we

have done here is to update this foundation for two of the key

processes that influence gene-expression sharpness in eukary-

otes: information integration and energy expenditure.

While information integration is often acknowledged, it has not

been defined sufficiently clearly to know how to find it, making

experimental analysis problematic. We have introduced the

concept of ‘‘higher-order cooperativity,’’ ui;S (Figure 2B), for a

system at thermodynamic equilibrium, as a measure of how

the affinity of TF binding at site i is influenced by the presence

of TF bound at the sites in S. This is a precisely defined quantity

that allows experimentally-testable hypotheses to be framed.

Different TFs often work together and the definition of higher-

order cooperativities that we have given here for homotypic in-

teractions of a single TF can be readily extended to heterotypic

interactions between different TFs. Such cooperativities could

arise from nucleosomes (Mirny, 2010; Voss et al., 2011) or

from co-regulators like Mediator and CBP/p300 (Borggrefe and

Yue, 2011; Wang et al., 2013). Mediator is especially provocative

as a potential mechanism of higher-order cooperativity. Medi-

ator has around 30 subunits and the Med1 subunit alone inter-
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acts with up to 20 different TFs (Borggrefe and Yue, 2011).

Some TFs interact with multiple subunits and the overall Medi-

ator complex exhibits different conformations, which suggests

how local information may be globally integrated (Nussinov

et al., 2013). Our analysis shows that if gene expression follows

an all-or-nothing strategy, high levels of positive and negative

higher-order cooperativity of all orders are needed to yield high

levels of sharpness (Figures 4B and 4C). Experimental measure-

ments will show whether co-regulators like Mediator or CBP/

p300 can meet these requirements.

When energy is expended during gene regulation, much

higher sharpness can be achieved for the same number of TF

binding sites (Figure 6). The concept of a ‘‘Hopfield barrier’’

offers a way to articulate this rigorously. With n binding sites,

the Hopfield barrier to sharpness is set by the Hill function Hn,

whose steepness cannot be exceeded by any equilibrium GRF

(Figure 4D). For GRFs in the all-or-nothing strategy, the Hill line

itself forms a Hopfield barrier (Figure 4C). However, both these

barriers are readily breached away from equilibrium (Figures 6

and S2).

There are many routes through which energy can be

expended, including chromatin reorganization, nucleosome

displacement, protein post-translational modification and DNA

methylation. Experiments which perturb these routes and assay

the impact on sharpness can bring to light which energy expend-

ing mechanisms are particularly relevant. For the specific

example of hb regulation by Bcd, we note that Bcd binds to

Drosophila Mediator in a way that affects early embryonic

patterning (Park et al., 2001; Bosveld et al., 2008) and that Bcd

also binds to the Sin3/Rp3 histone-deacetylase complex (Singh

et al., 2005). The impact of these interactions on sharpness ap-

pears not to have been previously studied. The early Drosophila

embryo provides an unrivalled experimental context for testing

the hypotheses made here and this is now work in progress.

Real-time studies have already confirmed the importance of

non-equilibrium kinetics in gene regulation (Voss et al., 2011;

Hammar et al., 2014). Coulon et al. (2013) have also argued for

the importance of a non-equilibrium perspective. Our results

strongly endorse this but an important challenge lies ahead.

When a system is at thermodynamic equilibrium, detailed bal-

ance implies that any path to a microstate can be used to calcu-

late the steady-state probability of the microstate. The history of

the system is irrelevant. Away from equilibrium, detailed balance

no longer holds and all possible paths to a microstate must be

examined to calculate its steady-state probability. Non-equilib-

rium systems are history dependent. The resultant combinatorial

explosion results in a profound increase in algebraic complexity,

whichmanifests itself in the striking difference between the equi-

librium GRF in Equation 4 and the non-equilibrium GRF in Equa-

tion 7. It is this which leads to the breaching of the Hopfield

barrier. We suspect that further insights into non-equilibrium

gene regulation are concealed within this algebraic complexity.

We are only just learning how to uncover them (Ahsendorf

et al., 2014).

The concepts introduced here encourage us to examine other

forms of genetic information processing. If energy expenditure is

important, what is it buying? What could not be achieved if reg-

ulatory DNA is at thermodynamic equilibrium? Such questions



can be answered by quantifying each information processing

task, as we have done here for sharpness (Equation 6), and

developing experimental systems in which it can be measured.

We may look forward in this way to a quantitative classification

of the kinds of information processing that genes undertake

and an understanding in molecular terms of how energy expen-

diture breaks the corresponding Hopfield barriers.

We note two further implications of the present paper. First,

Hill functions emerge in an unexpected light. When Archibald

Vivian (A.V.) Hill first introduced them in 1913, he recognized

that they had no biochemical justification and were only a conve-

nient fit to the data on oxygen binding to haemoglobin (Hill,

1913). The empirical nature of Hill functions has been repeatedly

pointed out (Engel, 2013;Weiss, 1997).Wewere all themore sur-

prised, therefore, to find that, when the Hill coefficient is an

integer, there are bona fide GRFs which are statistically indistin-

guishable from Hill functions (Figure 4B). In this sense, the Hill

functions appear to be closer to biochemistry thanHill, or anyone

else, could have imagined. We hope to clarify the mathematical

reasons for this in subsequent work.

Second, we have exploited mathematics differently here to

what is sometimes expected of it. We have relied on data to

frame the question but we have not fitted any mathematical

models to data. In recent years, experimental biologists have

become more comfortable with the idea that theory can follow

experiment, as a way to analyze and understand data. Our

colleague Rob Phillips calls this ‘‘Figure 7 theory’’ (Phillips,

2015). Here, we have used mathematics to introduce concepts

and to determine the limits of what can be expected, thereby

providing a foundation for designing new kinds of experiments.

Experiment will follow theory. This is ‘‘Figure 1 theory’’ (Phillips,

2015). We believe it has much to recommend it as we face the

daunting molecular complexity of eukaryotic gene regulation.

We need to think about how such regulation works using con-

cepts which are not just based on intuition and induction but

are also grounded in the underlying physics, which is the

bedrock on which all biology rests. This is an old lesson (Guna-

wardena, 2013; Bialek, 2015). If we have lost sight of it in the

press ofmastering themolecular details, now is the time to revisit

it and construct a new paradigm for eukaryotic gene regulation.

EXPERIMENTAL PROCEDURES

The mathematical model and the results presented here are based on the

‘‘linear framework’’ for gene regulation (Ahsendorf et al., 2014) (see the Supple-

mental Experimental Procedures for full details). The framework starts from a

labeled, directed graph, G, which gives rise to a stochastic master equation,

du

dt
= LðGÞ:u;

for the vector of microstate probabilities, u = (u1,/un)
t. Here, LðGÞ is the Lap-

lacian matrix of G and N is the number of microstates in the graph. For the

graphGn used here,N = 2n, where n is the number of TF binding sites. Provided

G is strongly connected, which is the case forGn, the steady state, u�, at which

ðdu=dtÞ j u=u� = 0, is unique up to a scalar multiple. A basis vector may be

calculated in terms of the edge labels in one of two ways, depending on

whether or not the system is at equilibrium. If the system reaches thermody-

namic equilibrium, u�i can be calculated by choosing any path of reversible

edges from the reference vertex 1 to i and taking the product, over all reversible

edges in the path, of the ratio of the label on the forward edge, in the direction
from 1 to i, to the label on the reverse edge. The principle of detailed balance

ensures that this result is independent of the chosen path because of the cycle

condition: on any cycle of reversible edges, the product of the labels going

clockwise around the cycle equals the product of the labels going counter-

clockwise. The cycle condition leads to the exchange formula in Equation 2,

which allows the algebraically independent set of parameters in Equation 3

to be chosen. ForGn, a path of reversible edges can be chosen from 1, the ver-

tex with no sites bound, to i, such that u�i is expressed in terms of the indepen-

dent parameters. Away from equilibrium, u�i has to be calculated using the

matrix-tree theorem as a sum, over all directed spanning trees rooted at i, of

the product of the labels on the edges of each spanning tree. Once u� is known,

the state-state probability of microstate i is given by

PrðiÞ= u�
i

u�
1 +/+ u�

N

:

For a system that reaches thermodynamic equilibrium, the denominator in this

formula is the partition function of equilibrium statistical mechanics, but the

formula equally holds for a system away from thermodynamic equilibrium

with u� calculated as above. The gene regulation function for mRNA produc-

tion rate as output is defined as an average over the steady-state probabilities,

d

dt
½mRNA�=

X
1%i%N

rðiÞPrðiÞ:

The expression rate in microstate i, given by rðiÞ, depends on the gene expres-

sion strategy being followed, as specified in Figure 3. To obtain protein level as

output, assume that mRNA is linearly degraded and that the steady-state pro-

tein level is proportional to the steady-state mRNA level. The proportionality

constants are absorbed in the normalization that underlies the definitions of

position and steepness in Equation 6.

In the equilibrium GRFs, the quantities u�i depend on paths of reversible

edges from 1 to i, which can incur up to n factors of x = ½T �, so that the degree

of the denominator polynomial in PrðiÞ is n (Equation 4). In contrast, in the non-

equilibrium GRFs, the quantities u�i depend on directed spanning trees rooted

at i, which each haveN� 1 edges and can incur up toN� 1 factors of x, so that

the degree of the denominator polynomial becomes 2n � 1 (Equation 7).

The numerical results presented in Figures 4, 5, and 6 are obtained by a

biased sampling algorithm in which the boundary of the position-steepness re-

gion is found by successive approximation. An initial region is found by inde-

pendently selecting parameter values for GRFs by logarithmic random sam-

pling within the specified range, calculating the ðg; rÞ coordinates of these

GRFs, and determining the enclosing boundary. This initial boundary is then

successively improved by randomly altering GRFs on the current boundary un-

til the area of the region ceases to increase. The details, along with the tests

that were used to confirm convergence and to check the numerical accuracy

of the results, are given in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and two figures and can be found with this article online at http://dx.doi.org/
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Supplemental Figures

Figure S1. Equilibrium Position-Steepness Regions for up to n= 7 Sites, Related to Figure 4

(A) The all-or-nothing strategy for n= 7 sites and varying parameter ranges, as shown. At the top, higher-order cooperativities (left) and curve (right) for the GRF

closest toH7 in the region for p= 5. The 120 higher-order cooperativities cannot be individually annotated but are listed in blocks of increasing cooperativity order

from left to right and within each block of cooperativity order k � 1, the ui1 ;fi2 ;/;ikg are listed in lexicographic order for the sequence i1;/; ik .

(B) Higher-order cooperativities (left) for the GRF, chosen from the region in panel (A) corresponding to p= 5, that is closest to Hk , where k is the integer value

in magenta on the left. The cooperativities are in the same order as for panel (A). The corresponding curve (right), is annotated with the value a obtained by

fitting to Ha.

(C) Position-steepness regions for all three expression strategies.

(D) Position-steepness regions for the all-or-nothing strategy for n varying from 3 to 7.

Cell 166, 234–244, June 30, 2016 S1



Figure S2. Non-equilibrium Position-Steepness Regions and GRFs for the All-or-Nothing Strategy, Related to Figure 6
(A) Position-steepness regions for n= 3 sites. The two inner boundaries, in blue and gray, are as shown in Paper Figure 6 for the all-or-nothing strategy. The outer

black boundary gives the non-equilibrium region when the parameter range is pushed to ½10�10; 1010�.
(B) Two non-equilibriumGRFs. The blue point shows a GRF on n= 4 sites with the parameter range ½10�3; 103�. This is close toH5:7. The green point shows a GRF

on n= 5 sites with the parameter range ½10�2; 102�. This is close to H6.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES
Sections §1 to §7 which follow provide supplemental procedures which give full details of how the mathematical
results in the Paper were derived. For the convenience of readers, the following is a list, in order of occurrence
in the Paper, of each citation to the Supplemental Information (SI), with pointers to the relevant parts of this
document.

• “the linear framework allows steady-state probabilities to be calculated · · · ; see Experimental Proce-
dures and Supplemental Information (SI)”. See §1.

• “This is not a fundamental limitation but arises from technical difficulties with the Principle of De-
tailed Balance, which imposes algebraic constraints on higher-order cooperativities (SI)”. See §1.2.

• “the relevant parameters are the association constants Ki,S (Figure 2B), of which there are n2n−1

(SI)”. See §3.1 and Eq. 8.

• Paper Equation 2 and “We prove that, because of detailed balance, higher-order cooperativities must
satisfy the “exchange formula” (SI)”. See Eq. 13 in §3.4.

• “all the Ki,S can be calculated from them using Eq. 2 (SI)”. See Eq. 9 and §3.2.

• “we assume that T acts as a transcriptional activator (SI)”. See §5.1.1.

• “these three strategies broadly sample the spectrum of possibilities (SI)”. See §5.1.1.

• Paper Equation 4 and “The level of protein expression after normalisation · · · has the form, for the
all-or-nothing strategy (SI)”. See Eq. 23 in §5.2.

• “The coefficients ck are given (SI) by a sum of products”. See Eq. 22 in §5.2.

• “For the other strategies (Figure 3A), only the numerator of Eq. 4 changes (SI)”. See §5.1.1 and Eqs. 23
to 25 in the equilibrium case.

• “The GRFs discussed in this paper are strictly increasing functions (SI)”. See §5.5.

• “The algebraic form of the Hill function, Ha(x) = xa/(1 + xa), is closest to that of the GRF for the
the all-or-nothing strategy in Eq. 4 (SI)”. See §5.3.

• “If a = n, algebraic resemblance is only possible, and then only approximately, if the parameters in
the GRF are given implausible numerical values (SI)”. See §5.3.

• “Because of normalisation, γ and ρ do not depend on K1,∅ (SI)”. See §6.2.

• “We believe this range is generous but most of our results do not depend on it (below and SI)”. See
§7.1.

• “We therefore used · · · a biased sampling algorithm to identify the boundary of the region (SI)”. See
§7.3.

• “The non-equilibrium GRF for the all-or-nothing strategy then takes the form (SI)”. See Eq. 26 in §5.4.

• “GRFs for the other strategies differ only in the numerator (SI)”. See §5.1.1 and Eqs. 26 to 28 for the
non-equilibrium case.

• “the largest number of sites that we can feasibly analyse is n = 3 (SI)”. See §4.2.
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• “if the system were at equilibrium, it would be comparable with the previous equilibrium analysis
(SI)”. See §7.2.

• “the steepness and position of gnen are independent of the values of a1,∅ and b1,{1} (SI)”. See §6.2.

• “which leads to a dramatic increase in the complexity of the coefficients in Eq. 7 (SI; see Discussion)”.
See §4.2.

• “This discrepancy arises from loss of detailed balance (SI)”. See §4.3 and §5.4.

• “The mathematical model and the the results presented here are based on the “linear framework” · · ·
see the SI for full details”. See §1.

• “The details are given in the SI, along with the tests”. See §7.3 for the details of the algorithm and §7.4
for the tests.

• Paper Figure 4 caption, “obtained by a biased sampling algorithm (SI)”. See §7.3.

• Paper Figure 5 caption, “The biased sampling algorithm had to be modified to find the average-binding
regions (SI)”. See Step 2 of the algorithm described in §7.3.
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1 The linear framework
The linear framework is a graph-based method for time-scale separation in biochemical systems. It was introduced
in previous work [2, 5] and reviewed in [3]. It was applied to gene regulation in [1], which provides the foundation
on which the present Paper is based. As these ideas are relatively new, we provide here the background needed to
understand the present Paper but [1, 5] should be consulted for more details and proofs.

1.1 Laplacian dynamics
The framework starts from a finite, connected, labelled, directed graph, G, as in Paper Figure 2A. The vertices
are microstates, or “snapshots” of chromatin together with bound proteins, the edges are transitions between mi-
crostates and the edge labels are infinitesimal transition rates for a Markov process, with units of (time)−1. Assume
that the vertices are indexed 1, · · · , N . The stochastic master equation of the Markov process is given by the equa-
tion

du

dt
= L(G).u , (1)

where, for 1 ≤ i ≤ N , ui(t) is the probability of the system being in microstate i at time t and L(G) is the N ×N
Laplacian matrix of G. Eq. 1 is a linear differential equation, hence “linear framework”. The nonlinearities in the
biochemistry are absorbed into the edge labels. For any graph and any initial condition, the Laplacian dynamics in
Eq. 1 always converges to a steady state u∗ ∈ RN where

du

dt

∣∣∣∣
u=u∗

= 0 ,

so that u∗ ∈ kerL(G). An important basic result in the linear framework is that if G is strongly connected, then

dim kerL(G) = 1 .

It follows that, if ρG is any basis element of kerL(G), then the steady-state probabilities, u∗, can be calculated by
normalising ρG to its total,

u∗ =
ρG

1.ρG
. (2)

There are two basic methods for calculating a Laplacian steady state, ρG.

1.2 Steady states at thermodynamic equilibrium
If the system can reach thermodynamic equilibrium, then detailed balance must be satisfied. This requires, first,
that each edge i a→ j is accompanied by a reverse edge, j b→ i and, second, in any cycle of reversible edges,
the product of the labels going clockwise around the cycle equals the product going counterclockwise (“cycle
condition”). These requirements guarantee that G is strongly connected and that, in any steady state, each pair of
reversible edges is independently at steady state, irrespective of any other edges involving the vertices. If vertex 1
is chosen as a reference vertex and j is any other vertex, then there is always a path of reversible edges from 1 to j

1 = i1
a1



b1
i2

a2



b2
· · ·

ap−1



bp−1

ip
ap



bp
ip+1 = j .

A basis element ξG ∈ kerL(G) is then given, for each vertex j, by the corresponding product of label ratios

ξGj =

(
ap
bp

)(
ap−1

bp−1

)
· · ·
(
a2

b2

)(
a1

b1

)
. (3)

3



The cycle condition ensures that the quantity in Eq. 3 does not depend on the choice of path from 1 to j.
It can be seen from van’t Hoff’s formula that ξGj is the Boltzmann factor of microstate j, as calculated in

equilibrium statistical mechanics. The denominator of Eq. 2 is the partition function. The linear framework
reduces to equilibrium statistical mechanics for systems which can reach thermodynamic equilibrium.

1.3 Independent generators at equilibrium
The cycle condition also implies that the edge labels are not independent quantities. Consider any cycle of re-
versible edges from vertex i to itself,

i = i1
a1



b1
i2

a2



b2
· · ·

ap−1



bp−1

ip
ap



bp
ip+1 = i .

According to the cycle condition,
a1a2 · · · ap−1ap = bpbp−1 · · · b2b1 , (4)

which implies an algebraic relationship between the labels. Eq. 3 shows that it is not the labels themselves which
are important at equilibrium but the label ratios. If i a→ j and j b→ i are a pair of reversible edges, define Ki→j =
a/b, so that Kj→i = (Ki→j)

−1. Eq. 4 can be rewritten in terms of these ratios as the algebraic relationship

p−1∏
j=1

Kij→ij+1 = 1 , (5)

The relations among the Ki→j arise in this way from cycles of reversible edges. For the applications below, it is
important to know which sets of Ki→j constitute independent generators, so that, on the one hand, there are no
algebraic relations between these generators (“independent”), while, on the other hand, all the other Ki→j can be
“generated” as rational functions of the generators using Eq. 5. If T is any directed spanning tree of G, the label
ratios over the edges of T , {Ki→j | i→ j ∈ T}, constitute a set of independent generators. They are independent
because there can be no cycle of reversible edges among edges which belong to a tree. Furthermore, if i→ j 6∈ T ,
then adding this edge to T cannot add new vertices to T because T is spanning. It must therefore create a cycle of
reversible edges. If u → v is an edge on this cycle, which is not the same edge as i → j, then either u → v is an
edge in T or v → u is an edge in T . If the former, then Ku→v is a generator. If the latter, then u 
 v 
 u is a
cycle of reversible edges, so by Eq. 5, Ku→v = (Kv→u)−1 and Ku→v is the inverse of a generator. Note that this
inverse property can be deduced from the cycle condition without having to know how the association constants
are defined in terms of the labels. The Ki→j can now be written as a rational function of the generators using
Eq. 5. Since G is connected, the number of edges in a spanning tree is one less than the number of vertices in G,
so the number of independent generators is N − 1.

1.4 Steady states away from equilibrium
If the system does not reach thermodynamic equilibrium but the graph G is still strongly connected, then a basis
element νG ∈ kerL(G) is given by the Matrix-Tree Theorem. Let Θj(G) be the set of spanning trees of G which
are rooted at microstate j. Then, νGj is given by taking T ∈ ΘJ(G), multiplying together the labels on the edges
of T to form a monomial and adding up these monomials over all spanning trees in Θj(G),

νGj =
∑

T∈Θj(G)

 ∏
k

a→l∈T

a

 . (6)

The structure of νG is considerably more complicated than that of ξG. A spanning tree contains many paths
that reach the root and there are usually many spanning trees rooted at any vertex. In particular, G is strongly
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connected if, and only if, it has a rooted spanning tree at any vertex, so that νGj > 0 for 1 ≤ j ≤ N . Moreover,
each spanning tree has N − 1 edges, so that the monomials which appear in ρG have degree N − 1 in the edge
labels. It can be shown that if G satisfies detailed balance then νG = λξG, for an appropriate scalar factor λ,
which is a polynomial in the edge labels (Wong, Gunawardena, unpublished results). Accordingly, in calculating
steady-state probabilities using Eq. 2, identical results are obtained at equilibrium with either ρG = ξG and Eq. 3
or ρG = νG and Eq. 6. The linear framework extends equilibrium statistical mechanics to systems that are far
from equilibrium.

1.5 Gene regulation functions
The linear framework can treat transcription as a complex process with multiple irreversible steps [1] but the
Paper follows the thermodynamic formalism and assumes that gene expression is a fast process compared to gene
regulation, so that the overall rate of gene expression can be treated as an average over the steady-state probabilities
of the microstates, as given by u∗ in Eq. 2. Let r(i) be the rate of gene expression in microstate i. The overall rate
of mRNA synthesis is given by the average

d

dt
[mRNA] =

∑
1≤i≤N

r(i)u∗i =

 ∑
1≤i≤N

r(i)ρGi

( 1

1.ρG

)
, (7)

where we have used Eq. 2 in the second step. If the system is at equilibrium then Eq. 7 is calculated from ρG = ξG

using Eq. 3 and if it is away from equilibrium then Eq. 7 is calculated from ρG = νG using Eq. 6. In either
case, the rate of mRNA synthesis can be expressed in terms of the edge labels, which may themselves contain the
concentrations of transcription factors (TFs), as in the graph Gn in Paper Figure 2A.

Eq. 7 describes a gene regulation function for the rate of mRNA expression. The Paper uses a GRF for protein
level. The additional assumptions required to obtain such a GRF are discussed in §5.1.

2 The graph Gn and background assumptions
We follow the notation introduced in the Paper. A single monomeric TF, T , is assumed to bind to n sites. The
microstates are the N = 2n patterns of TF binding. It will be helpful to use the notation 〈S〉 for a microstate,
where S = {i1, · · · , ik} ⊆ {1, · · · , n}, is the subset of sites bound by T . We will work with this notation rather
than converting from 〈S〉 to an index 1, · · · , N , as in §1. The edges in Gn correspond to binding of T to a site
i 6∈ S with label ai,S [T ] or, in reverse, the unbinding of T from 〈S ∪ {i}〉 with label bi,S∪{i}. To make the text
more readable, we will avoid repeating requirements like i 6∈ S from now on but will use the notation S ∪ {i}
where necessary, as a reminder.

As discussed in the Paper, molecular mechanisms other than binding and unbinding of T are not directly
represented in Gn but can exert their influence through the rate constants and through the dependence of the rate
constants on the microstates. Such indirect influences could be exerted, for instance, by other transcription factors,
co-regulators, nucleosomes or multi-protein complexes like Mediator. The main assumption is that the total levels
of these indirect factors do not change with changes in [T ] but the factors may participate in the dynamics which
gives rise to the edges of Gn and, thereby, to the numerical values of the labels on the edges.

Since edge labels have units of (time)−1, the rate constant ai,S has units of (concentration.time)−1, while bi,S
is a pure rate constant with units of (time)−1. The factor [T ] brings the nonlinearity of binding into the edge
label, thereby allowing the dynamics to be treated in a linear manner, as in Eq. 1. To avoid additional complexity,
it is conventional, in both the thermodynamic formalism and the linear framework to make the “no depletion”
assumption, so that the binding of T is presumed not to deplete the free concentration of T . Accordingly, [T ] ≈
Ttot and the labels are time-independent constants in the Laplacian dynamics, provided the total concentration of
the TF is constant.
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In the non-equilibrium case, a gene regulatory system can be maintained away from thermodynamic equilib-
rium through continual dissipation of free energy by the background dissipative mechanisms discussed in the Paper.
The transitions between microstates due to binding and unbinding of T can become effectively irreversible and the
graph Gn can thereby lose some of its edges. For simplicity, we consider only the case where the structure of Gn

remains the same, so that each edge, which may represent an irreversible transition, has a reverse edge, which also
represents an irreversible transition. For instance, if background phosphorylation of a nucleosome is required for
a binding reaction, then dephosphorylation is assumed to be available for the unbinding reaction; phosphorylation
and dephosphorylation are each individually irreversible reactions. With that simplification, the non-equilibrium
case can be based on the same labelled, directed graph Gn as the equilibrium case and differs only in that detailed
balance is no longer satisfied.

The number of vertices in Gn is 2n. The number of edges can be determined as follows. There are
(
n
i

)
microstates of order #S = i and each of these gives rise to a binding edge to n− i microstates of order #S + 1.
Hence, the total number of binding edges is

n∑
i=0

(n− i)
(
n

i

)
=

n∑
i=0

(n− i) n!

i!(n− i)!
= n

n−1∑
i=0

(
n− 1

i

)
= n2n−1 .

The unbinding edges are in one-to-one correspondence with the binding edges. Accordingly, the total number of
edges is n2n.

If labels are ignored and the reversible edges of Gn are coalesced into a single undirected edge, the resulting
undirected graph is the well-studied hypercube graph [4].

3 Equilibrium parameters for Gn

3.1 Equilibrium parameters Ki,S and ωi,S

At equilibrium, it follows from the discussion in §1.3 that it is not the individual labels which are relevant but only
the label ratios. In the binding direction, these take the form

K〈S〉→〈S∪{i}〉 =
ai,S [T ]

bi,S∪{i}
.

The factor [T ] has a different role to that of the constants ai,S or bi,S∪{i}. It occurs in every label ratio and becomes
the independent variable in the gene regulation functions defined in §5.2. It must also cancel out of the relationships
that come from the cycle condition in Eq. 5 since, if it did not, this would imply that [T ] was determined by the
rate constants at equilibrium, which is impossible. It therefore only plays the role of a scale factor and it is easier
to work with ratios from which it has been removed, which leads to the association constants defined in Paper
Figure 2B,

Ki,S =
ai,S

bi,S∪{i}
=
K〈S〉→〈S∪{i}〉

[T ]
. (8)

The association constants have units of (concentration)−1 and, from the previous calculation, there are n.2n−1

such parameters.
For numerical calculations, it is more convenient and meaningful to use non-dimensional parameters. It is also

helpful to identify higher-order cooperativities, since these are biologically significant. Both goals are realised by
defining the higher-order cooperativities, ωi,S , to be

ωi,S =
Ki,S

Ki,∅
.
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These non-dimensional parameters capture how the binding of T to site i depends on the higher-order influence
of the sites in S, as compared to the “bare” affinity in the absence of anything bound. Note that ωi,∅ = 1. To
non-dimensionalise the bare association constants Ki,∅, we normalise them to K1,∅,

κi =
Ki,∅

K1,∅
.

These are the non-dimensional parameters introduced in Paper Figure 2B, leaving K1,∅ = K1 as the only dimen-
sioned parameter. The non-dimensional parameters are simply an alternative way of writing the Ki,S , which may
be recovered from them and K1 by noting that

Ki,S =

(
Ki,S

Ki,∅

)(
Ki,∅

K1,∅

)
K1,∅ = ωi,SκiK1 . (9)

3.2 Independent generators for the Ki,S

For numerical calculations, it is necessary to identify a set of independent generators. We do this first for the Ki,S

and then deduce the results for their non-dimensional equivalents, κi and ωi,S , which are used in the Paper.
Following the method described in §1.3, consider the directed subgraph Pn of Gn obtained by retaining only

those binding edges, 〈S〉 → 〈S ∪ {i}〉, such that, if j ∈ S then i < j. As in the Paper, this last condition
is abbreviated to i < S. The diagram below shows the directed spanning tree P3 for G3, as described in §3.2.
The edges are annotated with their corresponding association constants, which constitute a set of independent
generators for the Ki,S . Note that this spanning tree is not rooted in the sense of Eq. 6.

1 2 3

K1,∅ K2,∅ K3,∅

K2,{3} K1,{3} K1,{2}

K1,{2,3}

Suppose that 〈S〉 is any microstate and that S = {i1, · · · , ik}, where the indices in S are ordered so that 1 ≤ i1 <
· · · < ik ≤ n. We can always find a path of reversible edges from the empty microstate to 〈S〉 of the form

〈∅〉
aik,∅[T ]



bik,{ik}

〈{ik}〉
aik−1,{ik}[T ]



bik−1,{ik−1,ik}

〈{ik−1, ik}〉 · · · 〈{i2, · · · , ik}〉
ai1,{i2,··· ,ik}[T ]



bi1,S

〈S〉 . (10)

The binding edges in this path all satisfy the ordering condition just introduced. Hence Pn contains all microstates
and is, therefore, a spanning subgraph. Moreover, Pn has the property that each microstate is the target of exactly
one edge: if the microstate is 〈S〉, where S = {i1, · · · , ik} with 1 ≤ i1 < · · · < ik ≤ n, then the unique edge
corresponds to the association constant Ki1,{i2,··· ,ik}. Hence, Pn cannot have an undirected cycle. Accordingly,
Pn is a directed spanning tree ofGn. It follows from §1.3, ignoring the factor [T ] for the reasons explained in §3.1,
that the association constants Ki,S with i < S, which we refer to as “ordered”, constitute a set of independent
generators for the Ki,S .

As a check on this, the number of pairs (i, S) with i < S ⊆ {1, · · · , n} can be counted as follows. For any
given 1 ≤ i ≤ n, there are 2n−i subsets S satisfying the constraint i < S, so that the number of generators is

2n−1 + · · ·+ 2 + 1 = 2n − 1 ,
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as expected from the discussion in §1.3 since N = 2n. The number of ordered association constants (2n − 1)
becomes substantially smaller than the total number of association constants (n2n−1) as soon as n ≥ 3.

3.3 The exchange formula for Ki,S

The discussion in §1.3 provides a method for expressing any Ki,S in terms of the ordered ones. This is not
straightforward to apply in practice as it requires locating where the edge corresponding to Ki,S occurs in relation
to Pn. The following alternative method provides a formula that is independently useful. Suppose that i, j 6∈ S ⊆
{1, · · · , n}. There is then a cycle of reversible edges from 〈S〉 to itself,

〈S〉
ai,S [T ]



bi,S∪{i}

〈S ∪ {i}〉
aj,S∪{i}[T ]



bj,S∪{i,j}

〈S ∪ {i, j}〉
bi,S∪{i,j}



ai,S∪{j}[T ]

〈S ∪ {j}〉
bj,S∪{j}



aj,S [T ]
〈S〉 .

Applying Eq. 5 to this and cancelling [T ] (§3.1), leads to the exchange formula for association constants

Ki,SKj,S∪{i} = Kj,SKi,S∪{j} . (11)

Eq. 11 is sufficient to calculate any Ki,S in terms of the ordered ones. The proof of this is by induction on #S.
If #S = 0 then i < S for all 1 ≤ i ≤ n, so the parameters Ki,∅ are all ordered and there is nothing to prove. Now
suppose that #S = k, where k > 0, and that all higher-order cooperativities of the form ωi,U with #U < k have
been expressed in terms of the ordered parameters. Consider the k-th order cooperativity ωi,S for any 1 ≤ i ≤ n.
Since k > 0, S = {i1, · · · , ik} with 1 ≤ i1 < · · · < ik ≤ n, then i could occur anywhere along this sequence.
The exchange formula can be used to move i by a succession of swaps to before the left-hand end of the sequence,
at which point the association constant becomes one of the ordered ones. This requires a second induction.

Let µ(i, S) denote the number of elements of S which precede i in the sequence:

µ(i, S) = #{ij ∈ S | ij < i} .

If µ(i, S) = 0, then ωi,S is one of the ordered parameters so there is nothing to prove. Suppose, as a second
inductive hypothesis, that ωv,U has been expressed in terms of the ordered parameters for all #U = k and for all
µ(v, U) < p. Suppose that µ(i, S) = p, so that

i1 < · · · < ip < i < ip+1 < · · · < ik .

Let V = {i1, · · · , ip−1, ip+1, · · · , ik}, so that #V = k − 1 and S = V ∪ {ip}. It follows from the exchange
formula in Eq. 11 that

Ki,S =

(
Ki,V

Kip,V

)
Kip,V ∪{i} .

Of the terms on the right, Ki,V and Kip,V have #V < k so that, by the first inductive hypothesis, they have been
expressed in terms of the ordered parameters. Furthermore,Kip,V ∪{i} has #(V ∪{i}) = k with µ(ip, V ∪{i}) < p
so that, by the second inductive hypothesis, it has also been expressed in terms of the ordered parameters. It follows
that Ki,S can be expressed in terms of the ordered parameters, thereby completing both inductions. The proof
offers an algorithm for expressing Ki,S in terms of the ordered association constants.

3.4 Independent non-dimensional κi and ωi,S

Paper Equation 3 introduces the following set of 2n − 1 parameters

K1 , κi (i > 1) , ωi,S (i < S 6= ∅) , (12)

in which only K1 is dimensioned and where the higher-order cooperativities ωi,S are restricted to those which are
ordered, as above for the Ki,S . It follows from Eq. 9 that the parameters in Eq. 12 are merely a rewriting of the
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ordered Ki,S and are therefore also a set of independent generators from which any Ki,S can be recovered. The
equilibrium GRFs described in §5.2 will be expressed in terms of the parameters in Eq. 12.

For calculations with higher-order cooperativities, a non-dimensional version of Eq. 11 can be obtained by
dividing through by Ki,∅Kj,∅ to give

ωi,Sωj,S∪{i} = ωj,Sωi,S∪{j} , (13)

Eq. 13 is the exchange formula for higher-order cooperativities given in Paper Equation 2. Eq. 13 provides an
effective method for calculating any higher-order cooperativity in terms of the ordered ones by following the same
algorithm as described above for the Ki,S .

4 Laplacian steady states of Gn

4.1 Steady states of Gn at equilibrium
At equilibrium, ρGn = ξGn and the prescription in §1.2 can be used to calculate the latter. Eq. 10 provides a path of
reversible edges from 〈∅〉 to 〈S〉, where S = {i1, · · · , ik} with the indices ordered so that 1 ≤ i1 < · · · < ik ≤ n.
It follows from Eq. 3 that, at thermodynamic equilibrium, the Laplacian steady state of 〈S〉 is given by

ξGn

〈S〉 = Kik,∅Kik−1,{ik} · · ·Ki1,{i2,··· ,ik}[T ]k . (14)

Eq. 14 can be non-dimensionalised using Eq. 9 to yield

ξGn

〈S〉 = κik(κik−1
ωik−1,{ik}) · · · (κi1ωi1,{i2,··· ,ik})(K1[T ])k .

Noting that ωik,∅ = 1, this may be rewritten more concisely as

ξGn

〈S〉 =

 k∏
j=1

κijωij ,{ij+1,··· ,ik}

 (K1[T ])k , (15)

which is expressed in the independent parameters of Paper Equation 3 (Eq. 12). As an illustration of Eq. 15, the
Laplacian steady states of the 8 microstates of G3 in Paper Figure 2A are listed in the table below. Note that K1 in
Eq. 15 plays the role of a scale factor (§6.2).

microstate Laplacian steady state
〈∅〉 1
〈{1}〉 K1[T ]
〈{2}〉 κ2K1[T ]
〈{3}〉 κ3K1[T ]
〈{1, 2}〉 κ2κ1ω1,{2}(K1[T ])2

〈{1, 3}〉 κ3κ1ω1,{3}(K1[T ])2

〈{2, 3}〉 κ3κ2ω2,{3}(K1[T ])2

〈{1, 2, 3}〉 κ3κ2κ1ω2,{3}ω1,{2,3}(K1[T ])3

4.2 History dependence away from equilibrium
At thermodynamic equilibrium, the Laplacian steady state can be calculated from a single path to each microstate,
as in Eq. 14. All paths give the same answer because of detailed balance, which guarantees that the steady state
does not depend on the history through which that state was reached. Equilibrium is fundamentally reversible.
In marked contrast, away from thermodynamic equilibrium, Eq. 6 shows that all paths to a microstate must be
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used to calculate the Laplacian steady state. The rooted spanning trees of the Matrix-Tree Theorem provide the
bookkeeping for this calculation. Non-equilibrium systems are history dependent [1].

The number of spanning trees increases worse than exponentially in the size of a graph and the resulting
combinatorial explosion is one of the fundamental challenges in analysing systems away from equilibrium [1]. In
the case of Gn, the number of spanning trees rooted at any vertex (the number is the same for any vertex because
Gn is reversible), is equal to the number of spanning trees in the undirected hypercube graph (§2), which is known
to be [4],

22n−n−1
n∏

k=2

k(n
k) .

For n = 2, this formula gives 4 spanning trees rooted at each vertex but for n = 3, it gives 384. The increase with
n is extraordinarily rapid: G4 has no less than 42,467,328 spanning trees rooted at each vertex. Accordingly,
the calculation of position-steepness regions had to be restricted to G3, the complexity of whose GRF is already
substantial.

It is important to appreciate that the size of a graph is not the dominant factor in the complexity of the Laplacian
steady state. If a graph is forced to satisfy detailed balance, by making every edge reversible (which only increases
the complexity of the graph) and imposing the cycle condition on the edge labels, then its Laplacian steady state
is given by Eq. 22, which can be readily calculated even for very large graphs. Complexity arises primarily from
non-equilibrium history-dependence.

4.3 Steady states of Gn away from equilibrium
Away from equilibrium, ρGn = νGn , with the attendant history-dependent complexity described in §4.2. The
algebraic structure also becomes different to that at equilibrium. The diagram below shows the graph G2 on the
left, annotated with its edge labels, and shows on the right the rooted spanning trees, with each row giving the
spanning trees rooted at the vertex in black. Each tree has 3 edges, as expected for a graph with 2n− 1 vertices for
n = 2 (§1.4). Each vertex has the same number of rooted spanning trees, a property that holds for any labelled,
directed graph in which each edge is accompanied by a reverse edge.

b1,{1} b2,{2}

b1,{1,2} b2,{1,2}

a1,∅[T] a2,∅[T]

a1,{2}[T] a2,{1}[T]

1 2

Several properties can be inferred from this diagram which hold for general n. According to Eq. 6, the spanning
trees rooted at a vertex give rise to monomials of the form

ai1,S1
· · · aip,Sp

bj1,Sp+1∪{j1} · · · bjq,Tp+q∪{jq}[T ]p , (16)

where p is the number of binding edges and q is the number of unbinding edges and p+q = 2n−1. Notice that the
power of x = [T ] can vary depending on the spanning tree, so that the Laplacian steady-state νGn

〈S〉 is a polynomial
in x, in contrast to a monomial at equilibrium.

10



It is not difficult to show that νGn

〈S〉 has the following structure as a polynomial in x,

νGn

〈S〉 = a1x
q1 + · · ·+ akx

qk , (17)

where q1 < · · · < qk and the minimum and maximum degrees are given by

q1 = #S and qk = 2n − (n+ 1) + #S .

Note, in particular, that νGn

∅ has a constant term which, unlike the equilibrium case, is different from zero, while
νGn

〈S〉 has the highest degree of 2n − 1 only when S = {1, · · · , n}.

4.3.1 Parameterisation away from equilibrium

The monomial structure in Eq. 16 makes it clear that the ratios of rate constants are no longer the appropriate
parameters for the steady states away from equilibrium. However, non-dimensionalisation is still helpful for nu-
merical calculation. We chose the non-dimensional parameters

εi,S =
ai,S
a1,∅

and δi,S∪{i} =
bi,S∪{i}

b1,{1}
, (18)

so that a1,∅ and b1,{1} are the only two dimensioned parameters. It follows from Eq. 16 that the monomial arising
from a rooted spanning tree can be rewritten

εi1,S1 · · · εip,Spδj1,T1∪{j1} · · · δjq,Tq∪{jq}(a1,∅)
p(b1,{1})

q[T ]p ,

where p+ q = 2n − 1. We can now divide by the same factor (b1,{1})
2n−1 in each monomial, to rewrite it as

εi1,S1
· · · εip,Sp

δj1,T1∪{j1} · · · δjq,Tq∪{jq}

(
a1,∅

b1,{1}
[T ]

)p

. (19)

This division does not change any calculated GRF because the factor (b1,{1})
2n−1 cancels between the numerator

and the denominator. The quantities a1,∅ and b1,{1} act as scale factors (§6.2).

5 Gene regulation functions for Gn

5.1 The normalised GRF for protein level
The discussion the follows applies to both the equilibrium and non-equilibrium contexts. Eq. 7 shows how the
rate of mRNA synthesis can be calculated in terms of the edge labels of Gn and, thereby, in terms of [T ]. Call
this function s([T ]). Paper Equation 1 describes how Hb protein concentration level, [Hb], depends on [T ], after
normalisation. To go from mRNA synthesis rate to protein level, we implicitly assume that post-transcriptional
mechanisms do not contribute to sharpness. Explicitly, we assume, first, that mRNA is linearly degraded at rate δ,
so that the overall rate of mRNA production is given by

d

dt
[mRNA] = s([T ])− δ[mRNA] .

Hence, the steady-state concentration of mRNA, [mRNA]∗, is

[mRNA]∗ =
1

δ
s([T ]) .
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Second, we assume that the steady-state protein level, [protein]∗, is proportional to the steady-state level of mRNA,
so that

[protein]∗ =
α

δ
s([T ]) .

It follows that the steady-state protein level is proportional to s([T ]). The gene regulation function for protein can
now be calculated using Eq. 7,

[protein]∗ =
(α
δ

) ∑
S⊆{1,··· ,n}

r(S)ρGn

〈S〉

( 1

1.ρGn

)
, (20)

where, to avoid excessive notation, we use the abbreviation r(S) to denote the rate of gene expression in microstate
〈S〉.

5.1.1 T acts only as a transcriptional activator

In the Paper, it is assumed that T acts only as a transcriptional activator. This means that the binding of T to a
microstate cannot decrease its rate of expression: if 〈U〉 and 〈V 〉 are microstates and V includes all the sites of S, so
that U ⊆ V , then the rate of expression in 〈V 〉 cannot be smaller than that in 〈U〉, so that r(U) ≤ r(V ). Note that
this the case for each of the expression strategies in Paper Figure 3A. It follows that the maximal rate of expression
is r({1, · · · , n}). This maximal rate is taken to be 1 and r(∅) = 0, so that there is no baseline expression. Hence,
0 ≤ r(S) ≤ 1. The maximum steady-state level of protein expression is then given in Eq. 20 by α/δ. For the gene
expression strategies described in Paper Figure 3A, this maximum value is attained asymptotically as [T ] → ∞
(§5.2). If we normalise the steady-state protein concentration to this asymptotic maximum, the normalised gene
regulation function, fn(x), is given by

fn(x) =

 ∑
S⊆{1,··· ,n}

r(S)ρGn

〈S〉

( 1

1.ρGn

)
. (21)

Here, x = [T ] and [T ] appears through the expressions for ρGn either at equilibrium using Eq. 3, as discussed in
§5.2, or away from equilibrium using Eq. 6, as discussed in §5.4.

Because the components of both the equilibrium ρGn in Eq. 15 and the non-equilibrium ρGn in Eq. 17 are
polynomials in x = [T ], fn(x) is a rational function of x (ie: a fraction in which the numerator and denominator
are each polynomials in x). Furthermore, the denominator in Eq. 21, 1.ρGn , does not depend on the expression
rate r(S). Hence, the denominator of fn(x) is the same for different expression strategies at equilibrium and away
from equilibrium.

Very little is known about transcription rates in individual microstates, making it difficult to assign values to
r(S) in Eq. 21, even after assuming that T is a transcriptional activator. Numerical exploration is challenging
because, for each set of choices, {0 ≤ r(S) ≤ 1 |S ⊆ {1, · · · , n}}, a position-steepness region similar to Paper
Figure 4 would have to be calculated by randomly varying the parameters. Instead, we chose three expression
strategies (Paper Figure 3A)—two extreme (all-or-nothing, one-or-more) and one middle-of-the-road (average-
binding)—which sample the range of possibilities. Our expectation is that the position-steepness regions for other
sets of values of r(S) would resemble that of average-binding (Paper Figure 4D) in lying on both sides of the Hill
line but would approachHn at the tip of a cusp, as is the case for each of the three strategies analysed in the Paper.

5.2 Equilibrium gene regulation functions
At equilibrium, ρGn = ξGn , and the denominator, 1.ξGn , in the expression for fn(x) in Eq. 21 is the partition
function of equilibrium statistical mechanics. The partition function is the same for all equilibrium GRFs, which
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differ only in the numerator of the expression. According to Eq. 15, a microstate S with #S = k gives rise to a
monomial in xk. Hence, the partition function is given by the polynomial

1.ξGn = 1 + c1x+ · · ·+ cnx
n ,

where the coefficient ck of xk collects together, using Eq. 15, all microstates of order k,

ck =

 ∑
1≤i1<···<ik≤n

 k∏
j=1

κijωij ,{ij+1,··· ,ik}

 (K1)k . (22)

This gives Paper Equation 5. The three gene expression strategies described in Paper Figure 3A then have the
following GRFs, where ck is defined in Eq. 22,

all-or-nothing r(S) = 1 if S = {1, · · · , n} and r(S) = 0 otherwise. This gives Paper Equation 4,

fn(x) =
cnx

n

1 + c1x+ · · ·+ cnxn
. (23)

one-or-more r(S) = 1 if S 6= ∅ and r(∅) = 0. Hence,

fn(x) =

∑n
k=1 ckx

k

1 + c1x+ · · ·+ cnxn
. (24)

average-binding r(S) = (#S)/n. Hence,

fn(x) =
(
∑n

k=1 kckx
k)/n

1 + c1x+ · · ·+ cnxn
. (25)

5.3 Similarity of fn(x) in the all-or-nothing strategy toHn(x)

The Hill function Ha(x) = xa/(1 + xa) has a numerator, xa, which is identical to the highest-degree monomial
in the denominator. Its algebraic form therefore corresponds most closely to a GRF in the all-or-nothing strategy
(Eq. 23), at least when the Hill coefficient a is an integer. In this case, we can ask if a GRF fn(x) can be found
which coincides in algebraic form with Ha(x). For obvious reasons, it is necessary that a = n. It is also clear
from Eq. 23 that c1, · · · , cn−1 must be made 0, while cn must remain at 1. This cannot be done exactly because
it follows from Eq. 22 that if c1 = 0, then K1 = 0, so that ci = 0 for 1 ≤ i ≤ n. However, it can be done
approximately. If we set κi = 1 for i > 1, so that Ki,∅ = K1, and ωi,S = 1 for S 6= {2, · · · , n}, then it follows
from Eq. 22 that

ck =

{ (
n
k

)
(K1)k if k < n

ω1,{2,··· ,n}(K1)n if k = n .

Hence, if we chooseK1 in units of (concentration)−1 to be very small compared to
(

n
dn/2e

)−1
, then, for 1 ≤ k ≤ n,

(K1)k < K1 �
1(
n
dn/2e

) ≤ 1(
n
k

) ≤ 1 ,

so that ck remains very small compared to 1 for k < n. However, we must then set

ω1,{2,··· ,n} =
1

(K1)n
,

to achieve cn = 1, which means that ω1,{2,··· ,n} � 1. The combination of the bare association constants, Ki,∅,
being very small and the highest-order cooperativity, ω1,{2,··· ,n}, being very large is biochemically implausible. A
similar difficulty is encountered no matter what scheme is used to make ck small for k < n. The Hill function is,
therefore, not similar in algebraic form to a GRF for realistic parameter values.
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5.4 Non-equilibrium gene regulation functions
Away from equilibrium, ρGn = νGn . As in the equilibrium case, the denominator in Eq. 21 is the same in all
strategies. Using Eq. 17, it can be seen to take the form,

1.νGn = e0 + e1x+ · · ·+ e2n−1x
2n−1 .

Note the exponential increase in the degree from the partition function at equilibrium. Also, unlike the equilibrium
case, e0 6= 0, as is seen from the table below, which gives the non-equilibrium steady states for the graph G2.

microstate Laplacian steady state
〈∅〉 b1,{1,2}b1,{1}b2,{2} + b1,{1}b2,{2}b2,{1,2} + (a2,{1}b1,{1,2}b1,{1} + b1,{1}b2,{2}a1,{2})[T ]

〈{1}〉 (b1,{1,2}b2,{2}a1,∅ + b2,{1,2}b2,{2}a1,∅)[T ] + (b1,{1,2}a2,{1}a2,∅ + b1,{1,2}b2,{2}a1,∅)[T ]2

〈{2}〉 (b1,{1,2}b1,{1}a2,∅ + b2,{1,2}b1,{1}a2,∅)[T ] + (b2,{1,2}a1,{2}a2,∅ + b2,{1,2}a1,{2}a1,∅)[T ]2

〈{1, 2}〉 (b2,{2}a1,{2}a1,∅ + b1,{1}a2,{1}a1,∅)[T ]2 + (a2,{1}a1,{2}a1,∅ + a2,{1}a1,{2}a2,∅)[T ]3

It is difficult to give an expression for the coefficients ei similar to the equilibrium one in Eq. 22 because each
coefficient has contributions from microstates of different orders.

all-or-nothing r(S) = 1 if S = {1, · · · , n} and r(S) = 0 otherwise. Using the information about the structure
of νGn

〈{1,··· ,n}〉 in Eq. 17, it can be seen that the the GRF has the form given in Paper Equation 7,

fnen (x) =
dnx

n + · · ·+ d2n−1x
2n−1

e0 + e1x+ · · ·+ e2n−1x2n−1
, (26)

where d2n−1 = e2n−1.

one-or-more r(S) = 1 if S 6= ∅ and r(∅) = 0. Hence, using Eq. 17 again,

fnen (x) =
g1x+ · · ·+ g2n−1x

2n−1

e0 + e1x+ · · ·+ e2n−1x2n−1
, (27)

where, again, g2n−1 = e2n−1.

average-binding r(S) = (#S)/n. Hence, using Eq. 17 again,

fnen (x) =
h1x+ · · ·+ h2n−1x

2n−1

e0 + e1x+ · · ·+ e2n−1x2n−1
, (28)

where, again, h2n−1 = e2n−1. Note that hi 6= gi.

For all these cases, history-dependent complexity and the overlapping contributions of different microstates make
it hard to calculate the coefficients, di, gi and hi, in the numerator polynomials. However, for all expression
strategies, the GRF fne3 (x), which is the case discussed in the Paper, can be calculated using the software described
in [1].

5.5 GRFs are increasing but not always sigmoidal
Gene regulation functions for a transcriptional activator T are expected to be increasing functions of x = [T ].
More precisely, under the assumptions that we have made, we expect the following.

fn(0) = 0 , fn(x)→ 1 as x→∞ , fn(x) < fn(y) if 0 ≤ x < y .
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The first two parts of this are readily proved for all 6 GRFs (ie: for the all-or-nothing, one-or-more and average-
binding strategies at equilibrium and away from equilibrium). The third part, that fn(x) is strictly increasing,
is also readily proved for equilibrium GRFs by differentiating the expressions in Eqs. 23 to 25. However, strict
increase is not so readily proved for the non-equilibrium GRFs in Eqs. 26 to 28. We therefore tested it numerically
as follows. If fn ceases to be increasing in (0,∞), then dfn/dx has a positive zero. This condition can be checked
by considering only the numerator polynomial of dfn/dx. For each position-steepness plot, once a final converged
boundary had been numerically found (§7.3), the corresponding parameters were passed to Mathematica, the coef-
ficients of the relevant GRF were converted to numbers and the numerator polynomial of dfn/dx was calculated.
Mathematica’s native CountRoots function was used, with the polynomial variable specified to lie in the inter-
val (0,∞), to determine the number of positive roots of the numerator polynomial. We found this to be zero in
all cases, confirming that the non-equilibrium GRFs were all strictly increasing. It would be interesting from a
mathematical point of view to find a rigorous proof of strict increase for any GRF arising from a transcriptional
activator.

GRFs for a transcriptional activator are often assumed to be sigmoidal (“S-shaped”), by which is meant that
dfn/dx increases to a maximum and then decreases steadily towards zero: dfn/dx → 0 as x → ∞ and dfn/dx
has a single maximum for x ∈ [0,∞). The Hill functions exhibit this behaviour. Sigmoidality can be numerically
checked by showing that df2

n/dx
2 has a single zero for x ∈ [0,∞), which we did in a similar way to the previous

paragraph. We found that GRFs for the equilibrium all-or-nothing strategy were always sigmoidal but that equi-
librium GRFs for the one-or-more and average-binding strategies and non-equilibrium GRFs for any strategy were
not always sigmoidal. Paper Figure 3B shows a typical GRF which is increasing but not sigmoidal.

6 Properties of the shape measures γ and ρ

6.1 γ and ρ for the Hill functionHa

The position, γ, and the steepness, ρ, of a GRF are defined in Paper Equation 6 and these definitions apply equally
well to the Hill functions Ha(x). Note that the Hill coefficient can be any real number a > 0. A straightforward
calculation shows that

dHa

dx
=

axa−1

(1 + xa)2
,

d2Ha

dx2
=
axa−2(a− 1− (a+ 1)xa)

(1 + xa)3
.

It follows that,

γ(Ha) =

(
a− 1

a+ 1

)1/a

and ρ(Ha) =
a2 − 1

4aγ(Ha)
.

6.2 γ and ρ do not depend on the scale factor
Recall from the Paper that the normalised GRF, gn(y), is defined by gn(y) = fn(y.x0.5) where y = x/x0.5 and
fn(x0.5) = 0.5. It follows that

dgn
dy

=
dfn
dx

dx

dy
= x0.5

dfn
dx

. (29)

Suppose that we scale the x value so that we replace x by cx in fn. Let us call the resulting scaled GRF f cn(x) =
fn(cx) and use superscript c in a similar way to denote other entities obtained from f cn. If follows that 0.5 =
f cn(xc0.5) = fn(cxc0.5), so that xc0.5 = x0.5/c. Then, using Eq. 29 twice,

dgcn
dy

= xc0.5
df cn
dx

=
(x0.5

c

)(dfn(cx)

dx

)
= x0.5

dfn
dx

=
dgn
dy

.

Hence, both the maximum derivative of dgn/dy, which is the steepness ρ(gn), and its position, which is γ(gn), do
not depend on the scale factor c.
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This argument applies equally well to the scale factor K1 at equilibrium (Eq. 15) and to the scale factors a1,∅
and b1,{1} away from equilibrium (Eq. 19).

7 Parameter ranges and search algorithms

7.1 Equilibrium parameter ranges
For numerical calculations at equilibrium, we chose non-dimensional parameters κi, ωi,S ∈ [10−a, 10a] by loga-
rithmic sampling. The default choice of a = 3 which was used for many of the regions shown in the Paper allows
the bare association constants Ki,∅ to vary by a factor of 103 and the higher-order association constants Ki,S to
vary by a factor 106, both in comparison to K1. We felt this was sufficiently broad to reveal most properties while
giving good numerical stability and computation time. We explored the parameter range as far as a = 5 for the
all-or-nothing strategy at equilibrium but found no new features (Paper Figure 4C and Figure S1A).

7.2 Non-equilibrium parameter ranges
For numerical calculations away from equilibrium, we chose the non-dimensional parameters εi,S , δi,S∪{i} ∈
[10−2, 102], for i > 1 or S 6= ∅, by logarithmic sampling (Paper Figure 6). If the gene regulatory system were
at equilibrium, so that the association constants Ki,S = ai,S/bi,S∪{i} became meaningful, the chosen parameter
range would allow Ki,S to vary by a factor of 104 with respect to K1,∅. This allows the bare association con-
stants, Ki,∅, more leeway than the default factor of 103 used at equilibrium (§7.1) but the higher-order association
constants, Ki,S , are now more constrained than the factor of 106 used at equilibrium. We felt that this permits a
reasonable comparison between the equilibrium and non-equilibrium regions.

When the parameter range is increased, the non-equilibrium region for the all-or-nothing strategy behaves
similarly to the equilibrium region and approaches Ha at the tip of a cusp (Figure S2). However, in the non-
equilibrium case, a = 5 when n = 3, unlike the equilibrium case, in which a = 3 when n = 3.

7.3 Biased sampling algorithm for position-steepness regions
The random sampling which yielded the probability density function in Paper Figure 4A does not identify the shape
of the sampled region in (γ, ρ) space. We therefore developed an algorithm which biases the sampling towards
the boundary of the region and used this to find the position-steepness regions shown in Paper Figures 4, 5 and 6.
The algorithm has the following steps. The non-dimensional parameters are assumed to be sampled from the range
[10−a, 10a] for some a, while the scale factors are kept at 1 in their respective units.

1. Generate the symbolic GRF. We used previously-developed software1 described in [1] for calculating ξGn

at equilibrium or νGn away from equilibrium and assembled the resulting GRF, fn(x), in symbolic form in
Mathematica. This symbolic GRF was passed to Matlab.

2. Create an initial set of GRFs, Φran. An initial set of numerically-specified GRFs, Φran, was gener-
ated by randomly sampling the non-dimensional parameters from the uniform distribution on [10−a, 10a]
and instantiating the symbolic GRF at these parameter values. For each such numerically-specified GRF,
γ(gn) and ρ(gn) were computed as described in §7.3.1 and those GRFs which failed the position filter
γ(gn) 6∈ [0.5Hn, 1.5Hn] were rejected. Typically, 100 GRFs were chosen to create an initial set, Φran,
of (γ, ρ) values in position-steepness space. A different method was used for the average-binding strategy
with pairwise cooperativity only (Paper Figure 5B, bottom) because we found no GRFs which passed the
position filter. They appear to very rare. We therefore ran the present algorithm until we found 20 GRFs
which passed the position filter and then used these to form the initial set, Φran. The variable ΦX is set
equal to Φran.

1The software is freely and publicly available from http://vcp.med.harvard.edu/software.html.
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3. Identify the boundary of the set ΦX , Φext = extreme[ΦX ]. We did this in two ways using a fast,
custom subroutine, extreme.m, for regions without re-entrant cusps and a slower Matlab subroutine,
boundary.m, for regions with re-entrant cusps (as in Paper Figure 5A). In the custom subroutine, the
γ and ρ axes were divided into small slices and the GRFs with minimum and maximum values of γ and ρ
were found within each slice, as shown in part A of the diagram below. Typically, 20 equally spaced slices
across the point cloud in each axis were sufficient to find enough extreme points for boundary finding, as in
part B of the diagram. The advantage of this method is that it is not sensitive to differences in the density of
points over the boundary. The disadvantage is that any re-entrant cusp on the boundary may only be partially
revealed by horizontal and vertical slicing. In contrast, Matlab’s boundary.m subroutine finds the entire
boundary, including those parts with re-entrant cusps. However, the non-uniform distribution of points in the
steepness-position plots causes this subroutine to oversample the high-density (and low steepness) regions
and to slow down significantly. We tested extreme.m against boundary.m and found no difference
between the boundaries for regions without re-entrant cusps, as shown in part C of the diagram, but with a
10X difference in performance. We therefore used our custom subroutine extreme.m as the default and
switched to Matlab’s boundary.m only when we encountered re-entrant cusps.
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4. Generate “mutated” GRFs from the extremes, Φnew = mutate[Φext]. Once the boundary is identified,
for each GRF in the boundary, a new “mutated” GRF is constructed by sampling each non-dimensional
parameter from the uniform distribution on [0.5, 1.5] times its original value, while ensuring that the sampled
value also lies in [10−a, 10a]. γ(gn) and ρ(gn) are then computed for the mutated GRF as described in §7.3.1
and GRFs which fail the position filter are rejected. Because there are many GRFs on the boundary, it was
usually sufficient to generate just one mutated GRF for each GRF on the boundary. However, for pairwise-
cooperativity only with the all-or-nothing strategy (Paper Figure 5A), we found that the regions grew very
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slowly in discrete jumps, indicating that GRFs beyond the boundary were rare and were being found very
slowly. We therefore generated 30 mutated GRFs for each GRF on the boundary and this substantially
improved the convergence rate.

5. Create an enlarged set of extreme GRFs, Φall = Φext∪Φnew. The mutated GRFs could be less extremal
than their parents so they are adjoined to the previous ones to form an enlarged set of extremal GRFs. The
variable ΦX is then set equal to Φall, control is returned to Step 3 and the the loop is repeated a fixed
number of times.

6. Generate a smooth boundary for plotting. Once the algorithm had converged (see below), we used Mat-
lab’s boundary.m algorithm to re-compute the final boundary, which Matlab provides in a data structure
that is more convenient for plotting. The boundaries shown in Paper Figures 4, 5 and 6 were generated in
this way.

With each iteration of the algorithm, the extreme points found in Step 3 approach closer to the boundary and
eventually condense at the boundary, as shown in part D of the diagram above. Because the algorithm chooses
random GRFs by mutation in Step 4, we found that the smoothness of the boundary was a good test of whether the
algorithm had converged. However, we also undertook further tests as described in §7.4

7.3.1 Calculating γ and ρ

The position, γ, and steepness, ρ, have to be calculated for each GRF that is generated by the algorithm above. This
entails multiple evaluations of the derivative and we found it necessary for performance reasons to optimise this
calculation. A numerically-specified GRF, fn(x), is given as a rational function of x with numerical coefficients.
Its derivative, dfn/dx, was evaluated at x = x1 as follows.

• At equilibrium, if n ≤ 7, dfn/dx was calculated by symbolically differentiating fn with respect to x and
then evaluating this expression at x = x1.

• At equilibrium, if n > 7, fn(x) was expressed as a fraction, fn(x) = p(x)/q(x), where p(x) and q(x) are
polynomials in x, and the expression for the derivative of a fraction,

p′(x1)q(x1)− p(x1)q′(x1)

q(x1)2
,

was evaluated, where p′(x) and q′(x) are the symbolic derivatives of the polynomials.

• Away from equilibrium, the approximation for the derivative

dfn
dx

∣∣∣∣
x=x1

≈ fn(x1 + ∆)− fn(x1 −∆)

2∆

was calculated with ∆ = 10−8.

To then determine γ and ρ, x0.5 was first estimated by using the Matlab subroutine fzero to solve the equation
fn(x0.5) = 0.5. The derivative dfn/dx, calculated as described above, was then evaluated at the points

xi = i
(x0.5

103

)
,

for i running from i = 0 to 104, thereby covering the interval [0, 10x0.5]. The maximum derivative in this list was
taken to be ρ(fn) and the corresponding x at which the maximum was found was taken to be γ(fn). Finally, the
position and steepness of the normalised GRF was calculated by using Eq. 29, so that

γ(gn) =
γ(fn)

x0.5
and ρ(gn) = x0.5ρ(fn) .

The choices made here were determined after several numerical experiments but the overall accuracy of the algo-
rithm was assessed by the tests described next.
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7.4 Testing convergence and numerical accuracy
We tested convergence of the biased sampling algorithm as follows. Starting from the converged boundary to be
tested, we iterated the algorithm in §7.3 10 times but now generated 103 mutated GRFs for each boundary GRF
in Step 4, thereby oversampling the boundary. For each region, 0 ≤ i ≤ 10, where 0 is the starting region,
we computed its area ai using Matlab’s boundary.m subroutine and then calculated the MAI, or “Mean Area
Increase” over the iterations, as given by

1

10

 ∑
0≤i<10

ai+1 − ai
ai

 . (30)

Since mutated GRFs are added to the existing GRFs in Step 5, the area can only increase, so that ai ≤ ai+1. The
MAI scores for each of the boundaries shown in the Paper are show in the table below.

case #sites #GRFs #iterations MAI MDI
Paper Figure 4C

p = 1 5 1099 1000 4.8× 10−4 1.6× 10−4

p = 2 5 1995 1000 1.9× 10−4 1.8× 10−4

p = 3 5 22418 1000 8.4× 10−4 6.6× 10−3∗

p = 5 5 4836 1000 5.1× 10−4 3.7× 10−3

Paper Figure 4D
AN 5 22418 1000 8.4× 10−4 6.6× 10−3∗

OM 5 15060 1000 2.7× 10−4 1.5× 10−3

AB 5 15044 1000 1.1× 10−3 9.9× 10−4

Paper Figure 5A
AN 3 4704 1000 9.3× 10−7 2.5× 10−5

AN 4 4886 1000 3.7× 10−5 1.5× 10−5

AN 5 4773 1000 4.0× 10−6 3.1× 10−5

AN 6 2878 2000 1.6× 10−4 4.9× 10−5

AN 7 2157 2000 8.4× 10−5 5.4× 10−5

AN 8 1338 6000 7.8× 10−5 2.7× 10−3

AN 9 782 6000 9.3× 10−4 6.8× 10−3

AN 10 833 6000 1.3× 10−4 2.7× 10−3

AN 11 553 6000 2.8× 10−5 3.6× 10−3

AN 12 644 6000 3.1× 10−4 3.3× 10−3

Paper Figure 5B, top
OM 3 3748 1000 7.3× 10−3 1.0× 10−4

OM 4 3692 1000 1.4× 10−2 4.7× 10−5

OM 5 7926 1000 1.1× 10−3 1.0× 10−4

OM 6 7502 1000 1.1× 10−2 6.3× 10−4

OM 7 23068 1000 9.0× 10−3 1.1× 10−4

OM 8 1818 1000 2.7× 10−2 1.0× 10−4

OM 9 11014 1000 1.1× 10−2 1.1× 10−4

OM 10 5528 1000 2.0× 10−2 1.0× 10−4

OM 11 6516 1000 8.1× 10−2 1.0× 10−4

OM 12 3041 1000 2.8× 10−2 1.1× 10−4

Paper Figure 5B, bottom
AB 3 37376 1000# 6.3× 10−6 2.3× 10−2

AB 4 4065 1000# 4.0× 10−6 4.9× 10−4

AB 5 37405 1000# 0† 1.7× 10−2

AB 6 37401 1000# 0† 1.0× 10−2

AB 7 37362 1000# 0† 8.6× 10−3

AB 8 37384 1000# 0† 1.2× 10−2

AB 9 2893 1000# 0† 8.9× 10−3

AB 10 130 1000# 0† 1.2× 10−3

Paper Figure 6
AN 3 292 3000 4.3× 10−3 1.0× 10−3

OM 3 293 6000 7.0× 10−3 5.0× 10−3

AB 3 355 6000 6.2× 10−3 4.8× 10−3
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The abbreviations AN for all-or-nothing, OM for one-or-more and AB for average-binding have been used in this
table. The column for #iterations gives the number of iterations of the algorithm after the initial set was found. For
the average-binding strategy with pairwise cooperativity only, we used a different strategy to generate the initial
set of GRFs (see Step 2 of the algorithm in §7.3) and this is indicated by the symbol #; also in this case, when the
number of sites (#sites) was 5 or more, the convergence test created no new GRFs on the boundary, so that the MAI
score was identically zero and this is indicated by the symbol †. Where possible, we checked all GRFs generated by
the algorithm in §7.3 but when there were too many because of high numbers of iterations, we restricted attention
to the GRFs on the final converged boundary. The symbol ∗ in the table signifies a duplicated dataset.

The table shows that the MAI scores are never worse than 0.1—these worst cases occur for the one-or-more
strategy with pairwise cooperativity only, as in Paper Figure 5B, top, for which the regions are very small—and
are usually less then 0.001, which we considered to be good evidence that the boundary had converged. We
note, however, that boundary finding depends on randomly generating GRFs in Step 4 of the algorithm and we
cannot rule out the possibility that increased iterations would occasionally find extremely rare GRFs outside the
boundaries that we have shown.

As a further test of the algorithm and its numerical accuracy, we undertook an independent calculation of the
region using the same parameter values. We recorded all the parameter values generated by the algorithm in §7.3
and passed them to Mathematica. We instantiated the symbolic GRF at each set of parameter values to generate
a GRF, fn, with numerical coefficients. We used the native Solve[] capability in Mathematica to normalize x
to the half-maximal concentration x0.5 and defined gn(y) := fn(x0.5y). Like fn, gn has numerical, not symbolic,
coefficients. We calculated d2gn/dy

2 as a function of y and used the Solve[] function again to obtain values of
y where d2gn/dy

2 = 0. This process sometimes returned very large values of y, corresponding to where gn(y) is
nearly at its asymptotic limit and dgn/dy → 0. To avoid this numerical artifact, we imposed the constraint that
y < 103. We note that y is non-dimensional and the position of the maximum derivative was never found beyond
y = 2, so the limit of 103 seems safe. Having found the values of y at which dgn/dy has a turning point (ie:
either a local maximum or a local minimum), we substituted these values into dgn/dy and took their maximum,
thereby obtaining ρ(gn), and took the corresponding value of y to be γ(gn). To compare this with the values
obtained by the biased sampling algorithm, we took, for each GRF, the Euclidean distance between the position-
steepness coordinates found by the algorithm in Matlab, (γA, ρA), and those found by the test just described in
Mathematica, (γT , ρT ). We defined the MDI, or Maximum DIstance, to be the maximum of this value over all the
GRFs generated in calculating a particular boundary:

max
g∈GRFs

√
(γA(g)− γT (g))2 + (ρA(g)− ρT (g))2 . (31)

The MDI scores for each of the boundaries shown in the Paper are given in the table above, with the column for
#GRFs showing the number of GRFs that were checked to evaluate the MDI.

The MDI scores are never worse than 1.0 × 10−2—these worst cases occur for the average-binding strategy
with pairwise cooperativity only, as in Paper Figure 5B, bottom—and are usually an order of magnitude better. We
considered this to be evidence of good numerical accuracy.

The MDI test not only assessed numerical accuracy, it was also an effective method for identifying mistakes
in our overall work flow, including in file handling, software coding, numerical implementation and algebraic
manipulation, which we then corrected. The algorithm calculations in Matlab were carried out by JE and the
independent tests in Mathematica were carried out by FW and this cross-checking also helped with the detection
of errors.
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