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Discriminating between correct and incorrect substrates is a core process in biology, but how is energy
apportioned between the conflicting demands of accuracy (µ), speed (σ ), and total entropy production rate (P )?
Previous studies have focused on biochemical networks with simple structure or relied on simplifying kinetic
assumptions. Here, we use the linear framework for timescale separation to analytically examine steady-state
probabilities away from thermodynamic equilibrium for networks of arbitrary complexity. We also introduce a
method of scaling parameters that is inspired by Hopfield’s treatment of kinetic proofreading. Scaling allows
asymptotic exploration of high-dimensional parameter spaces. We identify in this way a broad class of complex
networks and scalings for which the quantity σ ln(µ)/P remains asymptotically finite whenever accuracy
improves from equilibrium, so that µeq/µ → 0. Scalings exist, however, even for Hopfield’s original network,
for which σ ln(µ)/P is asymptotically infinite, illustrating the parametric complexity. Outside the asymptotic
regime, numerical calculations suggest that, under more restrictive parametric assumptions, networks satisfy
the bound, σ ln(µ/µeq)/P < 1, and we discuss the biological implications for discrimination by ribosomes and
DNA polymerase. The methods introduced here may be more broadly useful for analyzing complex networks
that implement other forms of cellular information processing.
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I. INTRODUCTION

In cellular information processing, a biochemical mecha-
nism is coupled to an environment of signals and substrates and
carries out tasks such as detection [1–5], amplification [6–8],
discrimination [9–24], adaptation [25], searching [26], and
learning [27–30]. As Hopfield pointed out in his seminal work
on discrimination [9], systems operating at thermodynamic
equilibrium have limited information processing capability and
energy must be expended to do better [8,32].

We focus here on the widely studied task of discrimina-
tion between correct and incorrect substrates, an essential
feature of many core biological processes. The accuracy
of discrimination may have to be traded off against speed
while energy remains a limiting resource [25,31]. How can
energy be apportioned between such desirable properties as
accuracy and speed and the inevitable dissipation of heat to
the environment? Quantitative insights into this question can
help us distill the principles underlying cellular information
processing despite the pervasive complexity of the underlying
molecular mechanisms.

Previous studies of discrimination have largely focused
on particular systems, such as Hopfield’s original proof-
reading mechanism [9,19,20], McKeithan’s T-cell receptor
mechanism [14,18], minimal feedback mechanisms [25],
irreversible multistep mechanisms [23], or ladder mecha-
nisms [12,15,16,21]. Murugan et al. analyzed general sys-
tems using simplifying assumptions about where energy is
expended and showed how discriminatory regimes also depend
on the topology of the mechanism [15,16]. Several studies
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have analyzed the relationship between energy expenditure
and other properties away from thermodynamic equilibrium.
These have often been limited to networks with simplifying
assumptions [11–13,15,19–24] or have considered different
questions in the context of kinetic proofreading [13,15,16,22–
24,33,34]. The results in Refs. [17,25,35] show some formal
similarities to those presented in this paper and these studies
are reviewed further in the Discussion (Sec. IX).

One of the challenges in dealing with general systems away
from thermodynamic equilibrium is that the steady-state prob-
abilities can be complex algebraic functions of the parameters
(see the Discussion) [8,32], which makes it difficult to identify
any universal behavior. We address this issue here in two ways.
First, we use a graph-based treatment of Markov processes
called the “linear framework” [36], which allows steady-state
probabilities to be analytically calculated for processes of
arbitrary structure away from thermodynamic equilibrium
(Secs. II and III). Second, we introduce a way of exploring
parameter space by scaling the parameters. This idea is inspired
by Hopfield’s original analysis of kinetic proofreading, which
we revisit here to point out certain subtleties that are not
always appreciated (Sec. IV). The scaling method allows us
to calculate the asymptotic behavior of steady-state properties
of general systems, despite the difficulties arising from high-
dimensional parameter spaces and algebraic complexity. In this
way, we are able to exhibit a universal asymptotic relationship
between energy, speed and accuracy for a broad class of
discriminatory systems, without simplifying assumptions as
to where energy is expended (Sec. VI). We further explore
whether this asymptotic relationship also has significance for
finite parameter values and for actual biological discrimination
mechanisms (Sec. VIII).
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FIG. 1. The Hopfield mechanism and the linear framework. (a)
Labeled, directed “butterfly” graph for the original Hopfield mech-
anism in Ref. [9], consisting of the subgraph GD for the incorrect
substrate D (within left-hand dashed circle) and the subgraph GC for
the correct substrate C (within right-hand dashed circle), which share
the common vertex 1. Cyan and magenta denote correct and incorrect
substrate binding, respectively. (b) Hypothetical energy landscape for
the Hopfield mechanism showing where energy may be expended to
drive the proofreading step with label m′. (c) The spanning trees of
GC rooted at 3C (circled) are shown. A spanning tree is a subgraph
which includes every vertex (spanning) and has no cycles when edge
directions are ignored (tree); it is rooted at i if i is the only vertex with
no outgoing edges. Any nonroot vertex has only a single outgoing
edge. Using Eqs. (1) and (3), the trees shown here give the left-hand
factor in the denominator of Eq. (4) and the remaining factors arise
in a similar way.

II. THE LINEAR FRAMEWORK

The linear framework [36–38] is a graph-based interpreta-
tion of biochemical processes which has been used to analyze
protein post-translational modification [39], covalent modifi-
cation switches [40], and eukaryotic gene regulation [8,32]. In
the stochastic setting considered here, the framework follows
the treatment previously developed by Hill [41] and Schnaken-
berg [42]. A finite-state Markov process M is represented by
a directed graph, G, with labeled edges and no self-loops
[Fig. 1(a)], hereafter a “graph.” The vertices 1, . . . , n, are
interpreted as microstates and a labeled edge, i

a→ j , as a
transition between microstates whose label, a, is the infinites-
imal transition rate of the Markov process. The equations of
motion are defined as if the edges are reactions under mass
action kinetics, with the labels being the corresponding rates.
This yields the master equation of the Markov process in the
form dp/dt = L(G)p, in which p ∈ (R!0)n is the vector of
microstate probabilities and L(G) is the Laplacian matrix of
G. For instance, for the subgraph GC in Fig. 1(a),

L(GC ) =

⎛

⎜⎝

−(k′
C + l′C ) kC lC + W
k′
C −(kC + m′) m

l′C m′ −(lC + W + m)

⎞

⎟⎠.

Since probability is conserved, there is a conversation law,∑
i pi (t ) = 1, where pi (t ) is the probability that M is in

microstate i at time t .
If the graph is strongly connected, so that any two vertices

can be joined by a path of edges in the same direction, then there
is a unique steady state up to a scalar multiple. A representative
steady state, ρ(G), can be calculated in terms of the labels by

the matrix-tree theorem (MTT): if !i (G) denotes the set of
spanning trees rooted at i [Fig. 1(c)], then ρi (G) is the sum of
the product of the labels on the edges of each tree,

ρi (G) =
∑

T ∈!i (G)

⎛

⎝
∏

j
a→k∈T

a

⎞

⎠. (1)

The steady-state probabilities are then

p∗
i =

(
ρi (G)

ρ1(G) + · · · + ρn(G)

)
. (2)

If the steady state is one of thermodynamic equilibrium,
so that detailed balance is satisfied, then the framework gives
the same result as equilibrium statistical mechanics, with the
denominator in Eq. (2) being the partition function (up to a
constant factor). However, Eq. (2) is also valid away from
equilibrium.

In contrast to eigenvalues or determinants, the MTT gives
the steady state analytically in terms of the labels [Eq. (1)]. This
makes it feasible to undertake a mathematical analysis, without
relying on numerical simulation, whose scope is necessarily
more restricted. Substantial algebraic complexity can arise in
Eq. (1) through the combinatorial explosion of enumerating
spanning trees (Discussion) but, as we show here, with the
appropriate mathematical language, it is possible to draw
rigorous conclusions about structurally complex systems away
from thermodynamic equilibrium. In particular, we exploit the
fact that steady-state probabilities are rational functions in the
labels, which allows us to determine asymptotic behaviors.

III. STEADY STATES OF A BUTTERFLY GRAPH

Discrimination typically requires a mechanism for choosing
a correct substrate from among a pool of available substrates, as
in DNA replication, in which DNA polymerase must choose
at each step one correct deoxynucleoside triphosphate from
among the four available (dATP, dGTP, dCTP, dTTP). We
follow Hopfield in assuming a single correct substrate, C, and
a single incorrect substrate, D, and describe this mechanism
by a graph G [e.g., Fig. 1(a)] whose vertices represent the
microstates of the discriminatory mechanism, such as DNA
polymerase in the case of replication. This graph is naturally
composed of two subgraphs, GX (X = C,D), corresponding
to the states in which substrate X is bound. GC and GD share a
common vertex, but no edges, so that G has a butterfly shape.

We will denote such a butterfly graph G = GC ⊕v GD ,
where v is the shared vertex. For the task of discrimination,
the subgraphs GX are structurally symmetric, with symmetric
vertices, 1X, · · · , nX, of which 1C = 1D = 1 is shared, and
symmetric edges, iC → jC if, and only if, iD → jD . The labels
on these corresponding edges may, however, be distinct. The
vertices iX with i > 1 are the microstates in which X is bound,
while vertex 1 is the empty microstate in which no X is bound.
All directed edges are assumed to be structurally reversible, so
that, if iX → jX, then jX → iX. The graphs GC , GD , and G
are therefore all strongly connected.

Let G = GC ⊕v GD be any butterfly graph. Even if GC and
GD are not structurally symmetric, as above, it follows readily

012420-2



ENERGY-SPEED-ACCURACY RELATION IN COMPLEX … PHYSICAL REVIEW E 98, 012420 (2018)

from Eq. (1) that

ρi (GC ⊕v GD ) =
{
ρi (GC )ρv (GD ) if i ∈ GC

ρi (GD )ρv (GC ) if i ∈ GD.
(3)

IV. THE ERROR FRACTION FOR THE
HOPFIELD MECHANISM

The original Hopfield kinetic proofreading mechanism is
described by the discriminatory butterfly graph G=GC ⊕1GD

in Fig. 1(a). The substrates C and D are treated as “slow”
components and assumed to have constant concentration over
the timescale of interest. These concentrations are absorbed
into the “on-rates” k′

C, k′
D, l′C, l′D . The discrimination mecha-

nism itself is assumed to have the “fast” components and to
be at steady state. The rate W for exit from 3X (X = C,D)
corresponds to product generation and release of X, so that the
overall system is open whenever W > 0, with C and D being
transformed into correct and incorrect product, respectively.

In this mechanism, discrimination occurs twice, through
binding and unbinding of X to form 2X and to form 3X.
It is assumed that unbinding, rather than binding, causes
discrimination, as is often the case in biology [14], so that
l′C = l′D and k′

C = k′
D . The correct substrate has a longer

residence time, so that kC < kD , which reflects the free energy
difference of " > 0 between 2C and 2D [Fig. 1(b)]: if energy
is measured in units of kBT , where kB is Boltzmann’s constant
and T is the absolute temperature, then kD = kCe". There is
assumed to be no difference in discrimination between 2X and
3X, so that kC/kD = lC/ lD = e−" < 1.

Hopfield defines the steady-state error fraction, ε as the
probability ratio of the incorrect to the correct exit microstate,
which, using Eq. (2), is given by ε = ρ3D

(G)/ρ3C
(G) (ε is the

inverse of the accuracy µ in the Abstract; we will work with
the former). Using Eqs. (1) and (3),

ε = [l′D (kD + m′) + m′k′
D][(kC + m′)(W + lC ) + mkC]

[l′C (kC + m′) + m′k′
C][(kD + m′)(W + lD ) + mkD]

.

(4)

If the overall system remains closed, so that W = 0, while the
mechanism operates at thermodynamic equilibrium, then it has
the error fraction, ε0 = kC/kD = lC/ lD = e−" (Supplemental
Material [43]). If the overall system becomes open, so that
W > 0, while the mechanism remains at equilibrium, then
ε increases monotonically with increasing W (Supplemental
Material [43]). If the mechanism itself operates away from
equilibrium, then

ε > ε0

(
lC + m + W

lD + m + W

)
> ε2

0 (5)

for all positive values of the parameters (Supplemental Mate-
rial [43]). Hopfield shows that ε approaches the minimal error,
ε2

0, as certain parametric quantities become small (Supplemen-
tal Material [43]) and suggests how this could be achieved in
practice by expending energy to drive the transition from 2X

to 3X through the label m′. This is kinetic proofreading.
There are two aspects of Hopfield’s analysis which have

not always been fully appreciated. First, increasing m′ is not
sufficient of itself for ε to approach ε2

0. Indeed, it follows
from Eq. (4) that, when W = 0, ε → ε0 as m′ → ∞. Too

FIG. 2. Structure of dissociation-based mechanisms. Shown is
a schematic of a labeled, directed “butterfly” graph illustrating the
structure of any dissociation-based mechanism, which consists of the
subgraph GD for the incorrect substrate D and the subgraph GC for
the correct substrate C sharing the common vertex 1. GC and GD

are assumed to be symmetric, but the internal transitions within them
can be arbitrary, as suggested by the “clouds.” nX is taken to be the
only exit microstate in which product is generated, so there is a return
edge nX → 1. As in Fig. 1(a), cyan and magenta denote correct and
incorrect substrate binding, respectively.

much energy expenditure can increase the error fraction,
which behaves nonmonotonically with respect to m′. (Similar
nonmonotonicity has been observed for kinetic proofreading
with the T-cell receptor mechanism in Supplemental Material
Fig. 1 [18].) The parameter m′ must neither be too high
nor too low for the error fraction to approach ε2

0. Second,
parameters other than m′, m, and W must also take adequate
values for the accuracy to approach this bound: the “on-rate”
for 1 → 2X must be much larger than that for 1 → 3X, so
that l′D/k′

D = l′C/k′
C → 0 (Supplemental Material [43]). The

lower bound of ε2
0 is only reached asymptotically as several

parameters take limiting values.
For more complex systems, the appropriate parameter

regime for the minimal error is not readily found using Hop-
field’s approach. We therefore sought an alternative strategy.
If we let x = e" = ε−1

0 and substitute kD = xkC and lD = xlC
into Eq. (4), we see that, if no other parameters change, the error
fraction ε behaves like x−1 as x increases. We reasoned that
to approach the minimal error of x−2, the fold change in other
parameter values should be some function of x. By retaining
only the highest-order term in x as x → ∞, the behavior
of ε could be determined while bypassing the parametric
complexity. Let R(x) ∼ Q(x) mean that R(x)/Q(x) → c as
x → ∞, where 0 < c < ∞. It can be seen from Eq. (4) that
if either k′

D = k′
C ∼ x or l′C = l′D ∼ x−1, while none of the

remaining parameters depend on x, then ε ∼ x−2 = ε2
0. This

scaling of the “on-rates” corresponds to what was required in
the previous paragraph for Hopfield’s limiting procedure. This
suggests a strategy for exploring parameter space that can be
extended to more complex systems. We exploit this below to
examine the relation between energy, speed, and accuracy.

V. DISSOCIATION-BASED MECHANISMS

We introduce here a class of discrimination mechanisms
for which such a relation can be determined. We consider a
discriminatory butterfly graph of the form G = GC ⊕1 GD

consisting of structurally symmetric subgraphs GC and GD of
arbitrary complexity (Fig. 2). The vertex nX is taken to be the
only exit microstate in which product is generated, so that there
is a return edge nX → 1. No further structural assumptions are
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made but the product generation rate, W , makes an additive
contribution to the label of the return edge nX → 1, as in
Fig. 1(a).

Multiple internal microstates and transitions are allowed
in GX as well as multiple returns to the empty microstate, 1,
although only a single one of these, through nX, also generates
product. As in Hopfield’s original scheme, we think of the
mechanism as coupled to sources and sinks of energy, which
may alter the edge labels. In Hopfield’s scheme, the labels
on edges which do not go to the reference microstate 1 were
assumed to be the same between C and D [Fig. 1(a)]. In other
words, there was no “internal discrimination” between correct
and incorrect substrates. Here, we allow internal discrimination
between C and D: when j ̸= 1, the label on iC → jC may be
different from that on iD → jD .

Graphs of this form been widely employed in the literature.
In addition to the original Hopfield mechanism [Fig. 1(a)],
they include the “delayed” mechanism [10], the multistep
mechanism [12,13,44], the T-cell receptor mechanism [14,18],
and generalized proofreading mechanisms [15–17].

We follow Hopfield in using the steady-state error fraction
and work from now on with probabilities. Let p∗ be the vector
of steady state probabilities. The discrimination error fraction,
ε, is the steady-state probability ratio of the incorrect exit
microstate, nD , to the correct exit microstate, nC ,

ε =
p∗

nD

p∗
nC

. (6)

We will analyze the behavior of G under the assumption
that some of the labels are functionally dependent on the
nondimensional variable x ∈ R. A function R(x) is said to
be allowable if it is positive, R(x) > 0 for x > 0, and has a
degree, deg(R), given by R(x) ∼ xdeg(R) as x → ∞. This is
well defined because xa ∼ xb if, and only if, a = b. The degree
determines the asymptotics of allowable functions: R ∼ Q if,
and only if, deg(R) = deg(Q). Note that deg(R) = 0 if, and
only if, R(x) → c as x → ∞, where c > 0, which is the case
if R does not depend on x.

The labels in the graph G are assumed to be allowable
functions of x. (The product generation rate W couples the
mechanism to the environment and is assumed not to depend
on x.) If R and Q are allowable functions, then so are R−1,
RQ, and R + Q and (Supplemental Material [43]):

deg(R−1) = − deg(R),

deg(RQ) = deg(R) + deg(Q),

deg(R + Q) = max(deg(R), deg(Q)). (7)

Accordingly, any rational function of the labels with only
positive terms, such as p∗, which acquires this structure
through Eqs. (2) and (1), or ε, which acquires it through Eq. (6),
becomes in turn an allowable function of x.

We define a dissociation-based mechanism to be a general
discrimination mechanism for which, for the edges between
the exit microstates and 1,

deg(ℓ1→nD
) = deg(ℓ1→nC

),

deg(ℓnD→1) = deg(ℓnC→1) + 1. (8)

Here, we use ℓi→j to denote the label on the edge i → j . Equa-
tion (8) is analogous to the assumption l′C = l′D and xlC = lD
for the Hopfield mechanism. Unlike the Hopfield mechanism,
we do not restrict what happens at nonexit microstates.

With such general assumptions on the labels, a dissociation-
based mechanism may not reach thermodynamic equilibrium.
However, if it can, with W > 0, so that the overall system
remains open, then Eq. (8) ensures that the equilibrium error
fraction, εeq , has a simple form. Since detailed balance requires
that each pair of edges is independently at steady state [36],
the exit states, nX, satisfy ℓnX→1p

∗
nX

= ℓ1→nX
p∗

1 , so that

εeq =
p∗

nD

p∗
nC

=
(

ℓ1→nD

ℓ1→nC

)(
ℓnC→1

ℓnD→1

)
. (9)

Applying Eq. (8) and using Eq. (6), we see that, if equilibrium
is reached, the resulting error fraction, εeq, satisfies

εeq ∼ x−1. (10)

VI. THE ASYMPTOTIC RELATION

We now define the measures of speed and energy expen-
diture in terms of which our main result will be stated. A
reasonable interpretation for the speed of the mechanism, σ ,
is the steady-state flux of correct product [45],

σ = Wp∗
nC

. (11)

As for energy expenditure, this is determined at steady state
by the rate of entropy production. Schnakenberg put forward a
definition of this [42] that has been widely used [2,7]: for a pair
of reversible edges, i ! j , the steady-state entropy production
rate, P (i ! j ), is the product of the net flux, J (i ! j ) =
ℓj→ip

∗
j − ℓi→jp

∗
i , and the thermodynamic force, A(i ! j ) =

ln(ℓj→ip
∗
j /ℓi→jp

∗
i ):

P (i ! j ) = J (i ! j )A(i ! j ). (12)

Here, we omitted Boltzmann’s constant kB for convenience, so
that P has units of (time)−1. If T is the absolute temperature,
then kBT P (i ! j ) is the power irreversibly expended through
i ! j . The total entropy production rate of the system is then
given by P =

∑
i!j P (i ! j ). Note that P (i ! j ) ! 0 (and

so also P ! 0) with equality at thermodynamic equilibrium
when detailed balance implies that J (i ! j ) = 0. Positive
entropy production, with P > 0, signifies energy expenditure
away from thermodynamic equilibrium.

Both σ and P are functions of x and σ is evidently
allowable. However, A(i ! j ) is not a rational function with
positive terms and ln(x) ̸∼ xα for any α, so P (i ! j ) and
P are not allowable functions. Nevertheless, the asymptotic
behavior of P can be estimated. Some further notation is
helpful to do this. If R(x) and Q(x) are functions which are
not necessarily allowable, then R ≺ Q means that R/Q → 0
as x → ∞. This relation is transitive, so that, if S ≺ R and
R ≺ Q, then S ≺ Q. If both functions are allowable, then
R ≺ Q, if, and only if, deg(R) < deg(Q). We will say that
R " Q if R/Q → c, where 0 " c < ∞, and corresponding
remarks about transitivity and allowable degrees hold for this
relation. Note that ≺ and " dominate over ∼ when forming
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products, so, for instance,

if T " S and R ∼ Q then RT " SQ, (13)

which we will make use of below.
Each summand P (i ! j ) has the form (R − Q) ln(R/Q),

where R and Q are allowable. Let α = deg(R), β = deg(Q)
and c1 = lim R/xα and c2 = lim Q/xβ as x → ∞. By defini-
tion, c1, c2 > 0. Note that, ifS is allowable, then (Supplemental
Material [43])

ln(S) ∼
{

ln(x) if deg(S) > 0
ln(x−1) if deg(S) < 0. (14)

The asymptotic behavior of P (i ! j ) then falls into the fol-
lowing three cases (Supplemental Material [43]), as specified
on the right:

case 1: α ̸= β ∼ xmax(α,β ) ln(x),
case 2: α = β, c1 ̸= c2 ∼ xα,
case 3: α = β, c1 = c2 ≺ xα.

(15)

The third case is awkward because the leading-order asymp-
totics are lost, which leads to the ≺ relation instead of ∼.
However, c1 and c2 are rational expressions in the parameters,
which do not involve x, and the equation c1 = c2 defines a
hypersurface in the space of those parameters. The reversible
edges which fall into case 3 therefore determine a set of
measure zero in the space of parameters. Provided this set is
avoided, the asymptotic behavior of the summands in P fall
into the first two cases and can be controlled. In particular,
suppose that the total entropy production rate P is written
as P =

∑
u Pu, where Pu is a term coming from a pair of

reversible edges i ! j , as in Eq. (12). In Appendix A, we
show that, if Pk is any summand in case 1 of Eq. (15), then,
outside the measure-zero set defined by case 3, Pk " P .

Let us now assume, for any dissociation-based mechanism
as defined previously, that

ε(x) ≺ x−1. (16)

This forces the error fraction to be asymptotically better than
if the system were able to reach equilibrium [Eq. (10)] and
thereby ensures that energy expenditure is contributing to an
improvement in accuracy. Consider any general discrimina-
tion mechanism which is dissociation-based, as described in
Eq. (8). If its error fraction obeys Eq. (16) then, outside the
measure-zero set in parameter space defined by case 3 of
Eq. (15), we show in Appendix B that the mechanism satisfies
the asymptotic relation,

σ ln(ε−1) " P. (17)

The exact asymptotics of σ ln(ε−1)/P are difficult to
estimate for a general dissociation-based mechanism with
allowable labels because each pair of reversible edges must be
examined. However, for the Hopfield mechanism [Fig. 1(a)],
under the conditions described above for which ε ∼ x−2, we
find (Supplemental Material [43])

lim
x→∞

σ ln(ε−1)
P

= 2W

lc + W
(18)

outside the parametric set of measure-zero noted above.

VII. A NONDISSOCIATION-BASED MECHANISM

The requirements in Eq. (8) for being dissociation-based
are necessary for the validity of Eq. (17). In the Supplemental
Material [43], we consider a discrimination mechanism with a
structure identical to that of the Hopfield mechanism [Fig. 1(a)]
but with labels that do not follow Eq. (8) (Supplemental
Material Fig. 3 [43]). If the mechanism reaches thermodynamic
equilibrium, then it follows from Eq. (9) that its equilibrium
error fraction satisfies εeq ∼ x−1. However, with a particular
choice of allowable functions for the labels, for which the
mechanism is no longer at equilibrium, its error fraction im-
proves asymptotically, with ε ∼ x−3/2, while its speed remains
constant, σ ∼ 1, and its entropy production is either constant or
vanishes, P " 1, outside a set of measure zero. This evidently
does not obey Eq. (17) and shows the existence of a different
asymptotic interplay between energy, speed and accuracy.

VIII. NUMERICAL CALCULATIONS OUTSIDE THE
ASYMPTOTIC REGIME

To examine further the energy-speed-accuracy relation
found by the asymptotic analysis above, we used more restric-
tive assumptions on the allowable labels to facilitate numerical
exploration. We considered discrimination-based mechanisms
in which the x-dependency was similar to Hopfield’s original
analysis. For any return edge to 1 from a nonexit microstate,
we assumed that

ℓiD→1 = ℓiC→1x (i ̸= n), (19)

with an additive contribution of W in the exit microstate (i =
n), ℓnD→1 = ax + W , ℓnC→1 = a + W with a ∈ R>0. As for
the other edges, we assumed no internal discrimination, so that
the labels were the same for C and D,

ℓiD→jD
= ℓiC→jC

(j ̸= 1), (20)

with no x-dependency. By Eq. (9), the equilibrium error
function when the system is closed (W = 0) satisfies ε0 =
x−1. We set x = e20, sampled the values ln(ℓiC→jC

), ln(a),
and ln(W ) uniformly in [−100, 100], and determined ℓiD→jD

from Eqs. (19) and (20). We plotted P/σ against ln(ε0/ε),
when ε < ε0, for the Hopfield mechanism [Fig. 3(a)], the
T-cell receptor mechanism (Supplemental Material Fig. 1) and
for a mechanism different from both of these (Supplemental
Material Fig. 2). In each case, the resulting region was confined
to the left of a vertical line [Fig. 3(a), black dashed line] and
above the diagonal [Fig. 3(a), red dashed line]. For the Hopfield
mechanism, the vertical bound comes from Eq. (5) and similar
bounds on ε exist for the other mechanisms (not shown). The
diagonal bound, however, is unexpected and implies the bound

σ ln(ε0/ε) < P (for ε < ε0) (21)

for finite parameter values. It is possible that Eq. (21) holds
for any discrimination-based mechanism whose edge labels
satisfy Eqs. (19) and (20).

The calculations leading to Eq. (21) assumed no internal
discrimination between correct and incorrect substrate, as

012420-5



FELIX WONG, ARIEL AMIR, AND JEREMY GUNAWARDENA PHYSICAL REVIEW E 98, 012420 (2018)

FIG. 3. Numerics for the Hopfield mechanism. (a) Plot of P/σ

against ln(ε0/ε) for the Hopfield mechanism [Fig. 1(a)] for approx-
imately 105 points. The sampling and the dashed lines are described
in the text. (b) Similar plot to (a) for the Hopfield mechanism with
internal discrimination between correct and incorrect substrates, as
described in the text, with the light blue points having a lower
asymmetry range (A = 1) and the dark blue points having a higher
range (A = 5). The colored overlays represent values from experi-
mental data for ribosomes (orange, red and brown regions) and DNA
polymerase (green point), with the former being samples of values
estimated for a parameter for which no experimental data exists. Only
those samples for which ε > ε0 are shown and the asterisks, *, give the
averages of the plotted values. The inset gives the plotted averages (for
the ribosome variants) and values (for DNAP) of error fractions, ε and
ε0 (which are nondimensional), and speed, σ and entropy production
rate, P (in units of s−1). The data from which these values were
calculated are shown in Supplemental Material Table 1. See Ref. [46]
and the caption of Supplemental Material Table 1 for more details.

specified in Eq. (20). We were interested to find that exper-
imental data for ribosomes and DNA polymerase, based on
the original Hopfield mechanism, showed substantial internal
discrimination, extending even to the product generation rate
W [19]. To examine the impact of this, we proceeded as
follows. For any return edge to 1 from a nonexit microstate,
we introduced an asymmetry between C and D so that

ℓiD→1 = αi1ℓiC→1x (i ̸= n). (22)

For the exit state (i = n), the product generation rate makes an
additive contribution, WX, which now depends on the substrate
X, so that ℓnC→1 = a + WC and ℓnD→1 = αn1ax + WD , where
a ∈ R>0 and WD = αWWC . For the other edges, we similarly
introduced an asymmetry

ℓiD→jD
= αijℓiC→jC

(j ̸= 1). (23)

The multiplicative factors αij and αW carry the asymmetry
between C and D in internal discrimination.

In view of the asymmetry in product generation rates, it is
natural to redefine the error fraction as

ε =
WDp∗

nD

WCp∗
nC

.

Using Eq. (9), the equilibrium error fraction when the system
is closed (W = 0) is given by ε0 = ℓ1→nD

a/(ℓ1→nC
αn1a).

We chose the asymmetry factors by sampling ln(αij ) and
ln(αW ) uniformly in the range [−A,A], for A = 1 and A = 5,
and chose the other parameters as described previously for
Fig. 3(a). Figure 3(b) shows that both the vertical bound and
the diagonal bound in Fig. 3(a) are broken, with the extent of

the breach increasing with increase in the asymmetry range
from A = 1 [Fig. 3(b), light blue points] to A = 5 [Fig. 3(b),
dark blue points]. Similar results were found for the other
mechanisms that we numerically calculated [Supplemental
Material Figs. 1(c) and 2(c)]. We see that the absence of internal
discrimination is essential for the vertical and diagonal bounds
shown in Fig. 3(a) and Supplemental Material Figs. 1(b)
and 2(b).

Banerjee et al. have provided parameter values for the
Hopfield mechanism based on experimental data for discrimi-
nation in mRNA translation by the Escherichia coli ribosome,
including also an error-prone and a hyperaccurate mutant, and
in DNA replication by the bacteriophage T7 DNA polymerase
(DNAP) [19]. We used these parameter values to calculate
entropy production, speed and accuracy as defined here and
overlaid the resulting ln(ε0/ε), P/σ points on the previous
numerical calculation [Fig. 3(b)] [46].

The data show a striking difference between mRNA trans-
lation and DNA replication [Fig. 3(b)]. All three ribosome
variants (orange, wild type; brown, error-prone; red, hyper-
accurate) have much higher P/σ values than DNAP (green),
with the former lying comfortably above the diagonal bound
given by Eq. (21) and the latter lying well below. Neverthe-
less, all systems exhibit substantial internal discrimination
(Supplemental Material Table 1). As the inset in Fig. 3(b)
shows, the separation between translation and replication
arises from a decrease of two orders of magnitude in entropy
production rate and an increase of two orders of magnitude
in speed. Furthermore, DNAP not only shows the smallest
error fraction, ε, by three orders of magnitude, but also the
greatest fold change over the equilibrium error fraction, ε0/ε.
In contrast, the ribosome variants, while showing the expected
differences in error fraction, have lower fold changes over their
equilibrium error fractions. Evolution seems to have tuned
the energy dissipation, speed, and accuracy of the replication
machinery to a much greater degree than the translation
machinery.

IX. DISCUSSION

One of the challenges in dealing with nonequilibrium
systems in general has been the algebraic complexity, as
epitomized by the enumeration of spanning trees in the MTT,
Eq. (1). For a complicated graph, the combinatorial explosion
in enumerating spanning trees can be super-exponential in the
size of the graph [8]. This difficulty may have been apparent
to earlier workers like Hill [41] and Schnakenberg [42] and
may have discouraged a more analytical approach. The com-
binatorial complexity has largely been avoided by focusing
on simple or highly structured examples and by astute use of
approximation.

In this paper, we have developed a way to address this
complexity that is inspired by Hopfield’s analysis of kinetic
proofreading. Here, the minimum error fraction can only be
reached asymptotically [Eq. (5)] and only when multiple labels
change their values consistently. This has suggested a method
of exploring parameter space by treating the labels as allowable
functions of a scaling variable x. In this way, a system of
arbitrary structure can be analyzed away from equilibrium,
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with relaxed assumptions on how energy is being deployed,
while rising above the combinatorial explosion.

Perhaps the most interesting conclusion from this analysis
is the emergence of the quantity σ ln(µ)/P . Our main result, as
expressed in Eq. (17), says that this quantity is asymptotically
finite, for any graph obeying the dissociation-based condition
on exit edges [Eq. (8)] and for any scheme of allowable
scaling through which energy increases (deg > 0) or decreases
(deg < 0) the rates, provided that the accuracy improves over
equilibrium [Eq. (16)].

The advantage of the asymptotic analysis undertaken here is
that it reveals a universal behavior in σ ln(µ)/P that transcends
network structure and parametric complexity. Interestingly, our
numerical calculations suggest that universality may still be
found for finite parameter values, in the form of the bound
in Eq. (21), as shown in Fig. 3 and Supplemental Material
Figs. 1 and 2. However, this bound depends crucially on
the absence of internal discrimination between correct and
incorrect substrates, in contrast to the asymptotic behavior
in Eq. (17), for which internal discrimination is allowed.
Experimental data shows that evolution has discriminated
internally to a substantial extent but with very different effects
on this bound. All E. coli ribosome variants for which we
have data comfortably obey the bound, while the T7 DNA
polymerase breaks it. This reflects a striking reduction in
P/σ for the latter, with far less difference between the
ribosomes and the DNA polymerase in the fold change over
their equilibrium error fractions [Fig. 3(b)]. It would be
interesting to know if these same comparative relationships
are maintained for other ribosomes and polymerases. While
recent work has shown that local trade-offs between speed
and accuracy can differ markedly between different para-
metric regions [19], the quantities introduced here may be
helpful for more global comparisons between discriminatory
mechanisms.

As noted in the Introduction, the previous work of
Refs. [17,25,35] shows formal similarities to the results pre-
sented here and it may be helpful to clarify these connections.
In Ref. [35], England and colleagues determine the minimal en-
ergy dissipation cost for a general finite-state Markov process
to maintain an arbitrary nonequilibrium steady state. While
their setting is similar to our graph-theoretic approach, they
assume that energy is introduced through additional control
transitions and their analysis of maintenance does not involve
notions of speed or accuracy as used to analyze discrimination.
In Ref. [25], Tu and colleagues study the costs of adaptation and
derive an approximate relationship between the rate of energy
dissipation and the speed and accuracy of adaptation [their
Eqs. (5) and (S18)]. Their formulas resemble our Eq. (17).
They infer their results from a continuum model of a three-state
negative-feedback system, using the Fokker-Planck equation
for the time evolution of the probability density and undertake
the approximation by steepest descent on the adaptation error.
The similarity in results despite the very different methods
supports the analogy that has been drawn previously between
adaptation and discrimination [3]. However, the work of
Ref. [25] is limited to a three-state system, while our results
apply to systems of arbitrary complexity. In Ref. [17], Sartori
and Pigolotti determine the thermodynamic cost of copying
a biopolymer. The copying process includes a discrimination

mechanism that chooses between right and wrong monomers
for incorporation in the polymer. They adopt a general finite-
state Markov process, as in Ref. [35], and rely on the second
law of thermodynamics to derive a bound for the total entropy
production per wrongly incorporated monomer [their Eq. (3)].
They identify three operating regimes, of which the third,
called “error correction,” resembles that studied here and yields
a formula which is similar to our Eq. (17). Their formula
expresses a finite bound and involves only quantities related
to discrimination of the wrong monomer, while our formula is
valid asymptotically and compares right and wrong discrimina-
tions. The two studies can be seen as offering complementary
approaches to the problem of algebraic complexity away from
thermodynamic equilibrium: Sartori and Pigolotti appeal to the
second law of thermodynamics while we exploit leading-order
asymptotics as x → ∞.

In summary, our work offers methods to rise above the
algebraic complexity characteristic of nonequilibrium Markov
processes and suggests that the quantity σ ln(µ)/P may
be significant for a broader context of cellular information
processing that includes discrimination, adaptation, and other
processes required for life. Because of their generality, the
methods used here may be particularly useful for developing
such a broader perspective.
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APPENDIX A: PROOF OF Pk " P

Suppose that Pk ∼ xαk ln(x). If Pi is also in case 1 and Pi ∼
xαi ln(x), then Pi/Pk → c, where c = 0, 1,∞, depending on
the relative values of αi and αk . Similarly, if Pj is in case 2
and Pj ∼ xαj , then Pj/Pk → c, where c = 0,∞, depending
on the relative values of αj and αk . By assumption, there are
no other cases to consider (if Ph were in case 3, we could not
estimate limx→∞ Ph/Pk). Since Pk is one of the summands in
P , it follows that P/Pk → c, where 1 " c " ∞. Equivalently,
Pk/P → c−1, where 0 " c−1 " 1. In particular, Pk " P , as
required.

APPENDIX B: PROOF OF THE ASYMPTOTIC RELATION

Suppose first that 1 ! nC falls into case 1 in
Eq. (15). Let α = deg(ℓnc→1p

∗
nC

) and β = deg(ℓ1→nC
p∗

1 ),
so that α ̸= β. Then, xα ln(x) " xmax(α,β ) ln(x) ∼ P (1 !
nC ). Since the product generation rate, W , appears addi-
tively, ℓnC→1 = W + U (x), for some allowable function U .
It follows from Eq. (7) that α = deg(ℓnC→1) + deg(p∗

nC
) =

max(0, deg(U )) + deg(p∗
nC

) ! deg(Wp∗
nC

) = deg(σ ). Hence,
σ " xα . Furthermore, since Eq. (16) tells us that deg(ε) < −1,
it follows from Eq. (14) that ln(ε−1) ∼ ln(x). Using Eq. (13),
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we deduce that

σ ln(ε−1) " P (1 ! nC ).

If 1 ! nC does not fall into case 1 in Eq. (15), then α = β.
Let us then consider 1 ! nD . According to Eqs. (6) and (16),
deg(p∗

nD
) < deg(p∗

nC
) − 1. Using Eq. (7) to combine this with

Eq. (8), we see that deg(ℓnD→1p
∗
nD

) < deg(ℓnC→1p
∗
nC

) = α =
β = deg(ℓ1→nC

p∗
1 ). But now, by Eqs. (8) and (7),

deg(ℓ1→nC
p∗

1 ) = deg(ℓ1→nD
p∗

1 ). (B1)

It follows that

deg(ℓnD→1p
∗
nD

) < deg(ℓ1→nD
p∗

1 ), (B2)

so that 1 ! nD falls into case 1 even though 1 ! nC does
not. Therefore, by Eq. (15), P (1 ! nD ) ∼ xγ ln(x), in which,
because of Eq. (B2), γ = deg(ℓ1→nD

p∗
1 ). But according to

Eq. (B1), γ = deg(ℓ1→nC
p∗

1 ) = β = α. Hence, by the same
argument as above for 1 ! nC , we deduce that

σ ln(ε−1) " P (1 ! nD ).

We can now appeal to the result in Appendix A to complete
the proof.
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We provide proofs here of the mathematical assertions
made in the main text.

I. EQUILIBRIUM ERROR FRACTION FOR THE
HOPFIELD MECHANISM

The error fraction, ", for the Hopfield mechanism is given
in equation (4) of the main text, and is repeated here for con-
venience,
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The background assumptions, as mentioned in the main text,
are k

0
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= k

0
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, l0
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and k
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/k

D

< 1.
If the mechanism is at thermodynamic equilibrium, then de-

tailed balance must be satisfied. The equivalent cycle condi-
tion [1] applied to the two cycles in Fig. 1(a) of the main text
yields
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Note that W does not appear in equation (2) since, although
the mechanism itself is at thermodynamic equilibrium, the
system remains open, with substrate being converted to prod-
uct. Denote by "

eq

the value of " under the equilibrium con-
straint in equation (2). Using equation (2), define ↵, � so that
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Using the background assumptions, define the quantity "0,
given by
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, (3)

to which a physical interpretation will be given shortly. Sub-
stituting ↵ and � into equation (1) and rewriting, we see that
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If W = 0, then by equation (3), "
eq

= "0, which shows
that "0, as defined in equation (3), is the error fraction for the
closed system at thermodynamic equilibrium as defined in the
main text.

We now want to prove that "
eq

increases from "0 as W in-
creases, for which it is sufficient to show that d"

eq

/dW > 0.
For this,
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2
,

so that d"
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/dW > 0 if, and only if, A/B > ↵/�. We have
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The following result is straightforward.

Lemma. Consider the rational function r(x) = (a+ x)/(b+

x), where a, b > 0. If a/b > 1, then r(x) decreases strictly
monotonically from r(0) = a/b to 1. If a/b < 1, then r(x)

increases strictly monotonically from r(0) = a/b to 1.

Applying the Lemma repeatedly to the terms in equation
(4), and recalling the background assumptions, we see that
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Hence, A/B > k

C

/k

D

= ↵/� and so d"

eq

/dW > 0. It
follows that "

eq

increases strictly monotonically from "0 as
W increases from 0.

II. DERIVATION OF EQUATION (5) OF THE MAIN TEXT

The non-equilibrium error fraction in equation (1) can be
rewritten as "(m0

) = u(m

0
)v(m
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), where
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Using the background assumptions and the Lemma, we see
that, as m

0 increases, u(m

0
) decreases hyperbolically from
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Hence, "(0) = (l
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as required for equation (5) in the main text.

III. THE LIMITING ARGUMENT IN KINETIC
PROOFREADING

The argument for kinetic proofreading given by Hopfield
[2] is based on the non-dimensional quantities,
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which are to be taken very small. Accordingly, we consider
the non-equilibrium error-fraction, ", as defined in equation
(1), in the limit as these four quantities ! 0. Since k
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> k
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,
we have that

�1 >

l

0
C

(m

0
+ k

C

)

m

0
k

0
C

> 0 . (6)

If we now divide above and below by m
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expression " = uv introduced above, we get
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If we take �1 ! 0 and formally treat v as a constant, we
see from equation (6) that " ! v as �1 ! 0. However, the
expression for �1 involves m

0 and this is also a parameter in
v. Hence, v is not constant during the limiting process, which
has coupled m

0 to the values of the other parameters. If we
ignore this coupling, we can divide above and below in v by
k

C

to get
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If we now divide above and below in this expression by l
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,
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as �3 ! 0 and �4 ! 0. Hence, putting the sequence of limits
together, we have, formally,
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2
0 .

This seems to be the interpretation that has been given in
the literature to Hopfield’s assertion that kinetic proofreading
achieves the error fraction of "20.

The coupling noted above specifically affects m0, which has
to satisfy two conditions. On the one hand m

0 has to be large,
in order that u should be close to u(1) = 1. That is the role
of �1 ! 0. On the other hand m

0 has to be small, in order that
v should be close to v(0). That is the role of �2 ! 0. The
remaining limits for �3 and �4 are only there to make sure that
v(0) ! "

2
0; compare equation (5). The consequence of the

coupling between the �1 and �2 limits, which arises through
m

0, can be seen by rewriting �1,
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Hence, in the limit as �1 ! 0 and �2 ! 0,
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In order to achieve the proofreading limit, it is necessary for
rates other than m

0 to change. Specifically, the “on rates” for
the first discrimination, k0

C

= k

0
D

, must become large with
respect to those for the second discrimination, l0

C

= l

0
D

.

IV. DERIVATION OF EQUATION (7) OF THE MAIN TEXT

Suppose that R(x) and Q(x) are allowable functions, as de-
fined in the main text, with R(x)/x

↵ ! c1 and Q(x)/x

� !
c2, as x ! 1, where c1, c2 > 0.

Since R

�1
/x

�↵ ! (c1)
�1

> 0, it follows that R�1 is
allowable and deg(R

�1
) = � deg(R). Since (RQ)/x

↵+� !
c1c2 > 0, it follows that RQ is allowable and deg(RQ) =

deg(R)+deg(Q). Finally, suppose, without loss of generality,
that max(↵,�) = ↵, so that ↵ � �. Then,
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. (7)

The limit of this, as x ! 1, is c1 > 0, if ↵ > �, or c1+ c2 >

0, if ↵ = �. In either case, the limit is positive. Hence, R+Q

is allowable and deg(R+Q) = max(deg(R), deg(Q)). This
proves equation (7) of the main text.

V. DERIVATION OF EQUATION (14) OF THE MAIN TEXT

Suppose that S(x) is an allowable function and that
S/x

↵ ! c > 0, where ↵ = deg(S). Since ln is a contin-
uous function,

ln(S(x))� ↵ ln(x) ! ln(c) .

Dividing through by ln(x), we see that

ln(S(x))

ln(x)

! ↵ . (8)

If deg(S) = ↵ > 0, then ln(S) ⇠ ln(x), while if deg(S) <
0 then ln(S) ⇠ ln(x

�1
), which proves equation (14) of the

main text.
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VI. DERIVATION OF EQUATION (15) OF THE MAIN
TEXT

Note that if R(x), Q(x), S(x), T (x) are functions, not nec-
essarily allowable, and if R ⇠ Q and S ⇠ T , so that R/Q !
c1 > 0 and S/T ! c2 > 0, then (RS)/(QT ) ! c1c2 > 0,
so that RS ⇠ QT . We will use this without reference below.

Following the discussion in the main text, consider P (i �
j) = (R � Q) ln(R/Q) where R and Q are allowable func-
tions with R/x

↵ ! c1 > 0 and Q/x

� ! c2 > 0. There are
three cases to consider.

Suppose that ↵ 6= �. If ↵ > �, then the same argument as
in equation (7) shows that (R � Q) ⇠ x

↵. By equation (7)
of the main text, deg(R/Q) > 1, so that ln(R/Q) ⇠ ln(x).
Hence, P (i � j) ⇠ x

↵

ln(x). If ↵ < �, then (R�Q) ⇠ �x

�

and ln(R/Q) ⇠ � ln(x), so that P (i � j) ⇠ x

�

ln(x). This
proves case 1.

Suppose that ↵ = � but c1 6= c2. Then, (R � Q)/x

↵ !
c1 � c2 6= 0. Also,

R
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◆
! c1

c2
> 0 .

Hence, ln(R/Q) ! ln(c1/c2). Since (c1�c2) ln(c1/c2) > 0,
it follows that P (i � j) ⇠ x

↵, which proves case 2.
Suppose that ↵ = � and c1 = c2. Then (R � Q)/x

↵ !
0 and R/Q ! 1, so that ln(R/Q) ! 0. Hence, P (i �
j)/x

↵ ! 0 as x ! 1, so that P (i � j) � x

↵, which proves
case 3.

VII. DERIVATION OF EQUATION (20) OF THE MAIN
TEXT

For the Hopfield mechanism (Fig. 1(a) of the main text),
we described in the main text how the asymptotic error rate
of " ⇠ x

�2 could be achieved, by assuming that the labels
are allowable functions of x such that: deg(l0

D

) = deg(l
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) =

�1, deg(k
D
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D
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0. Using equations (1) and (3) of the main text, we find that
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3D ) = �2. It is helpful to introduce the notation R ⇡

Q, for functions R(x), Q(x) which may not be allowable, to
signify that lim

x!1 R/Q = 1. We can use this to calculate
the asymptotic behaviour of the terms P (i � j) in the entropy
production rate (equation (12) of the main text). For instance,
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The only term in this expression which depends on x is l

0
C

for which deg(l

0
C

) = �1. Since deg(ln(R)) ⇡ deg(R) ln(x)

(equation (8)), it follows that
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Similar calculations yield P (2
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C5 are constants independent of x. Since deg(") = �2,
ln(x) ⇡ ln("

�1
)/2. Hence,
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so that
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. (9)

This proves equation (20) of the main text.

VIII. ADDITIONAL NUMERICAL CALCULATIONS

In Supplementary Figs. 1 and 2, we consider two discrim-
ination mechanisms under the assumptions of equations (21)
and (22) of the main text. Supplementary Fig. 1(a) shows a
graph for McKeithan’s T-cell receptor mechanism [3], while
Supplementary Fig. 2(a) shows a graph different from both
this and the Hopfield example. We used previously developed,
freely-available software [4] to compute the Matrix-Tree for-
mula (equation (1) of the main text) for each mechanism, from
which we obtained symbolic expressions for P , ", and �. The
graphs in Supplementary Figs. 1(a) and 2(a) have 441 and
64 spanning trees rooted at each vertex, respectively, under-
scoring the combinatorial complexity which arises away from
equilibrium (main text, Discussion). (If a graph has reversible
edges, so that i ! j if, and only if, j ! i, which is the
case for all the graphs discussed here, there is a bijection be-
tween the sets of spanning trees rooted at any pair of distinct
vertices.) Supplementary Figs. 1(b)-(c) and 2(b)-(c) show
numerical plots undertaken in a similar way to those for the
Hopfield mechanism (main text, Fig. 2), as described in the
main text. Similar vertical and diagonal bounds were found
for the symmetric cases, while similar observations regarding
the asymmetric cases as those made in the main text apply.

IX. ASYMPTOTIC RELATION FOR A
NON-DISSOCIATION-BASED MECHANISM

We consider a discrimination mechanism having the graph
shown in Supplementary Fig. 3(a). Its structure is identical
to that of the Hopfield mechanism (Fig. 1(a) of the main text)
but its labels differ to reflect the energy landscape illustrated in
Supplementary Fig. 3(b). If the labels are allowable functions
with deg(l

0
D

) = �1 and deg(l

0
C

) = deg(l

C

) = deg(l

D

) = 0,
then, if the mechanism reaches thermodynamic equilibrium, it
follows from equation (9) of the main text that its equilibrium
error fraction satisfies

"

eq

⇠ x

�1
. (10)

If it is further assumed that deg(m0
D

) = deg(m

0
C

) = �1

and deg(m

D

) = � deg(m

C

) = 1/2, while all other labels
have degree 0, then the mechanism is no longer at equilibrium.
Using equations (1) and (3) of the main text, we find that
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It follows that

deg(p

⇤
1) = deg(p

⇤
2C ) = deg(p

⇤
3C ) = deg(p

⇤
2D ) = 0 (11)

and that

deg(p

⇤
3D ) = �3/2, (12)

Using equations (7) and (14) of the main text along with equa-
tions (11) and (12), we can calculate the asymptotics of the
terms in the entropy production rate P (equation (12) of the
main text), assuming, as in the proof of the Theorem, that we
are outside the measure-zero subset of parameter space arising

from case 3 of equation (15) of the main text. We find that

P (1 � 2

C

) ⇠ 1

P (2

C

� 3

C

) ⇠ x

�1/2
ln(x)

P (1 � 3

C

) ⇠ 1

P (1 � 2

D

) ⇠ 1

P (2

D

� 3

D

) ⇠ x

�1
ln(x)

P (1 � 3

D

) ⇠ x

�1
ln(x).

It follows that P - 1, so that the entropy production rate is
asymptotically constant or vanishes. Furthermore, it can be
shown from equations (11) and (12) that deg(") = �3/2 and
deg(�) = 0. Hence, the error rate is asymptotically better
than at equilibrium, for which deg("

eq

) = �1 (equation (10)),
while the speed remains asymptotically constant. This reflects
a different asymptotic relation to that in equation (19) of the
main text.
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FIG. 1. Numerics for the T-cell receptor mechanism. (a) Graph for an instance of McKeithan’s T-cell receptor mechanism [3], with label
names omitted for clarity. (b) Plot of P/� against ln("0/") for approximately 105 points, with the labels satisfying equations (21) and (22) of
the main text and numerically sampled as described in the main text. The vertical black dashed line corresponds to the bound " > "

4
0 for this

mechanism (calculation not shown) that is analogous to equation (5) of the main text for the Hopfield mechanism. The diagonal red dashed
line corresponds to equation (23) of the main text, as discussed further there. (c) Similar plot to (b) but with internal discrimination between
correct and incorrect substrates, as described in the text, with the light blue points having a lower asymmetry range (A = 1) and the dark blue
points having a higher range (A = 5).
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FIG. 2. Numerics for another discrimination mechanism. (a) Graph for a discrimination mechanism that is different from both the Hopfield
and McKeithan mechanisms, with label names omitted for clarity. (b) Points plotted as in Supplementary Fig. 1(b). The vertical black dashed
line corresponds to the bound " > "

2
0 for this mechanism (calculation not shown) that is analogous to equation (5) of the main text for the

Hopfield mechanism. The diagonal red dashed line corresponds to equation (23) of the main text, as discussed further there. (c) Similar plot to
(b) but with internal discrimination between correct and incorrect substrates, as described in the text, with the light blue points having a lower
asymmetry range (A = 1) and the dark blue points having a higher range (A = 5).
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FIG. 3. A non-dissociation-based mechanism. (a) Graph with the same structure as that for the Hopfield mechanism (Fig. 1(a) of the main text)
but no discrimination between C and D takes place through 1 � 2X , while internal discrimination takes place through 2X � 3X , as reflected
in the label names. (b) Hypothetical energy landscape for the mechanism shown in (a), illustrating where energy may be expended to drive the
steps with labels mC and mD . (c) Plot of P/� against ln("�1) for a numerical instance of the Hopfield mechanism (Fig. 1(a) of the main text,
in blue) and a numerical instance of the non-dissociation-based mechanism in (a) (in red), as x is varied in the range x 2 [0, e20]. The numerical
label values have been determined by taking kD = lD = x and l

0
C = l

0
D = x

�1 for the Hopfield mechanism and l

0
D = m

0
D = m

0
C = x

�1,
mD = x

1/2 and mC = x

�1/2 for the non-dissociation-based mechanism, with all other labels being 1.

label DNAP ribosome (wild type) ribosome (hyperaccurate) ribosome (error-prone)
kC 900 0.5 0.41 0.43

kD 900 47 46.002 3.999

k

0
C 0.001 40 27 37

k

0
D 0.0092 27 25.002 36.001

mC 0.2 0.001 0.001 0.001

mD 2.3 [4.5⇥ 10�8
, 21.9]; 10�7 [6.0⇥ 10�8

, 16.6]; 10�7 [4.7⇥ 10�8
, 17.5]; 10�7

m

0
C 700 25 14 31

m

0
D 700 1.2 0.49 3.906

lC 1 0.085 0.048 0.077

lD 1⇥ 10�5 0.6715 0.4963 0.5891

l

0
C 250 0.001 0.001 0.001

l

0
D 0.002 [1.7⇥ 10�10

, 0.06]; 0.0272 [1.8⇥ 10�10
, 0.05]; 0.0299 [5.8⇥ 10�9

, 2.1]; 1.0085

WC 250 8.415 4.752 7.623

WD 0.012 0.0353 0.0035 0.0313

TABLE I. Experimentally measured parameter values, in units of s�1, for the Hopfield mechanism in Fig. 1(a) of the main text, shown for
discrimination during DNA replication by the bacteriophage T7 DNA polymerase (DNAP) and discrimination during mRNA translation by
three E. coli ribosome variants, as annotated. The values were obtained from Tables S1-S4 of [5]. The labels in the first column correspond to
those in Fig. 1(a) of the main text, except that m, m0 and W now have subscripts C and D, for the correct and incorrect substrates, respectively,
to allow for internal discrimination, as explained in the main text. The values of mD and l

0
D were not known for the ribosome variants, so

we chose mD from mC by randomly selecting ln(mD/mC) from the uniform distribution on [�10, 10], which is similar to the asymmetry
ranges of the other parameters, and chose l

0
D to satisfy the external chemical potential constraint used by [5], as explained in footnote [45] of

the main text. The intervals given for mD and l

0
D indicate the range of sampled values. Some samples have " < "0 and these are not shown in

Fig. 2(b) of the main text. The values following each interval give the averages of the plotted values in Fig. 2(b) of the main text, as indicated
there by asterisks, *.


