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SUMMARY
There is a need to discover and develop non-toxic antibiotics that are effective againstmetabolically dormant
bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery
has historically favored compounds effective against actively metabolizing cells, a property that is not pre-
dictive of efficacy inmetabolically inactive contexts. Here, we combine a stationary-phase screeningmethod
with deep learning-powered virtual screens and toxicity filtering to discover compoundswith lethality against
metabolically dormant bacteria and favorable toxicity profiles. Themost potent and structurally distinct com-
poundwithout any obviousmechanistic liability was semapimod, an anti-inflammatory drug effective against
stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements,
and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial
outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional
screening methods and deep learning models to identify non-toxic antibacterial compounds that are effec-
tive in infection-relevant contexts.
INTRODUCTION

Current antibiotic treatment failure rates are unacceptably high,

giving rise to chronic and recurrent infections such as those

caused by E. coli in the urinary tract and M. tuberculosis

and P. aeruginosa in the lung.1–4 For example, failure rates as

high as 16 to 54% are reported for urinary tract infections,

causing prolonged or repeated treatment regimens and overall

worse health outcomes.5,6 While some treatment failure can be

attributed to genetic resistance, bacteria can also survive anti-

biotic treatment by adopting metabolically dormant states,

which leads to phenotypes known as antibiotic tolerance and

persistence.1,7,8

Treatment failure associated with tolerance and persistence

cannot always be accurately predicted or reproduced in labora-

tory cultures. This discrepancy can be partially explained by dif-

ferences in cellular physiology observed in standard microbio-
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logical growth conditions versus in vivo environments.9,10

Despite a growing body of evidence suggesting that infectious

microenvironments induce bacterial dormancy,9–11 many tradi-

tional antimicrobial susceptibility assays employed in clinical

diagnostics and antibiotic discovery are conducted under condi-

tions that sustain high bacterial metabolism and growth.12,13

Concerningly, many antibiotics that are effective in metabolically

active conditions lose efficacy in lowmetabolic contexts and are

vulnerable to the evolution of tolerance.14–16 There is thus a crit-

ical need to identify and characterize antibiotics that are effective

under low metabolic conditions that more closely mimic real-

world infectious microenvironments.

The discovery of antibacterial compounds with efficacy

against dormant cells requires non-traditional screening assays.

A typical growth inhibition screen does not inform on lethality, the

necessary readout for tolerance and persistence. On the other

hand, CFU plating, the gold-standard measure of lethality, is
er Ltd.
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low-throughput and tedious for large-scale discovery efforts.

Dilution-regrowth assays have previously been used as a mid-

to high-throughput method for assessing antibiotic lethality. In

these assays, a treated culture is diluted into fresh media and

re-growth is assessed, with the dilution protocol setting the min-

imum level of detectable killing.17–22 However, an ultra-large

compound library screen is time- and resource-intensive, partic-

ularly on the scales required to expand into new chemical spaces

so as to uncover unique antibacterial scaffolds. In response to

this challenge, a recent effort from our lab trained a machine

learning (ML) model to screen large compound datasets for

growth inhibition activity.23 This ML-enabled virtual screening

expanded the available chemical search space, allowing the

analysis of substantively more molecules than could be as-

sessed experimentally.

To bring forward antibiotic candidates that are effective

against tolerant and persister cells and have true clinical poten-

tial, screening efforts should also include toxicity filters in the

early discovery phase so as to prioritize compounds that are

selectively lethal to bacterial cells over human cells. Previous

discovery efforts against tolerant and persister cells have largely

identified compounds that non-selectively target cellular mem-

branes or directly cause DNA damage,24–28 especially when

screening for whole-cell phenotypic activity.29–31 For example,

aminoglycosides, mitomycins, and polymyxins, which are all

active against non-replicating bacteria, carry considerable

toxicity risks for human usage,25,32,33 and reducing the toxicity

of such antibiotics can require re-formulation34 or potentiation

strategies.35 It has been proposed that many compounds that

kill metabolically dormant cells will be inherently toxic to humans

because of their more invasive mechanisms of action.36,37 If so,

computational bacterial lethality predictions paired with experi-

mental mammalian cell viability assays may allow us to deter-

mine rare counter-examples of antibacterial compounds with

favorable toxicity profiles that are effective against dormant

bacteria.

Here, we describe a screening pipeline for the discovery of

non-toxic antibiotics that kill metabolically dormant bacteria.

We implement a dilution-regrowth screen to identify compounds

with lethality against metabolically dormant stationary-phase E.

coli. We pair this screen with ML-driven approaches to expand

our search to larger, more diverse chemical spaces. We

compare the hits that are enriched in killing versus growth-based

screens, highlighting that growth inhibitory activity is not a reli-

able predictor of lethality. Next, we employ toxicity assays to fil-

ter out toxic compounds and to better understand antibiotic

properties that are associated with toxicity. We use this pipeline

to identify multiple selective compounds that kill metabolically

dormant bacteria. Of these compounds, we find that the most

potent and structurally distinct compound without any obvious

mechanistic liability was semapimod, an anti-inflammatory com-

pound that is bactericidal against dormant E. coli and A. bau-

mannii, and we show that semapimod binds lipopolysaccharide

in the Gram-negative outer membrane as part of its lethality. The

discovery approach presented here demonstrates the value of

expanding upon traditional screening methods and harnessing

both ML-powered virtual screens as well as toxicity filters to

identify selective antibacterial compounds that are effective in

infection-relevant contexts.
RESULTS

A dilution-regrowth screen identifies compounds that
kill metabolically dormant E. coli
We first implemented a dilution and regrowth-based method for

identifying compounds with lethality against metabolically

dormant bacteria. Our model system was stationary-phase E.

coli BW25113 (Ec BW) grown in 1% LB diluted in phosphate-

buffered saline (PBS), resulting in a metabolically dormant state

that is refractory to killing by conventional antibiotics (Figure S1A)

and is a commonmodel for antibiotic-tolerant persister cells.21,38

Stationary-phase cells were treated for 24 hwith compounds, af-

ter which a small volume was sub-cultured into fresh, 100% LB

media and allowed to re-grow for 24 h (Figures 1A and S1B). Af-

ter regrowth, optical density readings were normalized and used

to identify active ‘‘hit’’ compounds. Using this methodology, we

screened the Broad Institute’s Drug Repurposing Hub (DRH) li-

brary39 and detected 111 compounds out of 6,704 that passed

our hit threshold in at least one of the two screening replicates

(Figure 1B). This lenient initial filtering step, requiring only one

active replicate, was used prior to CFU plating. We then vali-

dated this set using CFU plating to eliminate false positives

where the compound concentration remained above the mini-

mum inhibitory concentration (MIC) during the re-growth stage.

From this, we identified 84 compounds (1.3% hit rate) that, at

minimum, reduce bacterial load by a factor of 10 (Figure S1C,

File S1).

Growth inhibitory screens are not sufficiently predictive
of lethality in metabolically dormant contexts
To understand the intersection between compounds that are

effective in metabolically active versus dormant conditions, we

simultaneously conducted a traditional growth inhibition screen

with the DRH library (Figures 1C and S1D), which resulted in

148 hits (2.2% hit rate) (Figure 1D, File S1). Hits from the dilu-

tion-regrowth killing screen were largely a subset of the hits

from the growth inhibition screen: 73% of killing hits were also

growth inhibitory hits. In contrast, only 41% of growth inhibition

hits also had killing activity (Figure 1E). This comparison addi-

tionally revealed compounds with killing activity that did not

have growth inhibitory activity (27% of killing hits) at the same

concentration (Figure 1E).

We further explored the correlation between efficacies in high

versus low metabolic states by evaluating whether we could

use growth inhibitory data to predict killing activity. We used

a trained graph neural network (GNN) model on growth inhibi-

tion data from a collection of 2,335 compounds,23 including

FDA-approved drugs and natural products. This model only

weakly predicted results from the DRH killing screen, with

an area under ROC curve (auROC) of 0.713, area under

Precision-Recall curve (auPR) of 0.037 and Matthews Correla-

tion Coefficient (MCC) of 0.052, although it unsurprisingly per-

formed well on the DRH growth inhibition screen (auROC

�0.924, auPR �0.424, MCC �0.423) (Figure 1F). These results

further support that information about a compound’s growth

inhibitory activity is not sufficiently predictive of its killing effi-

cacy in metabolically dormant contexts, highlighting our moti-

vation for identifying compounds with activity in a range of

infection-relevant contexts.
Cell Chemical Biology 31, 712–728, April 18, 2024 713
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Figure 1. A dilution-regrowth screen identifies compounds that kill dormant stationary-phase bacteria

(A) Schematic of the dilution and regrowth-based screening assay to assess killing efficacy against metabolically dormant bacterial cells. An overnight culture of

E. coli BW25113 (Ec BW) was diluted 1 in 10,000 into 1% LB in PBS, grown to stationary-phase, and treated with antibiotics for 24 h. A small volume was sub-

cultured into fresh LB; plates were then incubated for another 24 h and growth (OD600) wasmeasured. A cut-off of normalized OD600 < 0.2 was used to distinguish

killing hits from non-hits.

(B) Screening results using the dilution-regrowth screening assay to determine killing of stationary-phase Ec BW with the Drug Repurposing Hub (DRH) library.

111 compounds passed our hit cut-off. Shown are the means of two biological replicates.

(C) Schematic of the growth inhibition screen. An overnight culture of Ec BW was diluted 1 in 10,000 into fresh LB broth, and compound was added. Plates were

then incubated for 24 h and OD600 was measured. A cut-off of normalized OD600 < 0.2 was used to distinguish growth inhibition hits from non-hits.

(D) Traditional growth inhibition screen carried out on Ec BW with the DRH. 148 compounds passed our hit cut-off. Data are representative of two biological

replicates.

(E) Comparison of growth inhibition and killing screens for the DRH library. OD600 results from the dilution-regrowth killing screen with the DRH library are plotted

on the y axis and OD600 values from the DRH growth inhibition screen are plotted on the x axis.

(F) Performance of the graph neural network (GNN) reported in Stokes et al., 202023 on inhibition or killing data from the DRH screens, as evaluated with Receiver-

Operating-Characteristic (ROC) curve (left) and Precision-Recall (PR) curve (right).
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Machine learning accelerates compound curation and
enriches the killing compound set
To expand our set of lethal compounds, we used our screening

data to train a model capable of predicting lethality in a larger,

more chemically diverse set of compounds (Figure S2A). Many

successful approaches in computational property prediction uti-

lize fixed representations of molecules such as SMILES (Simpli-

fied Molecular Input Line Entry System) strings, chemical finger-

prints, and feature descriptors.40 However, models using these

fixed vector inputs consistently underperform when compared

to representations learned directly from the molecular graph it-

self,41,42 i.e., a representation of bonds and atoms as nodes

and edges in a graph. These molecular graphs are often fed

into GNNs,43 which are neural networks that convert graph rep-

resentations into intermediate vector representations. GNNs can

be powerful tools for drug property prediction23,41,44–46 and can

accurately predict a compound’s properties both one at a time

and simultaneously,41 as reported previously for antibiotic

activity.23

It is clear from our aforementioned results (Figure 1F) that a

GNN model trained on growth inhibition data alone does not

adequately capture killing activity against dormant cells, neces-

sitating a new model that incorporates killing data. We first eval-

uated a GNN trained on both growth inhibition activity and killing

activity prediction ‘‘tasks,’’ where the model simultaneously pre-

dicts both inhibitory and killing activity for each compound
714 Cell Chemical Biology 31, 712–728, April 18, 2024
passed to it as input (Figures 2A and 2B). To benchmark this

GNN, we tested simpler models that use chemical fingerprints

as input, rather than molecular graphs, such as support vector

machines (SVMs). We optimized each model to ensure that all

customizable features and parameters were fully tuned to the

screening data. After tuning, we found that the GNN was the

highest performing model for both inhibition and killing tasks,

significantly outperforming all models apart from the inhibition-

predicting SVM (Figure 2A).

Given the strong performance of the GNN in our model

evaluations, we deployed this model on a database of

799,147 compounds from the Broad Institute. With a modest

computing environment, this virtual screen was completed in

less than a day, a significantly shorter time than that required

for experimental screening. The vast majority of these com-

pounds had low prediction scores for both inhibitory and

killing activity (Figure S2B). To prioritize structurally interesting

active compounds, we focused on compounds that had pre-

dicted killing scores greater than 0.2 and less than 90% struc-

tural similarity (Tanimoto similarity) to the training set and a

dataset of known antibiotics. We then clustered the remaining

375 compounds into groups of similar structure. These clus-

ters revealed compounds with known killing activity, such as

polymyxins27,47 and antibacterial carbazole analogues48–50

(Figure 2C), serving as positive controls that the model is

able to identify.
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Figure 2. A multi-task graph neural network (GNN) enriches predictions for compounds with killing activity

(A) Models that use chemical fingerprints as input are compared to theGNNand evaluated by auROC. The random forest classifier (RFC), support vector machine

(SVM), and feedforward neural network (FFN) were evaluated on several 10% test sets held-out from folds with scaffold splits. Each point denotes one model in

the ensemble. Asterisks denote significance p < 0.05 with two-sided Mann-Whitney U test.

(B) Themulti-task GNN predicts both growth inhibition and stationary-phase killing by aggregating information in neighborhoods of atoms and bonds, shown here

as a graph representation of an arbitrary compound (e.g., aspirin).

(C) Predicted high-activity compounds in clusters of similar chemical structure, such as polymyxin-like structures (Cluster 10) and carbazole-containing

structures (Cluster 13).

(D) Comparison of killing activity (y axis) and growth inhibitory activity (x axis) of the 86 top-scoring predictions.

(E) Compounds validated to have killing activity from the 36 top-scoring predictions after model retraining and strict similarity and drug-likeness filtering. For this

similarity comparison and all following, a more comprehensive set of known antibiotics was used than for the initial antibiotic similarity filtering.

(F) Experimentally validated compounds predicted by themodels and compounds identified in the primary screen evaluated on similarity to known antibiotics and

antiseptics. ML-curated compounds are derived from both rounds of model prediction on the Broad 800K compound library and larger chemical vendor libraries,

respectively. Asterisks denote p < 0.05 with two-sided Mann-Whitney U test.
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Weexperimentally tested themodel predictions by curating 86

of the top-scoring compounds (prediction score > 0.2), as well as

54 of the lowest-scoring compounds (all with prediction scores

<10�5). Notably, 16/86 (19%) of the top-scoring compounds

had stationary-phase killing activity, representing a significant

enrichment over the 1.3% hit rate observed in the primary DRH

killing screen (Figure S2C). In contrast, none of the 54 lowest-

scoring compounds had killing activity (Figure S2D). One com-

pound predicted to have killing activity by the model and vali-

dated experimentally, SCH-79797, was recently reported as

bactericidal against Gram-negative bacteria, including bacterial

persisters.38 Similar to the results from our primary screen, activ-

ity in the killing assays was not necessarily a predictor of activity

in growth inhibition, and vice versa (Figure 2D).

We next retrained the model with all the available data,

including the new validation data. To expand our discovery ef-

forts, we used this model to predict killing activity in a more
diverse chemical space of �5 million commercially available

molecules. To reduce re-discovery of known scaffolds, we

applied stricter similarity filtering with respect to a manually

curated, more comprehensive set of known antibiotics than in

our initial screening round. We also applied several filtering steps

to identify more ‘‘drug-like’’ compounds, such as Lipinski-con-

forming compounds and those without PAINS (pan-assay inter-

ference compounds) alerts for promiscuous reactivity or Brenk

alerts for unfavorable pharmacological properties.

After the aforementioned filtering steps, we curated and tested

36 compounds predicted to have killing activity, finding that five

(13.9%) had both growth inhibitory and stationary-phase killing

activity (Figure 2E). We note that these validation rates are a con-

servative estimate of the model’s predictive ability given that we

explicitly filtered for compounds that are dissimilar to both the

training set and known antibiotics, which is a more difficult test

of model generalizability but a more relevant one for antibiotic
Cell Chemical Biology 31, 712–728, April 18, 2024 715
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discovery. As compounds sharing similar chemical substruc-

tures to those of known antibiotics may pass through our similar-

ity filtering step, we computationally verified that the model-pre-

dicted compounds were structurally distinct from known

antibiotics. We found that these compounds, including the five

validated hits, were evenmore structurally distinct than the com-

pounds found in the primary screen (Figures 2F and S2E). These

results demonstrate that iterative model training and compound

testing can help identify structurally distinct antibacterial

compounds.

Testing against mammalian cells filters out toxic
compounds
After combining our primary DRH killing screen with our ML-pow-

ered approach and validation screen, we compiled a total of 105

compounds that kill metabolically dormant bacteria: 84 from the

primary screen and 21 from theML-powered virtual screen. Given

the high toxicity of many antibiotics with documented activity

against metabolically dormant cells, we designed a three-step

toxicity filter with the goal of finding selective compounds that

are lethal againstmetabolically dormant bacterial cells (Figure 3A).

We first carried out single-dose cytotoxicity testing against human

hepatocellular carcinoma (HepG2) and embryonic kidney

(HEK293) cells, with resazurin as a readout of cell viability (Fig-

ure 3B). After classifying compounds resulting in less than 50%

viability in either cell line as toxic (a lenient initial filtering step)

and de-duplicating one compound, we removed 56 compounds

from our set of interest, resulting in 49 compounds.

Notably, we found that compounds with low cytotoxicity that

were identified byourMLmodelwere, on average,moredissimilar

from known antibiotics than compounds with low cytotoxicity

identified in the primary screen (Figure 3C). Although we did not

filter based on predicted toxicity in our ML approach, this useful

finding could result from filtering out compoundswith high similar-

ity to active compounds identified in the primary screen, which in-

cludes many toxic antiseptics. These observations highlight that

computational analyses can enrich for selective compounds that

are dissimilar from known antibiotics, thereby helping to identify

compounds with varying cytotoxicity and selectivity profiles.

We next investigated the relationship between cytotoxicity

and specific antibacterial properties of our hit compounds. We

compared the single-point HepG2 viability corresponding to

compounds that exhibit growth inhibitory activity against bacte-

rial killing activity (Figure S3A), observing that compounds that

are effective at killing dormant cells tend to be more toxic than

those that are only effective at growth inhibition. We also studied

how antibiotic metabolism dependence relates to cytotoxicity.

The majority of our clinically used antibiotics lose efficacy

against dormant cells and can be considered ‘‘strongly depen-

dent on metabolism’’ (SDM).16 To investigate our stationary-

phase active compounds, we conducted a high-throughput

version of our previously published method for determining

metabolic dependence.16 In brief, this metabolism-dependence

assay evaluates survival of cells in both low- and high-nutrient

media. Compounds that lose efficacy in low metabolic condi-

tions have positive values of metabolism dependence and vice

versa. We found that 18 of our 49 compounds with selective

killing activity had metabolism-dependence values of �0, indi-

cating that they have similar killing efficacy in low and high meta-
716 Cell Chemical Biology 31, 712–728, April 18, 2024
bolic conditions and are thus weakly dependent on metabolism

(WDM) (Figure 3D). Interestingly, nearly half of the compounds

displayed higher killing efficacy in conditions of low metabolism

than in conditions of high metabolism, and several of these com-

pounds, including BIX-01294, did not exhibit growth inhibitory

activity (Figure S2E). We then plotted HepG2 and HEK293

viability versus metabolism dependence (Figures S3B and

S3C), finding that compounds that are only effective in metabol-

ically active contexts tend to have low cytotoxicity, whereas

compounds that are effective in metabolically dormant condi-

tions exhibit a range of cytotoxicity profiles. These observations

suggest that toxicity is not necessarily an inherent property of

these compounds, and that there exist compounds that are

active in metabolically dormant contexts which do not cause

adverse effects in mammalian cells.

To further study the 49 compounds with low cytotoxicity

against HepG2 and HEK293 cells, we estimated the selectivity

index for each compound. We performed dose-response

measurements for both HepG2 cytotoxicity and stationary-

phase bacterial killing and determined the half-maximal inhib-

itory or effective concentration (IC50) in each assay (Figure 3E).

Additionally, we only considered compounds that killed more

than two logs of bacterial cells in order to focus on com-

pounds with the greatest efficacy, which resulted in the

removal of an additional 15 compounds, 14 of which were

quinolones. Although quinolones are known to have some ef-

ficacy against persister cells depending on dose and SOS

response induction,20,51,52 quinolones target DNA replication,

a process essential to dividing cells, and are thus known to be

weaker inhibitors of dormant cells. Consistent with this mech-

anism, the quinolones identified in our set of stationary-phase

killing compounds exhibited low killing (approximately 1.5

logs) that barely passed our initial killing hit threshold (Fig-

ure S1E). From our dose-response data, we calculated the

IC50 for killing stationary-phase Ec BW and for human cell

cytotoxicity (Table S1), then divided the human cell IC50 by

the bacterial IC50 as a measure of the selectivity index. We

proceeded with 15 compounds that had a selectivity index

of 4-fold or greater (Figure 3E).

Since many known anti-persister compounds target the

bacterial membrane,24 we directly tested whether our short-

listed compounds disrupt the mammalian cell membrane us-

ing a red blood cell hemolysis assay.53 We found that 11 com-

pounds induced less than 20% hemolysis at 100 mM

(Figure 3F). Of the 11 compounds, four were polymyxins,

compounds which are known to cause nephrotoxicity.30,54

Additionally, two compounds are known to directly cause

DNA damage through either intercalation (acriflavinium55) or

strand breakage (bleomycetin56). We filtered out these six

compounds with known mechanistic liabilities, resulting in

five shortlisted compounds.

Lastly, we prioritized the remaining five compounds passing

our toxicity filters based on novelty, potency, and potential for

in vivo efficacy (Table 1). Two of the compounds—bekanamycin

and eravacycline—are known antibiotics with anti-persister

activity16,57,58 that are not novel, but validate as positive

controls for our discovery and filtering pipeline. Conversely, rela-

tively little is known about the remaining three compounds, sem-

apimod, LTX-315, and BAI1. Semapimod is an experimental
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Figure 3. Toxicity filtering of killing hits highlights semapimod

(A) Schematic of toxicity filtering steps.

(B) Relative viability of HepG2 and HEK293 in the presence of�10 mMcompound was determined using a resazurin-based cytotoxicity assay. Shown is themean

of two biological replicates. The shaded area indicates a relative viability of <0.5 in either cell line.

(C) Similarity of compounds with >0.5 HepG2 and HEK293 relative viability to known antibiotics and antiseptics. Compounds are separated by their curation

method (primary screen or ML). Asterisks denote p < 0.05 with two-sided Mann-Whitney U test.

(D) High-throughput determination of metabolism dependence for the 49 selective stationary-phase killing compounds. (Top) Killing efficacy in low or high

metabolic conditions against Ec BW at 50 mM. Log survival was calculated by dividing the CFU/mL after antibiotic treatment by the initial CFU/mL to obtain

percent survival, and taking the log-transformed value. (Bottom) Metabolism dependence was estimated by dividing the change in cellular survival between high

and lowmetabolic conditions by the change in bacterial intracellular ATP under these conditions,16 and taking the negative of the resultant value. For comparison,

data from known antibiotics are shown. Data are representative of two biological replicates. Negative x axis values indicate less metabolism dependence.

(E) Selectivity index was calculated by dividing the IC50 of HepG2 relative viability by the IC50 of Ec BW stationary-phase killing. Dose-response curves were

performed in biological duplicate. A summary of the IC50 values can be found in Table S1.

(F) Hemolysis of rat Sprague-Dawley red blood cells was tested at 100 mM compound and normalized to the positive control (1% Triton X-100). Data are

representative of two biological replicates; error bars indicate SEM.

(G) Structure of semapimod.
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anti-inflammatory drug59 identified in the primary screen that is

the most structurally distinct hit from known antibiotics and pos-

sesses the lowest LD99.99, or drug concentration needed to kill

99.99% of bacterial cells, among the remaining compounds.

Furthermore, we found that semapimod also retains high killing

activity in the presence of serum proteins (Table 1). LTX-315 is
a cationic peptide derived from human lactoferrin that has

been investigated as an oncolytic peptide in Phase I clinical trials

with an acceptable safety profile.60,61 BAI1 is a BAX channel

blocker that has been explored for its anti-apoptotic proper-

ties.62 LTX-315 and BAI1 both exhibit reduced killing activity in

the presence of serum proteins and are less potent (LD99.99)
Cell Chemical Biology 31, 712–728, April 18, 2024 717



Table 1. Five compounds prioritized by the toxicity filtering pipeline

Compound (description) Chemical structure

LD99.99

(mM)

Fold change

IC50 with BSA

Tanimoto similarity to

most similar known

antibiotic

Semapimod (investigational

anti-inflammatory drug)

7.43 0.99 0.313

LTX-315 (investigational

oncolytic peptide)

11.66 >5 0.796

Eravacycline (tetracycline

antibiotic)

21.71 4.04 0.768

Bekanamycin (aminoglycoside

antibiotic)

21.67 3.59 1.000

BAX inhibitor (BAI1) (apoptosis

inhibitor)

100 >5 0.387

LD99.99 is calculated by fitting a four-parameter dose-response curve to the CFU/mL vs. compound concentrations graphs in the presence or

absence of 0.55 mM BSA, extracting the Hill slope and IC50, and solving for the concentration needed to reduce the bacterial load by 4 log CFU/

mL. Tanimoto similarity to most similar known antibiotic is computed with RDKit fingerprints.
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than semapimod (Table 1). As semapimod emerged as the most

potent and structurally distinct compound without any obvious

mechanistic liability, we focused further on elucidating its mech-

anism of action.
718 Cell Chemical Biology 31, 712–728, April 18, 2024
Semapimod is a non-toxic, selective antibiotic against
Gram-negative bacteria
Semapimod passed our toxicity filters with favorable selectivity

indexes of 15.6 against HepG2 and 8.5 against HEK293,
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Figure 4. Semapimod is a non-toxic antibiotic effective against metabolically dormant bacteria

(A) Semapimod MIC against Ec BW in LB, or in the presence of 0.55 mM BSA or 10% fetal bovine serum (FBS). Data are representative of two biological

replicates; error bars represent SEM.

(B) Killing of Ec BW in low to high nutrient conditions. Light red to dark red shading indicates increasing nutrient content.

(C) Survival versus intracellular ATP for concentrations of semapimod at 2X MIC or greater. Light blue to dark blue shading indicates increasing semapimod

concentration.

(D) Metabolism dependence of semapimod. Linear regression was performed on the survival versus ATP data, at every antibiotic concentration, and the negative

slope was taken as the metabolism-dependence value. Data for known antibiotics are reproduced from Zheng et al., 202016 and shown here for comparison.

Light blue to dark blue shading indicates increasing antibiotic concentration. Data are representative of two biological replicates; error bars indicate SEM.

(E) Semapimod killing activity against stationary-phase Ec BW, Ec 25922, Kp, Pa, and Ab. Shown is the mean of two biological replicates; error bars repre-

sent SEM.

ll
Article
respectively. Importantly, we confirmed that semapimod does

not bind to or become sequestered by components of mamma-

lian growth media, as its antibacterial efficacy did not decrease

in media containing 10% FBS or BSA (Figure 4A). Semapimod

has been investigated as an immunomodulatory drug for Crohn’s

disease and was well tolerated in clinical trials.59,63,64 A dose-

escalation Phase I clinical trial tested semapimod between 2

and 32 mg/m2 through intravenous injection over a course of

five consecutive days, followed by two additional five-day

courses separated by a nine-day rest period.65 The maximum

tolerated dose was not reached, and no negative side effects

were reported other than occasional injection-site phlebitis.

While semapimod has been studied for a variety of anti-inflam-

matory purposes, including in treating Crohn’s disease and

cancer,66 its antibacterial properties have not been well investi-

gated. Semapimod is structurally distinct from known antibi-

otics, with its nearest neighbor being brilacidin, a polymer-based

antibiotic (Tanimoto similarity of 0.31). Semapimod also contains

several guanylhydrazone motifs, which have previously been

shown to possess antibacterial growth inhibitory activity.67 Addi-

tionally, semapimod shares some structural features with pent-

amidine, which targets the bacterial membrane and potentiates

large, hydrophobic antibiotics against Gram-negative bacteria.68

Pentamidine, however, has no reported bactericidal activity and

is much less potent in growth inhibition assays, with an MIC of
100 mg/mL,68 which is significantly higher than semapimod’s

MIC of 5 mg/mL.

To further characterize semapimod’s antibacterial activity, we

first performed a complete metabolism-dependence measure-

ment.16 We tested semapimod’s bactericidal efficacy in a range

of media conditions where bacteria are metabolically active or

dormant. While most antibiotics lose efficacy in metabolically

dormant conditions, we confirmed that semapimod is WDM,

as it is effective at killing metabolically active bacteria in addition

to metabolically dormant cells (Figures 4B–4D). We next exam-

ined semapimod’s spectrum of activity, finding that it was highly

effective in killing stationary-phase A. baumannii (Ab) and a clin-

ical isolate of E. coli (Ec 25922), but was less effective (only �2

logs of killing) against K. pneumoniae (Kp) and P. aeruginosa

(Pa) (Figure 4E). Interestingly, efficacy in stationary-phase killing

does not imply antibacterial activity in other contexts. For

example, although stationary-phase killing efficacy was similar

between Ec BW, Ec 25922, and Ab, semapimod’s MIC against

Ec BW was �5 mg/mL, whereas it was R100 mg/mL against

Ab and Ec 25922 in 100% LB broth (Figure S4A).

Semapimod disrupts the bacterial outer membrane as
part of its lethality
We sought to understand semapimod’s mechanism of action.

Motivated by its structural similarity to pentamidine as well as
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Figure 5. Semapimod disrupts the bacterial outer membrane by binding LPS
(A) Growth inhibition checkerboard of Ec BW with semapimod and rifampicin. Darker shading indicates higher bacterial growth. Shown is the mean of two

biological replicates.

(B) Uptake of a 1-N-phenylnaphthylamine (NPN) fluorescent probe during semapimod, colistin, and ampicillin treatment in Ec BW. Data are representative of two

biological replicates; error bars show SEM.

(C) Semapimod hemolysis was tested against rat Sprague-Dawley red blood cells. Data are representative of two biological replicates; error bars denote SEM.

(D) Time-lapse microscopy profiling of semapimod-treated cells. Stationary-phase Ec BW cells were treated with vehicle (DMSO) and semapimod (4XMIC) in the

presence of SYTOX Blue, a membrane damage-sensitive dye. Brightfield and fluorescence images of a population of cells 8 h after treatment indicate extensive

SYTOX Blue fluorescence in semapimod-treated cells. Results shown are representative of at least 12 different fields of view from three biological replicates, and

the total number of cells analyzed was >2,500 per condition. Scale bar denotes 10 mm. See also Videos S1, S2, S3, and S4.

(E) Quantification of the fraction of SYTOX-Blue positive cells across all fields of view in the experiments shown in Figure 5C. Thick curves represent average

values across all fields of view, and error bars denote standard deviation.

(F) Mutants raised against semapimod have a single-point mutation in the pmrB gene, a known colistin-resistance mechanism. The chemical structure of colistin

is shown in the inset.

(G) Semapimod killing activity against stationary-phase E. coli carrying colistin-resistance determinant mcr-1 in biological duplicate; error bars denote SEM.

(H) Schematic of LPS binding assay, where displacement of BODIPY-cadaverine from LPS isolated from E. coli is monitored by an increase in fluorescence.

(I) BODIPY-cadaverine displacement assay of semapimod binding E. coli-derived LPS. Data are representative of two biological replicates; error bars indi-

cate SEM.
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its WDM properties, we hypothesized that it targets the bacte-

rial outer membrane. Consistent with this hypothesis, we

found that semapimod is synergistic with large, hydrophobic

antibiotics, including rifampicin and novobiocin, that are nor-

mally excluded by the Gram-negative outer membrane69,70

(Figures 5A and S4B). Rifampicin and novobiocin are ineffec-

tive against Gram-negative bacteria due to their large, hydro-

phobic structures, and agents that increase bacterial outer

membrane permeability are synergistic with these com-

pounds. Furthermore, we found that semapimod was syner-

gistic with rifampicin (FICi < 0.5) against Ec 25922, Kp, and

Ab, but not against Pa, possibly due to its more rigid, less
720 Cell Chemical Biology 31, 712–728, April 18, 2024
permeable membrane composition71–73 (Figures S4C–S4F

and Table 2).

Measurements of cellular physiology further support that sem-

apimod permeabilizes the outer membrane. We found that 1-N-

phenylnaphthylamine (NPN), a hydrophobic fluorescent probe

that cannot cross intact outer membranes, is taken up by sema-

pimod-treated cells (Figure 5B). Additionally, a membrane

fluidity assay using Laurdan, a lipophilic probe, suggests that

semapimod rigidifies the outer membrane (Figure S4G). Indeed,

brittle outer membranes are known to be susceptible to

breakage and instability.74,75 Taken together, these findings indi-

cate that semapimod both permeabilizes and rigidifies the outer



Table 2. Fractional inhibitory concentration index (FICi) for

semapimod in combination with rifampicin

Species FICi

E. coli BW25113 0.18

P. aeruginosa PAO1 2.00

K. pneumoniae ATCC 13883 0.19

E. coli ATCC 25922 0.06

A. baumannii ATCC 17978 0.08

E. coli BW25113 carrying mcr-1 0.18

Growth inhibition checkerboard assays were performed where an over-

night culture was diluted 1 in 10,000 into fresh LB broth, and semapimod

and rifampicin were added simultaneously in two-fold gradients to create

a concentration checkerboard. An FICi value of less than 0.50 indicates

synergy, an FICi value between 0.50 and 4.00 indicates indifference,

and an FICi value greater than 4.00 indicates antagonism.
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membrane, a mechanism of action similar to that of colistin and

other polymyxin antibiotics. It is also important to note that,

although semapimod disrupts the bacterial outer membrane, it

does not significantly disrupt the mammalian red blood cell

membrane to result in hemolysis (Figure 5C).

To probe the effect of semapimod’s membrane-targeting

mechanism of action on bacterial cell growth, we performed

long-term, microfluidic time-lapse microscopy experiments us-

ing SYTOX Blue, a DNA-intercalating dye sensitive to membrane

damage. Here, single cells with compromised membranes fluo-

resce throughout the cytoplasm, and the use of microfluidic

time-lapse microscopy allows the membrane damage to be

spatiotemporally resolved.76 We found that, as compared to

vehicle-treated Ec BW cells, nearly all semapimod-treated cells

exhibited persistent increases in SYTOX Blue fluorescence

immediately upon treatment, indicating that semapimod robustly

damages cellularmembranes (Figures 5D and 5E; Videos S1, S2,

S3, and S4). Furthermore, these SYTOX Blue-positive cells failed

to elongate at timepoints corresponding to the fluorescence in-

tensity increases (Videos S3 and S4). In contrast, cells largely re-

mained SYTOX Blue-negative in vehicle-treated conditions and

continually elongated (Videos S1 and S2). This semapimod-

induced membrane damage is similar to the membrane damage

induced by colistin, which also permeabilizes bacterial mem-

branes.77–79 Importantly, these observations indicate that bacte-

rial membrane disruption alone is sufficient to explain semapi-

mod’s antibacterial activity.

Semapimod damages bacterial cell membranes by
binding lipopolysaccharide
We next sought to further elucidate semapimod’s specific outer

membrane activity. We first evolved resistance against semapi-

mod in liquid passaging experiments and performed whole-

genome sequencing on resistant mutants. We found a single

base substitution in the sensor kinase pmrB (Figure 5F), a known

colistin-resistance mechanism.80,81 Mutations in pmrB cause

upregulation of genes responsible for the modification of lipid

A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-L-

arabinose (L-Ara4N), which reduce the negative charge on LPS

and decrease the electrostatic interaction with positively

charged polymyxin antibiotics.74,80 Here, we found that the iden-

tified mutation in pmrB was associated with decreases in sema-
pimod’s growth inhibitory and killing activities (Figures S5A and

S5B). Interestingly, although semapimod-resistant cells were

cross-resistant to colistin (Figures S5C and S5D), semapimod

was still effective at killing E. coli carrying the colistin-resistance

determinant mcr-1 (Figure 5G). mcr-1 encodes a pEtN trans-

ferase, which transfers a pEtN moiety onto the negatively

charged phosphates on the lipid A portion of LPS, thereby

reducing the negative charge on LPS.74 Although we observed

a small (4-fold) increase in the semapimod MIC against E. coli

mcr-1 (Figure S5E), semapimod was still more effective in inhib-

iting growth than colistin, whose MIC was increased more than

256-fold in the presence of mcr-1 (Figures S5F and S5G). While

semapimod and colistin are both positively charged, it is

possible that structural differences allow semapimod to more

effectively displace the cations that bridge negatively charged

LPS, such that mcr-1 cells remain vulnerable to semapimod

but are resistant to colistin. However, the pmrB mutation may

fully confer semapimod resistance, as this mutation neutralizes

the negative charge on lipid A via both the pEtN and L-Ara4N

modifications, which is more effective than only the pEtN modi-

fication in mcr-1 cells.74

Although pmrB cells were resistant to semapimod, potentia-

tion of rifampicin and novobiocin in the presence of semapimod

was still preserved (Figures S5H and S5I). Semapimod was also

synergistic with rifampicin and novobiocin in mcr-1 cells

(Figures S5J and S5K). These results are consistent with work

demonstrating that mcr-1 strains are resistant to colistin, but

susceptible to outer membrane damage.82 Moreover, it is known

that colistin-resistant strains still display synergy between

colistin and other antibiotics like rifampicin, suggesting that the

outer membrane permeabilization is not prevented by modifica-

tions to LPS.83,84 While masking of the negative charge on LPS

may be sufficient to prevent growth inhibition and killing, it may

be insufficient to prevent the binding and disruption of LPS

that allows entry of large, hydrophobic antibiotics.

Based on the foregoing results, we hypothesized that semapi-

mod directly binds LPS. Consistent with this hypothesis, we

found that semapimod displaces BODIPY-cadaverine conju-

gated to LPS derived from E. coli (Figures 5H and 5I). We addi-

tionally used the limulus amebocyte lysate (LAL) assay to mea-

sure LPS endotoxin levels. Our measurements showed that the

amount of endotoxin detected in the lysates of semapimod-

treated cells decreased as compared to vehicle- and colistin-

treated cells (Figure S6A), suggesting that semapimod binds to

or sequesters LPS. Furthermore, we found that semapimod ac-

tivity is sensitive to the dication content of the media, where

addition of 21 mM of Mg2+, which enhances binding of neigh-

boring LPSmolecules, abolished growth inhibition and killing ac-

tivity (Figures S6B and S6C). However, addition of EDTA, which

chelates di-cations and destabilizes the outer membrane,

enhanced semapimod activity (Figures S6B–S6E). As LB media

contains approximately 30 mM–200 mM of magnesium,85 we

also found that concentrations of Mg2+ up to 200 mM do not

reduce semapimod’s killing activity (Figure S6F). A higher con-

centration of Mg2+ (1 mM) caused a reduction in killing activity

at 10 mM semapimod, but not at 50 mM semapimod (Figure S6F).

Human blood Mg2+ concentrations are typically less than

1 mM;86 thus, this result does not preclude semapimod’s clinical

use for systemic infections.
Cell Chemical Biology 31, 712–728, April 18, 2024 721
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Asyet, our observationsdonot informonwhether semapimod’s

binding to LPS is specific. To investigate this further,we found that

semapimod can also displace BODIPY-cadaverine from LPS

derived from K. pneumoniae and P. aeruginosa with similar po-

tency as with E. coli LPS (Figures S6G and S6H). Intriguingly, we

note that LPS binding alone is not sufficient for high lethality to P.

aeruginosa and K. pneumoniae, as semapimod killed approxi-

mately two logs of these stationary-phase cells at the highest

tested concentration (Figure 4E). It is possible that, because the

core oligosaccharide of P. aeruginosa contains more negatively

charged phosphates, an excess of semapimodmight be required

to disrupt bridging interactions between LPS and dications to

destabilize the membrane.68,87,88 Although semapimod binds

free LPS in vitro (Figures S6G and S6H), it is also possible that

in vivo differences in LPS (e.g., O-antigen length or accessibility

of phosphates) result in differential susceptibility ofK.pneumoniae

and P. aeruginosa to semapimod.68,89

Finally, to assess the possibility that semapimod reacts pro-

miscuously with intracellular protein targets, we used thermal

proteome profiling (TPP), which identifies protein targets based

on their differential heat stability after small molecule bind-

ing38,90–92 (Figure S7A). Across the E. coli proteome, the stability

of DnaT, RbsA, and HemA was altered by semapimod, suggest-

ing that these proteins (Figures S7B–S7D) may interact with

semapimod. Intriguingly, while overexpression of any of these

three proteins reduces semapimod lethality, deletion of the

non-essential dnaT and rbsA did not result in altered susceptibil-

ity to semapimod, while a deletion of hemA could not be tested

as it is an essential gene (Figures S7E and S7F). It is possible that

overexpression of dnaT, rbsA, and hemA may help sequester

semapimod from the intracellular milieu, but that, at physiolog-

ical concentrations of these proteins and of semapimod, these

drug-target interactions are dominated by semapimod’s effects

on the bacterial cell membrane. This hypothesis is consistent

with our finding that semapimod’s main mechanism of action

is outer membrane disruption, and that outer membrane disrup-

tion alone is sufficient for semapimod’s lethality against Gram-

negative bacteria.

DISCUSSION

Most commonly used antibiotics were identified during the ‘‘go-

lden age’’ of antibiotic discovery, typically using standard,

growth-permissive conditions that elicit high bacterial meta-

bolism.93 Subsequent research has shown that there is a large di-

versity of conditions among infectious microenvironments, with

many involving nutrient starvation and metabolic dormancy.9,10,94

Notably, lowmetabolic states of bacterial pathogens confer toler-

ance and persistence against many antibiotics that were initially

discovered using screeningmethods that were biased for efficacy

in metabolically active contexts, contributing to the difficulty in

treating chronic and recurring infections. Motivated by this lack

of treatment options, here we have designed a screening pipeline

incorporating experimental compound screening, ML-powered

virtual screening, and toxicity filters, leading to the identification

ofmultiple antibacterial compoundswith favorable toxicity profiles

that kill metabolically dormant bacteria.

Our screening pipeline demonstrates the utility of human over-

sight at all levels of ML workflows.95 As in previous virtual
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screening efforts,23,96 the intentional choice of training data

from a drug repurposing library, a compound set enriched for

tolerable ADMEproperties and compoundswith proven antibac-

terial activity, was important for pre-selecting compounds with

translatable properties. Repurposing libraries can benefit drug

screening by reducing financial, regulatory, and scientific hur-

dles in subsequent drug development. Importantly, many clini-

cally approved drugs have acceptably low cytotoxicity.97 Even

among the most toxic drugs in a repurposing dataset, we may

expect to see well-documented cytotoxicity reports from animal

and human clinical studies, which help to more efficiently prior-

itize lead candidates.

Although our model identified compounds that are structurally

dissimilar from known and clinically used antibiotics (Figures 2E

and 2F), many of our discovered compounds have previously re-

ported antibacterial activity. This rediscovery phenomenon, while

serving as a useful positive control for our model performance on

‘‘real-world’’ data, underscores the need to diversify and enlarge

screening libraries to identify truly novel compounds. As ML

models become more sophisticated and are trained on larger da-

tasets, it will be crucial for researchers to remain aware of model

biases, limitations, and mistakes.98 Doing so will inform model

generalizability, helping to realize the goal of accelerating com-

pound discovery efforts.

Our screening pipeline resulted in the discovery that semapi-

mod kills metabolically dormant bacterial cells by targeting

LPS in the outer membrane. Interestingly, semapimod’s anti-in-

flammatory properties appear to originate from blocking the im-

mune response to LPS in a dose-dependent manner,59 which

may be related to the LPS-binding activity observed here. It is

likely that semapimod’s selectivity for bacterial membranes is

linked to its substantial positive charge, which, similar to other

cationic antimicrobials, imparts a high affinity for negatively

charged LPS in bacterial membranes over neutrally charged

mammalian membranes.53 Other cationic antibiotics such as

colistin also target the bacterial membrane and are effective

against metabolically dormant cells; however, these compounds

have clinical toxicity concerns,99–101 and it was therefore surpris-

ing that semapimod has proven human safety in clinical trials.

Although metabolism dependence and toxicity are correlated

(Figure S3), our work demonstrates that toxicity is not neces-

sarily an inherent property of antibacterial compounds that kill

metabolically dormant bacterial cells.

Despite their similar mechanisms of action, semapimod and

colistin can be differentiated by their spectrum of activity. While

colistin is effective against most Gram-negative bacteria,102 sem-

apimod has narrow-spectrum activity that varies with biological

context. Semapimod’s spectrum of activity against stationary-

phase bacteria is broader in nutrient-poor media than against

growing bacteria in nutrient-rich media. Although antibiotics that

are effective against metabolically active cells commonly lose ac-

tivity in metabolically dormant conditions, cases of the opposite

are rare. Importantly, the differences in semapimod’s activity in

our experimental models of these contexts do not arise from

changes inmagnesiumconcentration alone (Figure S6F). Semapi-

mod’scontext-dependentactivitymaybeattributed toan increase

in the amount of exposed LPS on the bacterial outer membrane in

stationary phase,103,104 which could in turn increase the electro-

static attraction between semapimod’s positively charged



ll
Article
guanylhydrazone moieties and the negatively charged LPS.

Although further characterization is needed to better understand

the mechanistic aspects of LPS binding, semapimod’s potent,

narrow-spectrum efficacy in killing metabolically dormant E. coli

and A. baumannii cells makes it a promising candidate for addi-

tional pre-clinical studies.

Future studies may consider explicitly screening for activity

against Gram-negative bacterial membranes. The Gram-nega-

tive outer membrane is a selective filter that undermines many

available antibacterials,69,105 and membrane-targeting antibi-

otics may be beneficial for potentiating these drugs. In fact, Sil-

ver106 has suggested that Gram-negative antibiotic discovery is

limited more by targeting of the outer membrane than by target

discovery. As membrane-active antibiotics target a conserved

feature of bacterial cells, their usagemight also lead to less resis-

tance, and these antibiotics might robustly maintain their activity

against persister cells.36 It is also important to note that, as a

consequence of targeting the membrane, bacterial cell

lysis may be expected to occur. This is similar to the cell death

phenotypes induced by other antibiotics, such as beta-lac-

tams,107 and might lead to similar pro-inflammatory immune re-

sponses in patients.108 Additionally, membrane-targeting antibi-

otics may be cytotoxic due to the similarities between bacterial

and human cell membranes, with some exceptions such as sem-

apimod. Counter-screening for cytotoxicity in human cell lines

(Figure 3B), as well as red blood cell hemolysis (Figure 5C),

can help to identify selective compounds.36

It is worth considering whether the growth-based strategies

that have been used for antibiotic discovery in the past may

have biased the therapeutics that are selected for clinical

development.109,110 Future antibiotic discovery efforts should

aim to explore the full scope of bacterial physiologies that

are clinically relevant, encompassing both growth-permissive

and metabolically dormant conditions, in addition to the inter-

sections of these two biological contexts. Our work demon-

strates the value of integrating non-traditional screening

methods with ML models to identify non-toxic antibiotics

that are effective against metabolically dormant bacteria,

which paves the way for more effectively treating chronic

and recurrent infections.

Limitations of the study
Here, we show that a dilution-regrowth assay and computational

techniques can efficiently identify antibacterial drugs active

against stationary-phase bacteria. The dilution-regrowth assay

is a high-throughput and imperfect filter; 84 out of 111 drugs

identified in the high-throughput screen had activity when

measured with gold-standard CFU plating, indicating that the

dilution-regrowth screen has �24% false positive rate. Sec-

ondly, our toxicity filtering pipeline does not cover all possible

mechanisms of toxicity but instead focuses on some of the

most relevant toxicity liabilities for clinical use, i.e., liver and kid-

ney cell toxicity and red blood cell hemolysis. Additional cell line

screening and computational toxicity modeling would more

comprehensively assess the translational potential of our candi-

date drugs. Finally, our characterization of semapimod’s mech-

anism does not extend to in vivo evaluation. We posit that sem-

apimod binds the LPS of Gram-negative cell membranes in vivo

to effect killing of stationary-phase E. coli and A. baumannii, but
we cannot know with certainty that this mechanism translates

from an in vitro context to a clinical setting.

SIGNIFICANCE

This work highlights how non-traditional screening tech-

niques can identify antibacterial small molecules with rele-

vance for clinical settings. Building on prior work establishing

that bacterial metabolism can affect drug efficacy, we eval-

uate small molecules that have lethality against stationary-

phase E. coli. We demonstrate that a dilution-regrowth

screening technique and machine learning for molecular

property prediction can enhance antibacterial drug discovery

efforts. We report the antibacterial activity of semapimod, a

previously described anti-inflammatory small molecule, and

show that semapimod affects its killing activity by binding

lipopolysaccharide in the Gram-negative outer membrane.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E. coli BW25113 CGSC Cat# 7636

E. coli ATCC 25922 ATCC Cat# 25922

E. coli K-12 MG1655 ATCC Cat# 700926

E. coli W3110 CGSC Cat# 4474

P. aeruginosa PAO1 ATCC Cat# 47085

K. pneumoniae ATCC 13883 ATCC Cat# 13883

A. baumannii ATCC 17978 ATCC Cat# 17978

Chemicals, peptides, and recombinant proteins

Semapimod hydrochloride BOC Sciences Cat# B2693-462782

Drug Repurposing Hub Broad Institute https://repo-hub.broadinstitute.org/

repurposing

Broad Institute 800K Compound Database Broad Institute https://github.com/jackievaleri/

nontoxic_stat_phase_killing_abx

1-N-phenylnaphthylamine (NPN) Sigma-Aldrich Cat# 104043

E. coli LPS Sigma-Aldrich Cat# L3129

K. pneumoniae LPS Sigma-Aldrich Cat# L4268

P. aeruginosa LPS Sigma-Aldrich Cat# L9143

BODIPY-cadaverine Molecular Probes Cat# D6251

LAL reagent Thermo Scientific Cat# 88282

250 U/ml benzonase Sigma-Aldrich Cat# E1014-25KU

1003 Halt Protease Inhibitor Cocktail Life Technologies Cat# 87786

IGEPAL� CA-630 viscous liquid (NP-40) Sigma-Aldrich Cat# I3021-50ML

DC Protein Assay Bio-Rad Cat# 5000116

Tris(2-carboxyethyl)phosphine (TCEP) Pierce Cat# 20490

Methyl methanethiosulfonate (MMTS) Thermo Fisher Scientific Cat# 23011

Ethyl alcohol, Pure 200 proof, HPLC grade Sigma-Aldrich Cat# 459828-1L

Triethylammonium bicarbonate buffer 1M (TEAB) Sigma-Aldrich Cat# T7408-100ML

Pierce Quantitative Fluorometric Peptide Assay Thermo Fisher Scientific Cat# 23290

TMT10plex Isobaric Label Reagent Set Thermo Fisher Scientific Cat# 90110

50% hydroxylamine Thermo Fisher Scientific Cat# 90115

Pierce high pH fractionation kit Thermo Fisher Scientific Cat# 84868

Ultra-high-performance liquid

chromatography (UPLC)-MS acetonitrile

Thermo Fisher Scientific Cat# A9561

Deposited data

DNA sequencing of semapimod evolution This study – deposited in SRA PRJNA1010194

Thermal proteome profiling This study – deposited in PRIDE https://doi.org/10.6019/PXD044230

Raw and analyzed data This paper https://github.com/jackievaleri/

nontoxic_stat_phase_killing_abx

Experimental models: Cell lines

HepG2 ATCC Cat# HB-8065

HEK-293 ATCC Cat# CRL-1573

Rat Sprague Dawley Red Blood Cells Innovative Research Cat# IRTSDRBC

Recombinant DNA

pGDP2-mcr-1 plasmid Addgene pGDP2 MCR-1 was a gift from Gerard

Wright (Addgene plasmid #118404)

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Prism 9 Graphpad www.graphpad.com/scientific-software/prism/

Original code This paper https://github.com/jackievaleri/nontoxic_

stat_phase_killing_abx

and https://doi.org/10.5281/

zenodo.8401264

Chemprop Yang et al., 201941 https://github.com/chemprop/chemprop

RDKit Landrum, 2010111 https://www.rdkit.org

Plotly Express Sievert, 2020116 https://plotly-r.com

Scikit-Learn Pedregosa et al., 2011115 https://scikit-learn.org/stable/

Bcl-convert Illumina support.illumina.com/sequencing/

sequencing_software/bcl-convert.html

Burrows-Wheeler transform Li and Durbin, 2009122 github.com/lh3/bwa

Pilon Walker et al., 2014123 https://software.broadinstitute.org/software/pilon/

HISAT2 http://daehwankimlab.github.io/hisat2/

featureCounts https://www.rdocumentation.org/

packages/Rsubread/versions/

1.22.2/topics/featureCounts

edgeR https://bioconductor.org/packages/

release/bioc/html/edgeR.html

MicrobeJ Ducret et al., 2016119 https://www.microbej.com/download-2/

Fiji Schindelin et al., 2012120 https://imagej.net/software/fiji/

TPP Franken et al., 201591 https://www.bioconductor.org/

packages/release/bioc/html/TPP.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to James J. Collins ( jimjc@mit.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Sequencing data have been deposited at the Sequence Read Archive repository and are publicly available as of the date of

publication. Thermal proteome profiling data have been deposited at PRIDE are are publicly available as of the date of publi-

cation. Raw data have been deposited at Github and Zenodo and are publicly available as of the date of submission. Accession

numbers are listed in the key resources table.

d All original code and computational analyses have been deposited at Github and Zenodo and is publicly available as of the date

of submission. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experiments were conducted at 37�C unless otherwise noted. HEK-293 CRL-1573 (ATCC) is a female cell line and HEPG2 HB-8065

(ATCC) is a male cell line. All information on alternate temperature conditions, strains, as well as media conditions for experiments,

can be found in the method details section.

METHOD DETAILS

Dilution-regrowth screen to assess stationary-phase lethality
An overnight culture of E. coli BW25113 (Ec BW) was grown in LB broth, then diluted 1:10,000 into 50mL of 1% LB in PBS and grown

in 250mL non-baffled flasks for 24 hours at 37�C, 300 rpm shaking. After 24 hours, 40 mL of culture was added to eachwell of 384-well

Drug Repurposing Hub plates for a final screening concentration of 50 mM, and plates were incubated in sealed plastic bags at 37�C
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for 24 hours. Following this, an Agilent Bravo robot was used to transfer 1 mL of treated culture into 200 mL of LB broth in 96-well

plates. These plates were incubated in sealed plastic bags at 37�C for 24 hours, then OD600 readings were taken on a Spectramax

M3 plate reader (Molecular Devices). Data were normalized based on the inter-quartile mean of the plate, and compounds that had a

normalized OD600 of <0.2 in either replicate were validated in the colony forming unit assay as described below.

Stationary-phase killing colony forming unit determination
An overnight culture of Ec BWgrown in LB broth was diluted 1:10,000 into 50mL of 1% LB broth in PBS in non-baffled 250mL flasks.

Cells were grown for 24 hours at 37�C, 300 rpm shaking, then distributed in a 96-well plate with compound for a total volume of

100 mL. Plates were then incubated for another 24 hours at 37�C, 900 rpm shaking, then washed twice with PBS. Finally, samples

were serially diluted 10-fold in PBS and 7 mL was spotted on LB agar plates to quantify CFU. For CFU validation of the dilution-re-

growth screen, compounds that killed greater than a log of bacteria (from the DMSO-treated control) across two replicates were

marked as active.

Growth inhibition screen
An overnight culture of Ec BW was diluted 1 in 10,000 in LB broth, and 40 mL was added to each well of 384-well Drug Repurposing

Hub plates for a screening concentration of 50 mM. Plates were placed in sealed plastic bags, incubated at 37�C for 24 hours, and

then OD600 was read. Plates were normalized by inter-quartile mean, and compounds were marked as active if both replicates had a

normalized OD600 of <0.2, and as non-active if either or both replicates had a normalized OD600 of >0.2.

Growth inhibitory model on new screening data
A graph neural network was trained using the Chemprop package to evaluate the ability of existing data and models to predict the

killing activity screening data. Architecture and hyperparameters were obtained from Stokes et al., 2020:23 the model was initialized

with a dropout of 0.35, hidden size of 1600, 1 FFN layer, and depth of 5 with 2-dimensional normalized RDKit features and all other

defaults. Table S1B from Stokes et al., 202023 was used to train the model for growth inhibitory activity predictions. The final model

was tested on the new DRH screening data after removing any identical compounds from the DRH with the same structure as com-

pounds in Table S1B.

Data pre-processing for model training
Datasets from stationary-phase killing and growth inhibition screens were split into an 80% training set and 20% testing set. The

training and test sets were class-balanced with regard to active compounds (for the purposes of splitting the data, a compound

was considered active if it had either growth inhibitory and/or killing activity), with equal proportions of active compounds in the

training set and the testing set. For each training and test set compound, 200 global biophysical features (molecular weight, beta-

lactam fragment presence, logP, etc.) were computed via RDKit111 using the Descriptastorus package (https://github.com/bp-

kelley/descriptastorus).

Model architecture and training
A graph neural network (GNN) was trained with the 80% train set using the Chemprop package as in Stokes et al., 2020.23 In brief, the

model consists of several graph convolutional layers that aggregate local ‘neighborhoods’ of molecular information into an embed-

ding of arbitrary size by averaging the features associated with each bond. This embedding is then concatenated to the vector of

Descriptastorus-generated features, and themodified embedding is passed to some number of feedforward layers before outputting

a value between 0 and 1. This value can be interpreted as the antibacterial ‘score’ for each molecule, where the closer this value is to

1, themore likely it is for the compound to be antibacterial, and vice versa. All models are constructedwith ReLU activation after every

layer. The last layer has a sigmoid activation applied. The message-passing operation (i.e., the graph convolutional operation) is

centered on bonds as nodes and atoms as edges in the molecular graph.

Here, the graph neural network was given the SMILES strings of the compounds as input data and both the inhibitory and killing

binary scores as target values to predict. A hyperparameter optimization grid search was computed over the following parameters:

dropout of 0.1, 0.25, and 0.4; number of feedforward layers 1 and 2; number of message-passing layers of 3, 4, and 5; initial learning

rate of 0.001 and 0.0001; and number of nodes in each feedforward layer of 300, 500, 1,000, and 1,500. All models are trained for 30

epochs with a learning rate schedule as follows: the learning rate increases linearly for two ‘warm-up’ epochs between the initial

learning rate and the maximum learning rate of 0.001, and then decreases exponentially from the maximum learning rate of 0.001

to the final learning rate of 0.0001. Models may stop earlier than the full number of epochs if the validation auROC has not improved

according to an early stopping regime. Each architecture was trained with an 80% training / 10% validation / 10% testing split. The

hyperparameter search was only performed on the 80% train set, such that the training data for any fold was 64% of the full dataset

size; the 20% test set was completely held-out until after the search concluded. Models were evaluated over three folds generated

with a scaffold-balanced splitting method: Murcko scaffolds of compounds were grouped by similarity and the largest scaffold clas-

ses were isolated into either the training or the test set for a more ‘real-world’-approximating evaluation of model performance.

Grid search models were assessed based on their performance on the 10% testing set. The model with best performance had the

following architecture: dropout rate of 0.1, two feedforward layers, four message-passing layers, initial learning rate of 0.001, and

1,000 nodes in each feedforward layer. This model was predictive on the 10% test set, with a mean auROC of 0.898 predicting growth
Cell Chemical Biology 31, 712–728.e1–e9, April 18, 2024 e3
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inhibition and amean auROC of 0.844 predicting stationary-phase killing. Next, this model was evaluated on the 20% held-out test set,

maintaining itshighperformancewithanauROCof0.850andauPRof0.505ongrowth inhibitionpredictionandamodestauROCof0.740

andauPRof0.055onstationary-phasekillingprediction, thoughwenote there areonly11positivecompounds in the test set for the latter

category. Finally, we trained 30 ensemblemodels with 100% of the available training data with this architecture, according to the same

training protocol described earlier. This final ensemble model had an growth inhibition prediction auROC of 0.885 +/- 0.068 and a sta-

tionary-phase killing prediction auROC of 0.861 +/- 0.080 over 30 folds. For model training and deployment, a Google Cloud Platform

virtual machine was used to run Ubuntu 18.04 with a 1 x NVIDIA Tesla K80 GPU, 8 vCPU, RAM 53248 MiB, and 500GB of storage.

Shallow model comparison
To benchmark the more complex GNN against simpler, shallower models, the Chemprop package was used to test three types of

models usingMorgan fingerprints as input. First, a random forest classifier was tested, with a hyperparameter grid search conducted

over the following parameters: number of bits in fingerprint: 512, 1,024, 2,048, and 4,096; radius of fingerprint: 2, 3, and 4; number of

trees in the forest: 50, 100, 250, 500, 750, 1,000, and 2,000. The top-performing random forest classifier was a classifier with 2,000

trees trained on fingerprints with radius of 3 and 4,096 bits, achieving mean auROC of 0.810 on growth inhibition tasks and 0.723 on

stationary-phase killing tasks. The support vector machines were optimized over the same number of bits and radius ranges. One

SVM was trained for growth inhibition prediction alone and another trained for stationary-phase killing prediction alone, with the

top growth inhibition model taking fingerprints of radius 2 and of length 4,096 bits, and achieving an auROC of 0.820. The top killing

model takes fingerprints of radius 3 and of length 4,096 bits and achieves an auROC of 0.753. For both the RFC and SVM, 200 global

RDKit features were added to the fingerprint vector as in the GNN. Lastly, an FFN was trained using binary Morgan fingerprints of

radius 2 with 2,048 bits, and optimized over the following parameters: number of fully connected layers: 1, 2, 3, and 4; size of

each layer: 500, 1,000, and 1,500; and dropout rate: 0.1, 0.2, and 0.3. The top FFN had three fully connected layers of 1,500 nodes

each with a dropout rate of 0.3, and achieved an auROC of 0.715 on growth inhibition tasks and an auROC of 0.659 on killing tasks.

Model deployment
We virtually screened a large chemical library by deploying the GNN on the Broad 800K library to predict growth inhibition and sta-

tionary-phase killing activity values.112 This library is maintained by the Broad Institute’s Center for the Development of Therapeutics

and is composed of a variety of chemical sources, including the Drug Repurposing Hub, other known bioactives, external chemical

vendor screening libraries, and compounds generated by diversity-oriented synthesis.113 Out of the�800,000molecules, we carried

forward only those that had predicted killing scores greater than 0.2 and <1 Tanimoto similarity to the training set, leaving 375 mol-

ecules. Tanimoto similarity was computed on 2,048-bit RDKit fingerprints. We further filtered for molecules with less than 0.9 Tani-

moto similarity to the training set aswell as less than 0.9 Tanimoto similarity to a set of known antibiotics as annotated onChEMBL.114

Note that for all subsequent analyses regarding antibiotics, we used a further refined,more curated dataset of antibacterial antibiotics

that includes antiseptics.

Antibiotic compound curation
Initial filtering to known antibiotics for machine learning compound curation used all compounds marked as ‘antibiotic’ on ChEMBL.

This loosely defined set of compounds marked as ‘antibiotic’ on ChEMBL includes many known antibacterials and a few anti-cancer

and anti-viral antibiotics. For future filtering steps such as those used to curate compounds in Figure 2E, a more stringent set of

labelled antibiotic compounds (N=566) were obtained via the following steps: identifying compounds matching the keyword ‘antibi-

otics’ on ChEMBL; annotating all known classes or mechanisms of action; filtering out any anti-viral, anti-fungal, or anti-cancer an-

tibiotics; adding inmanually-selected classes without sufficient representation, such as nitrofurans, polymyxins, and antiseptics; and

adding any missing drugs from the FDA-approved antibiotics list. These steps resulted in the following classes represented, in order

from most compounds to least compounds per class: macrolide, glycopeptide, beta-lactam, tetracycline, aminoglycoside, anti-

septic/membrane active, fluoroquinolone/quinolone, polymyxin, nitroimidazole, oxazolidinone, lincosamide, rifamycin, nitrofuran,

nucleoside, antiseptic/DNA intercalation, polyether, sulfonamide, streptogramin, anti-mycobacterial, aminocyclitol, phosphonic,

phenicol, and other classes with less than four antibiotics represented.

Retraining model with validation data
To enable futuremodel use and re-use, we trained amodel on the combined primary screen data and the data from the first round ofML

validation.We followed a similar hyperparameter optimization training as earlier. Grid searchmodels were assessed based on their per-

formance on a 10% testing set. The grid search model with best performance had the following architecture: dropout rate of 0.25, one

feedforward layer, five message-passing layers, initial learning rate of 0.001, and 500 nodes in each feedforward layer. This model was

predictive on the 10% test set, with amean auROC of 0.837 andmean auPRof 0.486 predicting growth inhibition and amean auROC of

0.904 and mean auPR of 0.402 predicting stationary-phase killing. Next, this model was evaluated on the 20% held-out test set, main-

taining its highperformancewith anauROCof 0.941 and auPRof 0.543 ongrowth inhibitionprediction and anauROCof 0.891 and auPR

of 0.199 on stationary-phase killing prediction. Finally, we trained 30 ensemblemodels with 100% of the available training data with this

architecture, according to the same training protocol described earlier. This final ensemble model had a growth inhibition prediction

auROC of 0.894 +/- 0.066 and auPR of 0.470 +/- 0.127 and a stationary-phase killing prediction auROC of 0.844 +/- 0.078 and auPR

of 0.251 +/- 0.179 over 30 folds. This model has been deposited on GitHub for re-use.
e4 Cell Chemical Biology 31, 712–728.e1–e9, April 18, 2024
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Retrained model deployed on more diverse chemical datasets
We undertook a second round of virtual screening with the retrained model. We deployed the GNN on MolPort, ChemBridge,

MayBridge, and Ambinter vendor libraries (N�5.349 million compounds) to predict growth inhibition and stationary-phase killing ac-

tivity values. We carried forward only those compounds that had predicted killing scores greater than 0.1, a lenient threshold to

discover unique scaffolds, leaving 12,323 molecules. We next applied strict similarity filtering, carrying forward compounds with

<50% similarity to the training set and known antibiotics, leaving 6,700 molecules. To curate compounds with drug-like scaffolds,

we carried forward molecules with no Egan drug-likeness violations (N=4,932), no Ghose drug-likeness violations (N=1,975), no Lip-

inski drug-likeness violations (N=1,675), no PAINS alerts (N=1,501), and no Brenk alerts (N=467). Hierarchical clustering was used to

group compounds into clusters of similar scaffolds and a parameter sweep determined the number of clusters for which the average

minimum Tanimoto similarity within each cluster was at least 50% (N=114 clusters). The highest-scoring compound was selected

from each of the 114 clusters and manually annotated with a literature search. Compounds were discarded if the compound as a

whole or any part of the compound had reported toxicity issues or contained known antibacterial scaffolds and antibacterial func-

tional groups (e.g., sulfonamides, quinolines, benzimidazoles, naphthalenes, indoles). There were repeated scaffolds within the re-

maining 60 compounds so any compoundswith a Tanimoto similarity greater than 50% to at least one other compound in the dataset

were manually deduplicated. Out of the final 37 compounds, we ordered 33 compounds that were available via MolPort; we also or-

dered three compounds within the Broad 800K library that were at least 90% similar to one of the final 37 compounds.

Generation of t-SNE
To generate the t-SNE in Figure S2E, the primary screen and the ML-curated compounds were split into four categories of com-

pounds: non-hits with neither stationary-phase killing nor growth inhibition activity (N=6,699), killing activity only (N=30), growth in-

hibition activity only (N=92), and compounds with both killing and growth inhibition activity (N=75). The sklearn.decomposition115

module was used to perform a PCA on RDKit Fingerprints with radius 2 and length 2,048. The PCA was performed with 2,048 com-

ponents and all other defaults. Then, the PCA components were used as input to a t-SNE via sklearn.manifold115 with two compo-

nents for visualization with all defaults. For the t-SNE with the Broad 800K library (Figure S2A), a random sample (N=50,000) of the

library was taken and a perplexity of 50 was used to accommodate a larger number of points. Plotly express116 was used to make an

interactive t-SNE.

Resazurin-based cytotoxicity assays
HepG2andHEK293 cells fromATCCwere grown inDulbecco’sModifiedEagleMedium (DMEM) supplementedwith 10% fetal bovine

serum and 1% penicillin-streptomycin at 37�Cwith 5% CO2 in a humidity-controlled incubator. The day before the assay,�104 cells

were plated in each well of a black polystyrene 96-well flat-bottom tissue culture-treated plate. Cells were allowed to adhere for 24

hours, then 1 mL of compound in DMSOwas added for a final concentration of 10 mM for all compounds except for the second-round

ML compounds, whichwere tested at 16 mg/mL. After 24 hours, resazurin was added to cells at a final concentration of 0.15mM. After

anadditional 4 hoursof incubation, fluorescencewas readonaSpectramaxM3plate reader at anexcitationwavelength of 550nmand

emission wavelength of 590 nm. Relative viability was calculated by dividing the fluorescence of the experimental well by the fluores-

cence of cells treated with a vehicle (DMSO) control. After removing cytotoxic compounds, it was discovered that one of the ML-pre-

dicted compounds, BRD-K01228321 (labeled with the SMILES string Cl[Pt]Cl in the Broad 800K Library), wasmisannotated. Accord-

ing to the Broad Chemical Biological Informatics Platform, the identity of this compound is cisplatin (SMILES: N[Pt](N)(Cl)Cl), which

was evaluated in the primary screen. The duplicate was removed before evaluating metabolism dependence.

Determination of metabolism dependence
The complete metabolism-dependence assay with semapimod (Figures 4C–4E) was performed according to Zheng et al., 2020.16

Briefly, an overnight culture of Ec BW was diluted 1 in 10,000 in LB broth and grown for 4 hours. Next, cells were spun at 4,000 x

g, 4�C for 15 minutes and washed with PBS three times. Cells were re-suspended in LB, PBS, or 0.1%, 1%, or 10% LB diluted in

PBS and incubated for 2 hours at 37�C, then back diluted in their respective nutrient condition to approximately 106 CFU/mL. Cells

were distributed into 96-well plates with two-fold dilutions of compound for a total volume of 100 mL and incubated at 37�C, 900 rpm

shaking for 3 hours. Plates were washed twice in PBS, then cells were serially diluted 10-fold in PBS and 7 mL was spotted on LB agar

plates for CFU enumeration. Survival data were plotted against intracellular ATP (determined in Zheng et al., 202016) for semapimod

concentrations of 2XMIC and above. As nutrient content correlates with ATP levels, this allows for a comparison of antibiotic efficacy

against cells in low versus high metabolic states.16 The change in survival was then divided by the change in ATP levels for each me-

dia condition (from Zheng et al., 202016), and metabolism-dependence values were determined by performing linear regression on

the survival versus ATP data and taking the negative slope. Compounds that lose efficacy in lowmetabolic conditions have a positive

metabolism dependence, while compounds that gain efficacy in lowmetabolic conditions have a negative metabolism dependence.

For the high-throughput metabolism-dependence determination (Figure 3D), experiments were performed identically as described

above except survival was only determined in PBS (low metabolic condition) or LB (high metabolic condition) and only at a single

concentration of compound (50 mM). The change in cellular survival between LB and PBS was then divided by the change in intra-

cellular ATP, and the negative of the resultant value was taken as the metabolism dependence. Positive metabolism-dependence

values indicate that antibiotic lethality was greater in LB than PBS, whereas negative metabolism-dependence values indicate anti-

biotic lethality was greater in PBS than LB.
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Determination of IC50, LD99.99, and selectivity index
For stationary-phase killing dose-response assays, a minimum of eight compound concentrations were tested with amaximum con-

centration of 200 mM. Ec BWcells were grown to stationary-phase in 1%LB broth diluted in PBS, then compoundswere added for 24

hours, after which cells were serially diluted and plated on antibiotic-free agar for colony enumeration. HepG2 cytotoxicity dose-

response assays were performed using a minimum of eight tested drug concentrations with a maximum concentration of 100 mM

using the resazurin-based cytotoxicity assay described above. Briefly, HepG2 cells were plated at 104 cells/well in DMEM with

10% fetal-bovine serum and 1% penicillin-streptomycin, and the following day compound was added and cells were incubated

for another 24 hours. Next, resazurin was added and after a further 4-hour incubation period, fluorescence was read.

The IC50 was determined using Graphpad Prism (version 9.4.0) using a four-parameter dose-response curve. Log-transformed

CFU values were used to calculate the bacterial killing IC50. For mammalian cytotoxicity dose-response curves, if the IC50 value

was not achievedwithin the tested concentrations, it was imputed at the highest tested concentration of 100 mM. The selectivity index

was calculated by dividing the mammalian IC50 by the bacterial killing IC50. During dose-response testing it was noted that micro-

nomicin no longer retained killing activity, and it was removed from further consideration. The LD99.99 was determined using the

equation:

LD99:99 =

�
F

100 � F

�1=H

IC50

where F is the desired response for killing four logs of stationary-phase bacteria. The Hill slope (H) and IC50 inputs were determined

using Graphpad Prism’s four-parameter dose response curve fit.

Red blood cell hemolysis assay
Rat Sprague Dawley red blood cells (Innovative Research) were spun at 250 x g for 5 minutes at 4�C and washed with PBS until the

supernatant was clear. Cells were then re-suspended to a concentration of 5x108 cells/mL in PBS and added to a 96-well clear poly-

propylene round-bottom plate with two-fold dilutions of compound, to a final volume of 100 mL. 1% TritonX100 served as the positive

control, and DMSO was the negative control. Plates were incubated for 1 hour at 37�C, then centrifuged at 1,500 x g for 5 minutes.

Supernatants were transferred to a new plate, and the optical density at 540 nmwas measured using a Spectramax M3 plate reader.

Percent hemolysis was calculated by first subtracting the optical density of the negative control well from all wells, then dividing the

OD540 of the sample well by the OD540 of the positive control.

Growth inhibition and checkerboard assays
An overnight culture was diluted 1 in 10,000 in fresh LB and distributed into 96-well round-bottom clear polypropylene plates (Corn-

ing) with antibiotic for a total volume of 100 mL. Plates were sealed with AeraSeal membranes (Sigma-Aldrich), then incubated for 24

hours at 37�C with 900 rpm shaking. Finally, plates were read on a Spectramax M3 plate reader (Molecular Devices) at an optical

density of 600 nm.

For checkerboard assays, both antibiotics were added simultaneously in two-fold dilutions to create a checkerboard. FICi was

calculated as follows,

FICi =
MICAB

MICA

+
MICBA

MICB

where MICA and MICB are the MIC of each antibiotic when administered individually, MICAB is the MIC of antibiotic A in combination

with antibiotic B, and MICBA is the MIC of antibiotic B in combination with antibiotic A. If the MIC was not attained, it was imputed at

two-fold the highest tested concentration. An FICi value of <0.5 indicates synergy, a value between 0.5-4 indicates indifference, and a

value >4 indicates antagonism.

NPN membrane permeabilization assay
Ec BW was grown overnight in LB at 37�C with shaking at 300 rpm, then diluted 1:100 in LB and grown to OD600 of 1 in the same

conditions (3 hours). Cells were centrifuged at 4,000 rpm, 4�C for 15 minutes, washed in 5 mM HEPES buffer (Sigma-Aldrich

SRE0065) with 20 mM glucose twice, and resuspended in an equal volume of the HEPES buffer. Next, cells were distributed in a

96-well clear flat-bottom black tissue-culture-treated plates (Corning 3603) with drug and 20 mM NPN for a total volume of

100 mL. Plates were then incubated at room temperature for 1 hour with no shaking. The fluorescence at 355/420 nm (excitation/emis-

sion) was read using a SpectraMaxM3 plate reader with readings taken from the top. NPN uptake percentage was defined according

to Macnair et al. (2018),82 as:

NPN uptake ð%Þ =
ðFobs � F0Þ
ðFmax � F0Þ 3 100%

where Fobs is the fluorescence at a specific concentration of drug; F0 is the initial fluorescence of NPN in the absence of drug; and Fmax

is the fluorescence at the maximum concentration of the drug tested.
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Laurdan membrane fluidity assay
The membrane fluidity determination protocol was adapted from M€uller et al. (2016).117 Ec BW was grown overnight in LB broth at

37�Cwith shaking at 300 rpm, and then diluted 1:10,000 in fresh LB and grown to an OD600 of 0.5 with the same conditions. One mM

laurdan (Sigma-Aldrich 40227) was prepared in 100%DMF (Sigma-Aldrich PHR1553) and stored at -20�C in the dark. Next, 500 mL of

the 1 mM laurdan stock was added to the cells and incubated for 5 minutes at 37�C with shaking at 300 rpm in the dark. Cells were

then centrifuged at 4,000 rpm for 5 minutes, washed four times in PBSwith 0.2% (w/v) glucose, then resuspended in 50 mL PBSwith

0.2% (w/v) glucose. Re-suspended cells were distributed into a 96-well black clear-bottom black tissue-culture-treated plate (Corn-

ing 3603) with two-fold dilutions of semapimod. Tween-20 (Sigma-Aldrich 655204), a known membrane fluidizer,118 served as the

positive control, whereas untreated cells served as the negative control. Plates were incubated at 37�C for 12 minutes, then an

endpoint read was taking using a SpectraMax M3 plate reader with an excitation wavelength of 330 nm and two emission readings

at 460 nm and 500 nm. The laurdan generalized polarization (GP) was calculated with the formula:

GP =
I460 � I500
I460+I500

where I460 indicates the fluorescence intensity at 460 nm and I500 indicates the fluorescence intensity at 500 nm.

Microfluidic imaging
Ec BW was grown overnight in LB at 37�C with shaking at 220 rpm, then diluted 1:1,000 in PBS containing 1% LB in an Erlenmeyer

flask and grown for 24 hours in the same conditions. The following solutions were prepared fresh on the day of imaging:

- Solution 1: PBS containing 1% LB

- Solution 2: PBS containing 1% LB and SYTOX Blue (5 mM)

- Solution 3: a 1:1 mixture of cells and PBS containing 1% LB, SYTOX Blue (5 mM), and 0.2% DMSO (vehicle) or semapi-

mod (25 mM).

The CellASIC ONIX2 platform (MerckMillipore) and the associated bacterial microfluidic plate (B04A-03) were used for microfluidic

imaging, as previously described.76,107 Microfluidic chambers and channels were primed with solution 1 at a flow rate corresponding

to 20 kPa for 30 minutes, then loaded with solutions 2 and 3 in sequence before being transferred to a spinning disc confocal micro-

scope for imaging. Microscopic observation was run overnight for approximately 16 hours in 5-minute intervals at 37�C on a spinning

disc confocal microscope (Andor Dragonfly 200, Oxford Instruments) on a Nikon Eclipse Ti invertedmicroscope using brightfield and

fluorescencewith a 100x NA 1.45 oil objective (Nikon). Time-lapse images were analyzed using theMicrobeJ plugin119 on Fiji.120 Data

shown are representative of 12 different fields of view spread across three biological replicates for vehicle-treated cells, and 15

different fields of view spread across three biological replicates for semapimod-treated cells.

Semapimod evolution protocol
An overnight culture of Ec BW was diluted 1:100 in 400 mL LB in a deep 96-well plate with 0.5x, 1x, 2x, and 4x MIC of semapimod.

Plates were incubated at 37�C, 900 rpm for 24 hours. The following day, the newMICwas then determined, and the culture that grew

at the highest concentration of semapimod was used to inoculate fresh LB.121 This process was repeated every day over the course

of the evolution.

Formutation analysis, 1mL of overnight culture was pelleted and sent to theMicrobial GenomeSequencing Center (MiGS) for DNA

sequencing. Libraries were prepared with the Illumina DNA Prep Kit and IDT 10bp UDI indices, and sequencing was performed on an

Illumina NextSeq 2000 with 2x151 bp reads. Bcl-convert (v3.9.3) was used for demultiplexing, quality control, and adapter trimming.

Reads were aligned to the E. coli BW25113 genome (NCBI CP009273.1) using BWA (v0.7.17).122 Variants were identified using Pilon

(v1.23) with default settings.123 The only mutation identified was a single base pair substitution in pmrB of a G to an A at position

4322809 of the E. coli BW25113 genome, resulting in a mutation of P94Q. The sequencing data generated in this study have

been deposited in the Sequence Read Archive repository under accession code PRJNA1010194. The reference E. coli BW25113

genome used in this study is available in the NCBI database under accession code CP009273.1.

BODIPY-cadaverine displacement assay
Assay media containing 50 mM Tris-HCl (pH 7.4), 2.25 mMBODIPY-cadaverine, and 5.25 mg/mL of either E. coli LPS (Sigma-Aldrich

L3129), K. pneumoniae LPS (Sigma-Aldrich L4268), or P. aeruginosa LPS (Sigma-Aldrich L9143) was added to a black 96-well non-

binding plate with two-fold dilutions of the indicated antibiotic for a final volume of 100 mL. Fluorescence was immediately measured

at an excitation wavelength of 580 nm and an emission wavelength of 620 nm.

Endotoxin binding assay
Ec BWwas grown overnight from single colonies in LB at 37�C with shaking at 300 rpm, then diluted 1:100 in PBS containing 1% LB

and grown overnight again in the same conditions. Cells were then treated with DMSO vehicle (final concentration, 1%), colistin (final

concentration, 10 mg/mL), ampicillin (final concentration, 50 mg/mL), or semapimod (final concentration, 67 mM) and incubated at

37�C with shaking at 300 rpm. After 3 hours of treatment, cells were taken out of incubation for CFU determination and cell lysate
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harvesting. For CFU determination, cells were serially diluted in PBS, plated on LB agar plates, and incubated overnight at 37�C in a

stationary incubator. For cell lysate harvesting, 500 mL of each cell culture was aliquoted, and 500 mL of B-PER II (ThermoFisher

78260) containing 100 mg/mL lysozyme (MilliporeSigma L6876), 5 U/mL DNase (ThermoFisher 90083), and 0.2% lysonase

(MilliporeSigma 71230) was added to each sample. Each sample was then incubated at 37�C for 30 minutes for harvesting. Samples

were centrifuged at 3,720 x g for 10 minutes and the supernatant was collected. Protein concentration was measured using the

Pierce BCA protein assay following themanufacturer’s instructions, and endotoxin concentration wasmeasured using the LAL endo-

toxin quantification kit.

Briefly, Pierce BCA protein reagent was prepared by mixing reagents A and B at a 50:1 ratio. Next, 200 mL of reagent was mixed

with 25 mL of sample in a 96-well clear flat-bottom plate, and samples were incubated for at least 30minutes at 37�C. The absorbance
at 562 nmwas read using a SpectraMaxM3 plate reader, and protein concentrations in samples were quantified by interpolating with

respect to a standard curve generated from standards containing 2,000, 1,500, 1,000, 750, 500, 250, 125, 25, and 0 mg/mL BSA in

PBS. The protein concentration of the B-PER II solution was subtracted from each sample in order to determine the protein concen-

tration arising from bacterial cells.

For endotoxin quantification, endotoxin standards, LAL reagent, and chromogenic substrate were suspended in endotoxin-free

water, and 50 mL of each sample was reacted with 50 mL of LAL reagent for 10 minutes at 37�C in a 96-well clear flat-bottom plate.

Then, 100 mL of chromogenic substrate was added to each reaction. After a final incubation step of at least 6minutes, the absorbance

was read at 410 nm. Endotoxin concentrations in samples were quantified by interpolating or extrapolating with respect to a standard

curve generated from standards containing 1, 0.5, and 0 endotoxin units (EUs) diluted in PBS.

Thermal proteome profiling (TPP)
Ec BWwas grown in LB overnight at 37�Cwith shaking at 300 rpm, and then diluted 1:2,000 and grown to an OD600 of 0.5. Cells were

then spun at 4,000 x g for 5 minutes and resuspended in PBS, followed by lysis on ice in buffer containing 0.8% IGEPAL CA-630

(Sigma-Aldrich I3021-50ML), 50 mg/ml lysozyme (Sigma-Aldrich L6876-5G), 1X Halt protease inhibitor (Life Technologies 87786),

250 U/ml benzonase (Sigma-Aldrich E1014-25KU), and 1 mMMgCl2. The lysate was divided and incubated with 10 mM semapimod

or an equivalent volume of DMSO for 20 minutes at room temperature with gentle agitation. The lysates were split into 120 ml aliquots

in PCR tubes and heated at the following temperatures on two 48-well heat blocks: 40�C, 43.5�C, 47�C, 51.3�C, 54.9�C, 58�C,
60.4�C, 62.5�C, 65.6�C, and 70�C. After 3minutes, the tubeswere removed from the heat blocks andwere chilled on ice for 5minutes.

The lysates were transferred to a TLA-100 rotor and spun at 100,000 x g for 20 minutes at 4�C in a Beckman Ultra MAX benchtop

ultracentrifuge. The soluble protein fraction was separated from the pellet for further processing.

To perform protein cleanup and digestion, concentrations of the 40�C samples were determined with a DC Protein Assay (BioRad

5000116). A volume corresponding to 50 mg of the 40�C sample was used for further analysis. Equivalent volumeswere used from the

remaining temperature range samples. Samples were prepared using a modified version of the SP3 protocol.92,124 Proteins were

reduced with 5 mM Tris(2-carboxyethyl)phosphine (TCEP, Pierce 20490) for 20 minutes at 50�C, and cysteines were alkylated

with 15 mM MMTS (Thermo Fisher Scientific 23011) for 10 minutes at room temperature. Next 500 mg of a 1:1 mix of hydrophobic

and hydrophilic beads (GE Healthcare 65152105050250 and 45152105050250) was added to each sample, followed by a 6x volume

of 100% ethanol to induce bead aggregation. The samples were agitated at 1,000 rpm on a thermomixer for 10 minutes at room tem-

perature. The beads weremagnetically separated, and the supernatant was removed. The beads were washed three times with 80%

ethanol and were then resuspended in 35 ml of 50 mM TEAB (Sigma-Aldrich T7408-100ML) with 2 mg trypsin/LysC protease mix

(Thermo Fisher Scientific A40007). Digestion was performed for 16 hours at 37�C and 1,000 rpm. Peptides were separated from

the bead supernatant using a Dynamag�-2 magnet (Thermo Fisher Scientific 12321D).

Peptides were TMT10plex-labeled according to the manufacturer’s protocol (Thermo Scientific 90111), with the following modi-

fications. Approximately 35 ml of eluate was combined with 100 mg of TMT10plex reagent (Thermo Fisher Scientific 90110) in

15 ml of acetonitrile, for an estimated 1:2 w/w peptide:tag labeling reaction. The labeling proceeded for 1 hour at room temperature

and was quenched for 15 minutes with 5% hydroxylamine (Thermo Fisher Scientific 90115). The samples were then pooled, flash-

frozen, and lyophilized to dryness. Samples were fractionated with the Pierce High pH Reversed-Phase Peptide Fractionation Kit

(Thermo Fisher Scientific 84868), according to the manufacturer’s instructions for TMT-labeled peptides, followed by lyophilization

to dryness.

To acquire mass spectrometry data, the fractions were lyophilized and resuspended in 20 ml of 0.1% formic acid (Thermo Fisher

Scientific 28905) and were analyzed on an Exploris 480 Orbitrap mass spectrometer equipped with a FAIMS Pro source125 con-

nected to an EASY-nLC chromatography system. Peptides were loaded onto a 25 cm EasySpray nanoLC column (Thermo Fisher

Scientific ES902) guarded by a 2 cm Acclaim PepMap 100 guard column (Thermo Fisher Scientific 164946) using an injection volume

of 1 mL. The analytes were separated at 300 nl/minute on a gradient of 1-25% B for 90 minutes, 25-40% B for 30 minutes, 40-95% B

for 10 minutes, 95% B for 10 minutes, and a seesaw gradient of 95–2% B for 2 minutes, 2% B for 2 minutes, 2–98% B for 2 minutes,

98% B for 2 minutes, 98–2% B for 2 minutes, and 2% B for 2 minutes. The orbitrap and FAIMS were operated in positive ion mode

with a positive ion voltage of 1800V; with an ion transfer tube temperature of 270�C; using standard FAIMS resolution and compen-

sation voltages of -50V and -65V; and an inner and electrode temperature of 100�C with 4.6 ml/minute carrier gas. Full scan spectra

were acquired in profile mode at a resolution of 120,000, with a scan range of 350-1200 m/z, automatically determined maximum fill

time, standard AGC target, intensity threshold of 5 x 103, 2-5 charge state, and dynamic exclusion of 30 secondswith a cycle time of 2
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seconds between master scans. MS2 spectra were generated with a HCD collision energy of 36 at a resolution of 30,000 using

TurboTMT settings with a first mass at 110 m/z, an isolation window of 0.7 m/z, standard AGC target, and auto injection time.

Raw data files were analyzed in Proteome Discoverer 2.4 (Thermo Fisher Scientific) to generate peak lists and protein and peptide

IDs using Sequest HT (Thermo Fisher Scientific) and the E. coli K12 (Uniprot UP000000625) protein database. The search included

the following post-translational modifications: dynamic phosphorylation (+79.966 Da; S, T, Y), dynamic oxidation (+15.995 Da; M),

static TMT6plex (+229.163 Da; any N-terminus), static TMT6plex (+229.163 Da; K), and static methylthio (+45.988 Da; C). Reporter

quantification was performed on ions with an average S/N over 10 and co-isolation threshold of 50%. Protein-level quantification was

determined from unique peptides only. Normalization was turned off. Otherwise, default settings were used. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE126 partner repository with the dataset

identifier PXD044230 (https://www.ebi.ac.uk/pride/archive/projects/PXD044230). TMT reporter ion Abundance ratios relative to

the lowest-temperature sample were used as input to the TPP package91 for normalization and curve fitting in R version 4.0.4.127

P-values were calculated using the analyseTPPTR function within Bioconductor’s TPP package using the ‘RobustZ’ method.128

Overexpression strains were sourced from the ASKA library.129 Knockout strains were sourced from the KEIO library.130

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of biological replicates and meaning of error bars can be found in the figure legends. Unless otherwise specified, sig-

nificance was determined with a value of p < 0.05.
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