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Discovery of a structural class of antibiotics 
with explainable deep learning

Felix Wong1,2,3,10, Erica J. Zheng1,4,5,10, Jacqueline A. Valeri1,2,5, Nina M. Donghia5, 
Melis N. Anahtar1, Satotaka Omori1,3, Alicia Li3, Andres Cubillos-Ruiz1,2,5, Aarti Krishnan1,2, 
Wengong Jin6, Abigail L. Manson1, Jens Friedrichs7, Ralf Helbig7, Behnoush Hajian8, 
Dawid K. Fiejtek8, Florence F. Wagner8, Holly H. Soutter8, Ashlee M. Earl1, 
Jonathan M. Stokes1,2,9, Lars D. Renner7 & James J. Collins1,2,5 ✉

The discovery of novel structural classes of antibiotics is urgently needed to address 
the ongoing antibiotic resistance crisis1–9. Deep learning approaches have aided in 
exploring chemical spaces1,10–15; these typically use black box models and do not 
provide chemical insights. Here we reasoned that the chemical substructures 
associated with antibiotic activity learned by neural network models can be identified 
and used to predict structural classes of antibiotics. We tested this hypothesis by 
developing an explainable, substructure-based approach for the efficient, deep 
learning-guided exploration of chemical spaces. We determined the antibiotic 
activities and human cell cytotoxicity profiles of 39,312 compounds and applied 
ensembles of graph neural networks to predict antibiotic activity and cytotoxicity  
for 12,076,365 compounds. Using explainable graph algorithms, we identified 
substructure-based rationales for compounds with high predicted antibiotic activity 
and low predicted cytotoxicity. We empirically tested 283 compounds and found  
that compounds exhibiting antibiotic activity against Staphylococcus aureus were 
enriched in putative structural classes arising from rationales. Of these structural 
classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) 
and vancomycin-resistant enterococci, evades substantial resistance, and reduces 
bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our 
approach enables the deep learning-guided discovery of structural classes of 
antibiotics and demonstrates that machine learning models in drug discovery can  
be explainable, providing insights into the chemical substructures that underlie 
selective antibiotic activity.

The ongoing antibiotic resistance crisis threatens to render current 
antibiotics ineffective and increase morbidity from bacterial infec-
tions. This crisis has been exacerbated by a lack of new antibiotics, 
without which global deaths due to resistant infections are projected 
to reach 10 million per year by 205016. Antibiotic candidates have been 
discovered in the past decade through various approaches based on 
natural product mining2,3, high-throughput screening4, evolution and 
phylogeny analyses5,6, structure-guided and rational design7,8, and in 
silico screens using machine learning1,12–14. Nevertheless, developing 
effective approaches to antibiotic discovery that better leverage the 
large structural diversity of chemical space remains a challenge, and 
novel approaches to antibiotic discovery are urgently needed.

We recently developed a deep learning approach to antibiotic dis-
covery and showed that it identifies potential antibiotics from large 

chemical libraries, resulting in the discovery of halicin1 and abaucin14 
from the Drug Repurposing Hub17 (comprising around 6,000 mol-
ecules) and other antibacterial compounds from approximately 107 
million molecules in the ZINC15 library18. This approach relies on 
Chemprop, a platform for graph neural networks10,11, which are typi-
cally black box models19, or models that are not readily interpreted 
or explained. By definition, interpreting or explaining such models 
reveals the patterns of decision-making steps that the models perform 
to arrive at their predictions (interpretability), or renders such predic-
tions understandable to humans20 (explainability). Here we aimed to 
vastly expand graph neural network models for antibiotic discovery 
by training on large datasets measuring antibiotic activity and human 
cell cytotoxicity, and we hypothesized that model predictions could 
be explained on the level of chemical substructures using graph search 
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algorithms (Fig. 1a). As antibiotic classes are typically defined on the 
basis of shared substructures, we reasoned that substructure identifica-
tion may, by better explaining model predictions, enable the efficient 
exploration of chemical spaces and facilitate the discovery of novel 
structural classes, in lieu of lone compounds.

Models for antibiotic activity
In this study, we focus on discovering structural classes of antibiot-
ics that are effective against S. aureus, a Gram-positive pathogen 
that is resistant to many first-line antibiotics and a major cause of 
difficult-to-treat nosocomial and bloodstream infections21. We first 
screened an original set of 39,312 compounds containing most known 
antibiotics, natural products, and structurally diverse molecules, with 
molecular weights between 40 Da and 4,200 Da, for growth-inhibitory 
activity against a methicillin-susceptible strain, S. aureus RN4220 
(Fig. 1b, Extended Data Fig. 1 and Supplementary Data 1). These com-
pounds were screened for overnight growth-inhibitory activity in 
nutrient-rich medium at a final concentration of 50 μM, and their 
effects were binarized as active or inactive using an 80% normalized 
growth inhibition cut-off, resulting in a total of 512 active compounds 
(1.3% of all compounds).

Using Chemprop, we trained ensembles of graph neural networks 
on our screening data to make binary classification predictions of 

whether or not a new compound will inhibit bacterial growth based 
on its chemical structure. Each graph neural network operates by per-
forming convolution steps that depend on the atoms and bonds of each 
input chemical structure, which is viewed as a mathematical graph with 
vertices (atoms) and edges10,11 (bonds) (Fig. 1a). After successive convo-
lution steps that pool together information from neighbouring atoms 
and bonds, each model generates a final prediction score between  
0 and 1, representing its estimate of the probability that the molecule 
is active. To provide additional data that may improve model perfor-
mance, each model was supplied a list of RDKit-computed molecular 
features for each input (for example, the number of hydrogen donors 
and acceptors and partition coefficient estimates; Supplementary 
Data 1). The prediction scores from multiple models within an ensemble 
were then averaged to improve robustness. Each model was trained 
and validated, then tested, on the same 80%–20% splits of the training 
dataset. For an ensemble of ten models applied to the withheld test 
data, the area under the precision-recall curve (AUPRC) was 0.364, 
indicating good performance while accounting for the imbalance of 
active compounds in the training data (Fig. 1c). We observed decreased 
performance, as measured by the AUPRC for the test set, of alternative 
models including an ensemble of ten Chemprop models without RDKit 
features and the best-performing random forest classifier model based 
on Morgan fingerprints as the molecular representation (Extended 
Data Fig. 2). Although the statistical significance of these differences 
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Fig. 1 | Ensembles of deep learning models for predicting antibiotic activity 
and human cell cytotoxicity. a, Schematic of the approach. Graph neural 
networks predict the chemical properties of more than 109 molecules in silico, 
in contrast to expensive and time-consuming experimental screening of large 
chemical libraries. Here, the growth inhibition activities of 39,312 chemically 
diverse compounds are used to train the model, the model is applied to virtual 
chemical databases comprising 12,076,365 molecules that can be readily 
procured, and compounds with high prediction scores (hits) are analysed 
according to structural class, procured, and tested. This approach can  
be iterated, and the model can be retrained to generate new predictions.  
b, S. aureus RN4220 growth inhibition data for a screen of 39,312 compounds  
at a final concentration of 50 μM. Data are from two biological replicates. 
Active compounds are those for which the mean relative growth is less than 0.2. 

c, Precision-recall curves for an ensemble of ten Chemprop models, augmented 
with RDKit features, trained and tested on the data in b. The black dashed  
line represents the baseline fraction of active compounds in the dataset  
(1.3%). Blue curves and the 95% confidence interval (CI) indicate variation  
from bootstrapping. AUC, area under the curve. d,f,h, HepG2 (d), HSkMC  
(f) and IMR-90 (h) viability data for screens of 39,312 compounds at a final 
concentration of 10 μM. Data are from two biological replicates for each cell 
type. Cytotoxic compounds are those for which the mean relative viability is 
less than 0.9. e,g,i, Precision-recall curves for an ensemble of ten Chemprop 
models, augmented with RDKit features, trained and tested on the data in d,f,h. 
Black dashed lines represent the baseline fractions of cytotoxic compounds in 
the datasets: 8.5% (e); 3.8% (g); 8.8% (i). Blue curves and the 95% confidence 
interval indicate variation from bootstrapping.
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in performance varied (Supplementary Table 1), these findings indicate 
that Chemprop models with RDKit-computed molecular features pro-
duce promising predictions of antibiotic activity and can outperform 
simpler or shallower (that is, random forest) deep learning models.

Models for human cell cytotoxicity
To better identify compounds that are selective against S. aureus, we 
developed orthogonal models that predict cytotoxicity in human 
cells. We first counter-screened our training set of 39,312 compounds 
for cytotoxicity in human liver carcinoma cells (HepG2), human pri-
mary skeletal muscle cells (HSkMCs) and human lung fibroblast cells 
(IMR-90). HepG2 cells are commonly used to study hepatotoxicity and 
general cytotoxicity, whereas HSkMCs and IMR-90 cells may better 
model in vivo toxicity than do immortal cell lines. Cellular viability was 
measured after 2–3 days of treatment with each compound at 10 μM, 
a concentration appropriate to, and widely used for, human cell cul-
tures15. Compound activities were then binarized using a stringent 90% 
cell viability cut-off, resulting in a total of 3,341 (8.5%), 1,490 (3.8%) and 
3,447 (8.8%) compounds classified as cytotoxic for HepG2 cells, HSk-
MCs and IMR-90 cells, respectively, and of the 512 active antibacterial 
compounds, 306 were non-cytotoxic for all three cell types (Fig. 1d,f,h 
and Supplementary Data 1). As above, these data were used to train 
binary classification models that predict the probability of whether 
or not a new compound is cytotoxic to HepG2 cells, HSkMCs or IMR-
90 cells based on the compound’s chemical structure. For ensembles 
of 10 Chemprop models trained and validated, then tested, on the 
same 80%–20% splits of the data, the AUPRC values for the HepG2, 
HSkMC and IMR-90 models were 0.176, 0.168 and 0.335, respectively 
(Fig. 1e,g,i). This indicated positive, but less predictive, performance 
than our models for antibiotic activity, a result that may arise owing to 
our more stringent criteria for declaring compounds as non-cytotoxic. 
The cytotoxicity models were most predictive for IMR-90 cells, which 

may arise from having more cytotoxic compounds—and more learning 
examples—against this cell type in the screening data. Similar to our 
findings for antibiotic activity, for cytotoxicity of all cell types we found 
decreased AUPRCs using alternative models, including an ensemble of 
ten Chemprop models without RDKit features and the best-performing 
random forest classifier models using Morgan fingerprints (Extended 
Data Fig. 3), with varying statistical significance of these differences in 
performance (Supplementary Table 1). Further benchmarking using 
two Tox21 datasets22 and a human metabolites database23, as well as 
experimental testing of 190 compounds, support that these models 
can productively filter out cytotoxic compounds (Supplementary 
Note 1 and Methods).

Filtering and visualizing chemical space
Satisfied with the performance of our models, we retrained ensembles 
of 20 Chemprop models with the entirety of each of the training data-
sets, resulting in four ensembles predicting antibiotic activity, HepG2 
cytotoxicity, HSkMC cytotoxicity and IMR-90 cytotoxicity. We applied 
the ensembles to predict the antibiotic activities and cytotoxicity pro-
files of 12,076,365 compounds, comprising 11,277,225 compounds from 
the Mcule purchasable database24—in which most compounds can be 
readily purchased without recourse to in-house chemical synthesis—
in addition to 799,140 compounds from a Broad Institute database 
(Fig. 2a–e and Supplementary Data 2). We filtered chemical compounds 
of interest on the basis of their predicted antibiotic activities and cyto-
toxicity, retaining at first only the 3,004 compounds with antibiotic 
prediction scores greater than 0.4 from the Mcule purchasable database 
and—owing to better access to compounds in this database—the 7,306 
compounds with antibiotic prediction scores greater than 0.2 from the 
Broad Institute database (Fig. 2a,b). We then retained only those com-
pounds with HepG2, HSkMC and IMR-90 cytotoxicity prediction scores 
less than 0.2, a stringent filter resulting in 3,646 compounds—1,210 
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Fig. 2 | Filtering and visualizing chemical space. a, In silico filtering 
procedure. Trained graph neural networks are applied to make predictions  
of antibiotic activity for 12,076,365 compounds from the Mcule purchasable 
database and a Broad Institute database. Compounds with high (>0.4 for the 
Mcule database, and >0.2 for the Broad Institute database) prediction scores 
for antibiotic activity are retained, and similar graph neural networks are 
applied to predict the cytotoxicity of these compounds for HepG2 cells, 
HSkMCs, and IMR-90 cells. Compounds with low (<0.2) cytotoxicity prediction 
scores for all cell types are retained, then computationally tested for the 
presence of promiscuously reactive or unfavourable chemical substructures 
(PAINS and Brenk substructures). Finally, the remaining compounds are 

filtered for structural novelty, as defined by a Tanimoto similarity score of less 
than 0.5 with respect to any active compound in the training dataset and lack of 
a quinolone bicyclic core or β-lactam ring. b, Rank-ordered antibiotic activity 
prediction scores of all 12,076,365 compounds for which antibiotic activity was 
predicted. c–e, Rank-ordered HepG2 (c), HSkMC (d) and IMR-90 (e) cytotoxicity 
prediction scores of 10,310 compounds with high antibiotic activity prediction 
scores. f, t-SNE plot of compounds with high and low antibiotic prediction 
scores, in addition to compounds in the training set. The plot shows the chemical 
similarity or dissimilarity of various compounds, and active compounds in the 
training set are seen to largely separate compounds with high prediction 
scores from compounds with low prediction scores.
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compounds from the Mcule purchasable database and 2,436 com-
pounds from the Broad Institute database—0.03% of all compounds 
assessed (Fig. 2a,c–e).

In contrast to compounds passing the aforementioned filters (‘hits’), 
we consolidated 3,355 compounds with low (less than 10−6) antibiotic 
prediction scores (‘non-hits’). These prediction score cut-offs were 
chosen to generate computationally tractable groups of around 103 
compounds, but the following results are general across different 
prediction score cut-offs (Extended Data Fig. 4). We visualized the 
chemical space using t-distributed stochastic neighbour embedding25 
(t-SNE) applied to Morgan fingerprints as the molecular representa-
tion. This revealed that hits were structurally dissimilar to non-hits, 
and the training set, which includes compounds from diverse classes 
of known antibiotics, largely separates non-hits from hits (Fig. 2f). Of 
note, as indicated by t-SNE and our subsequent substructure-based 
analyses (Fig. 3), multiple hits were structurally dissimilar to active 
compounds in the training set, suggesting that our models generalize 
to unseen chemical spaces.

Rationales predict antibiotic classes
As graph neural networks make predictions on the basis of the informa-
tion contained in the atoms and bonds of each molecule, we hypoth-
esized that compounds with high antibiotic prediction scores contain 
substructures (‘rationales’) that largely determine their scores26.  
Identifying such rationales would provide guarantees of model explain-
ability for the hits of interest: namely, the antibiotic prediction score 
of any hit would be directly attributable to its rationale, such that 
the rationale—when viewed as a molecular input to Chemprop in its 
own right—possesses a high antibiotic prediction score. The ability to 
classify such rationales would render the prediction from Chemprop 

more understandable by humans and enable subsequent machine 
learning-guided substructure analyses.

Given our trained Chemprop models, we computed such rationales 
by utilizing graph-based search algorithms. These graph search algo-
rithms enabled us to determine, in the context of a single molecule, 
the smallest rationale with a prespecified threshold number of atoms 
identified to have positive predictive value (Fig. 3a, Extended Data Fig. 5 
and Methods). We aimed to determine rationales containing at least 
eight atoms and exhibiting high antibiotic prediction scores greater 
than 0.1 using Monte Carlo tree searches, which have been used to 
inform deep learning models including AlphaGo27. Monte Carlo tree 
searches consist of selecting an initial substructure, iteratively pruning 
the substructure, and selecting for deletions resulting in high predic-
tion scores when the subgraphs are passed as inputs into Chemprop 
(Fig. 3a, Extended Data Fig. 5 and Methods). This graph search outputs 
a rationale explaining a threshold amount (at least 0.1) of the predic-
tion score of the compound if it converges; otherwise, no rationale is 
found, and the hit of interest is not explainable in this way. Although 
other approaches centred on maximal common substructure (MCS) 
identification have been used to study the chemical motifs shared 
among groups of compounds in high-throughput screens and chem-
informatics analyses28, we found that MCS-based approaches did not 
necessarily yield substructures that were diagnostic of high predicted 
antibiotic activity when applied to deep learning model predictions 
(Extended Data Fig. 6 and Supplementary Note 2).

We first validated that the calculation of rationales could recapitulate 
the discovery of structural classes of antibiotics that were not found 
in the training data using leave-one-out analyses with quinolones and 
β-lactams, two structural classes that were highly enriched in the train-
ing data. We trained ensembles of Chemprop models similarly to our 
final models for antibiotic activity, but with all 31 or 505 compounds 
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containing the quinolone bicyclic core or β-lactam ring, respectively, 
withheld from the training. When the corresponding trained models 
were applied to the withheld test sets and the prediction score thresh-
old was set to 0.2, active quinolone and β-lactam compounds were 
predicted to have antibacterial activity, with modest true positive rates 
of 0.294 and 0.060, respectively; additionally, for a subset of these com-
pounds, the models produced rationales that contain the relevant core 
rings (Supplementary Data 2). These analyses underscore the ability of 
our approach to identify new antibiotic scaffolds, including those not 
previously seen by the model during training, based on the arrange-
ments of molecular atoms and bonds in chemical structures. Notably, 
similar results cannot be accomplished using traditional quantitative 
structure–activity relationship (QSAR) analyses, which assume a priori 
knowledge of an active scaffold and aim to design chemical analogues 
containing the scaffold29.

Applying this rationale analysis to the filtered hits emerging from 
our full model, we computed rationales for 380 out of the 3,646 hits 
(10.4%). As expected, many rationales coincided with known frag-
ments of structural classes, including the quinolone bicyclic core and 
the cephalosporin and β-lactam rings (Fig. 3b, Extended Data Fig. 6 
and Supplementary Data 2). We also found rationales that were not 
associated with any known antibiotic classes. We therefore aimed to 
better filter structurally novel hits of interest and investigate their 
corresponding rationales.

Novel filtered substructures
Building on the emergence of known antibiotic classes from our analy-
ses and the ability of graph-based rationales to predict substructures 
diagnostic of high antibiotic prediction scores (Fig. 3a,b and Extended 
Data Fig. 5), we sought to identify structurally novel antibiotic classes 
predicted by our models. To consider chemical structures with favour-
able medicinal chemistry properties, we removed all hits containing 
PAINS and Brenk alerts30,31, which refer to substructures that may be 
promiscuously reactive, mutagenic or pharmacokinetically unfavour-
able. This narrowed down the 3,646 predicted hits to 2,209 hits (Fig. 2a). 
Next, we focused on procuring compounds dissimilar to those in the 
training set. We computed the maximal Tanimoto similarity of each 
hit to any active compound in the training set and shortlisted hits with 
maximal similarity scores ≤0.5 as a rudimentary cut-off (Fig. 3c), as well 
as those not containing a β-lactam ring or a quinolone bicyclic core. 
This yielded a final set of 1,261 hits, of which 162 were from the Mcule 
purchasable database and 1,099 were from the Broad Institute database 
(Fig. 2a). For this more focused set of hits, our rationale calculations 
revealed that 186 hits (14.8%) possessed rationales (Supplementary 
Data 2).

In order to leverage these rationales for clear predictions of structural 
classes, we reasoned that studying the chemical scaffolds shared across 
rationales would highlight the most salient predictions of structural 
classes. This is especially useful for down-sampling, as typical ration-
ales possess large numbers (more than 17) of atoms and differ from 
each other by minor modifications. We computationally identified 
chemical scaffolds with at least 12 atoms that were conserved across 
rationales (see Methods for details). With this approach, we found that 
16 of the 186 hits with rationales (8.6%) could be grouped using 5 distinct 
scaffolds—G1–G5 (Fig. 3d)—with each group containing at least 2 hits 
with associated rationales. Of note, three of the five scaffolds were 
chlorine-containing, suggesting that our models view the presence 
of a chlorine atom in these chemical contexts as an important factor 
influencing antibiotic activity.

Owing to the tractable number of hits remaining from our filter-
ing steps and analyses, we directly tested our model predictions 
by procuring nine hits associated with the rationales in groups 
G1–G5. As a positive control, we procured 12 cephalosporin- and 
quinolone-like hits, which shared common substructures with 

cephalosporin- and quinolone-containing rationales (Extended 
Data Fig. 6). For comparison, we also procured 45 hits (out of the 
filtered 1,261 hits) with computed rationales that were not associ-
ated with G1–G5, 187 hits (out of the filtered 1,261 hits) with no com-
puted rationale, and 30 structurally dissimilar compounds with 
low (less than 0.1) prediction scores. This approach resulted in a set 
of 283 compounds (Fig. 3e and Supplementary Data 2), which we  
experimentally tested.

A structural class of antibiotics from rationales
Testing for growth inhibition, we found that 4 out of the 9 procured 
hits (44%) associated with groups G1–G5 exhibited activity against  
S. aureus, with minimal inhibitory concentrations (MICs) ≤ 32 μg ml−1 
(Fig. 3f,g, Supplementary Table 2 and Extended Data Fig. 7). None of 
the 45 procured hits with rationales not associated with G1–G5, and 
17 of the 187 procured hits with no rationale (9.1%), exhibited activ-
ity (Fig. 3e and Supplementary Table 2). The working true discovery 
rates associated with all tested structurally novel hits with rationales 
(7.4%) and across all tested structurally novel hits (8.7%) were higher 
than the fraction of active compounds in our training set (1.3%), 
suggesting the utility of our approach when generalizing to diverse 
chemical spaces. These values suggest that compound testing efforts 
can be as productive as testing one-off hits when they focus on the 
structural classes predicted by deep learning models. Additionally, 
as expected, all 12 cephalosporin and quinolone-like hits inhibited 
growth and exhibited antibiotic cross-resistance in methicillin-resistant 
S. aureus (MRSA, strain USA300), confirming their probable mech-
anisms of action (Supplementary Table 2). Consistent with a low 
false omission rate for the model, none of the 30 procured com-
pounds with low prediction scores inhibited the growth of S. aureus  
(Fig. 3e).

Of the four hits found to be active against S. aureus associated 
with G1–G5, no compound had previously been studied against the 
pathogens considered here (Supplementary Note 3), and together, 
these hits are associated with three rationale groups—G1, G2 and G5 
(Fig. 3d and Extended Data Fig. 7). Of note, G2 was associated with 
two validated (active) hits (compounds 1 and 2; Fig. 3f), indicating 
that this rationale group may represent an active structural class, 
and compounds 1 and 2 simultaneously satisfy the Lipinski’s rule of 
five32 and the Ghose criteria33 for ‘druglikeness’, suggesting favourable 
oral bioavailability and druglike properties for further development 
(Supplementary Table 3). Additional properties, including O’Shea and 
Moser’s physicochemical observations for antibiotics34 (Supplemen-
tary Table 3), may further narrow down chemical space and inform 
subsequent development, especially when considering candidates 
from larger libraries such as ZINC15 (ref. 18) and specific routes of 
administration. Although we have not filtered our hits based on these 
or other physicochemical properties, we note that the validated hits 
were smaller and less polar than typical Gram-positive antibiotics  
(Supplementary Table 3).

Performing additional growth inhibition experiments, we found 
that compounds 1 and 2, as well as nearly all of the other structurally 
novel validated hits, were also active against MRSA USA300 with MICs 
comparable to their methicillin-susceptible analogues (Fig. 3g and Sup-
plementary Table 2). Counter-screening all structurally novel validated 
hits for cytotoxicity against HepG2 cells, HSkMCs, and IMR-90 cells, 
we found that 20 out of the 21 structurally novel, validated hits were 
non-cytotoxic at a concentration of 10 μM. Compounds 1 and 2 exhib-
ited half-maximal inhibitory concentration (IC50) values ≥ 128 μg ml−1 
for all cell types, indicating robust selectivity against S. aureus (Fig. 3g 
and Supplementary Table 2). By contrast, the therapeutic windows of 
all the other structurally novel validated hits, including the two other 
validated hits associated with G1 and G5, were less than those of com-
pounds 1 and 2 (Fig. 3g and Supplementary Table 2).
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As a final empirical filter, we measured the S. aureus MICs of the 
validated hits associated with G1–G5 in medium supplemented with 
10% fetal bovine serum as a control for binding of the compounds to 
serum proteins (Fig. 3g). We found that the MICs of compounds 1 and 2 
increased 4- to 8-fold to 16 μg ml−1, but remained substantively (≥8-fold) 
less than their human cell IC50 values; by contrast, the MICs of the other 
two compounds increased to ≥64 μg ml−1 in serum (Extended Data 
Fig. 7). Together with their favourable MIC values in serum-free medium 
(≥64-fold less than their human cell IC50 values), these observations 
suggested that compounds 1 and 2 were the most selective of all the 
validated hits and merited further study.

Mechanism of action and resistance
Compounds 1 and 2 share an N-[2-(2-chlorophenoxy)ethyl]aniline core, 
which was predicted to be diagnostic of antibiotic activity based on 
our Monte Carlo tree search-based rationales (Fig. 3f). The common 
substructure suggests that the compounds may share a similar mecha-
nism of action, which we studied using traditional microbiological 
assays. Time-kill experiments for log-phase S. aureus RN4220 and 
Bacillus subtilis 168 showed that treatment with both compounds at 
supra-MIC concentrations led to decreases in the number of colony 
forming units (CFU) per ml compared with non-treatment after 4 h, 
which was typically similar to, but less bactericidal, than vancomycin 
treatment (Fig. 4a). Moreover, MRSA USA300 exhibits at least 16-fold 
increased MICs relative to the methicillin-susceptible strain for ampicil-
lin, ciprofloxacin and tetracycline but exhibits only twofold increased 
MICs for compounds 1 and 2 (Extended Data Fig. 8), suggesting that 
these compounds may not share similar mechanisms of action with 
β-lactams, fluoroquinolones and tetracyclines. These compounds 
were specific against Gram-positive bacteria, as they did not inhibit the 
growth of Escherichia coli, Acinetobacter baumannii or Pseudomonas 

aeruginosa, with the exception of permeable or efflux-impaired E. coli 
(lptD4213 and ΔtolC832), for which both compounds exhibited MICs 
of 2 μg ml−1 (Supplementary Tables 2 and 4).

We therefore further investigated the mechanisms of action of these 
compounds through the evolution of resistant mutants. We serially 
passaged S. aureus RN4220 treated with each of compounds 1 and 2 in 
liquid culture, and found that MICs remained essentially unchanged 
after 30 days (Fig. 4b). By contrast, cultures exhibited at least 64-fold 
increased MICs to ciprofloxacin after 30 days (Fig. 4b). Additionally, 
in suppressor mutant generation experiments, we plated S. aureus 
RN4220 at high inocula on solid medium in the presence of supra-MIC 
levels of compounds 1 and 2, and found that colonies grew at 4× but 
not 8× MIC after 5 days (Fig. 4c), suggestive of low-level resistance 
(frequency of resistance at 4× MIC, ~10−8). For comparison, suppres-
sor mutants grew in ciprofloxacin at concentrations corresponding 
to 4× and 8× MIC (Fig. 4c, frequency of resistance at 4× and 8× MIC, 
approximately 10−6 and 10−7, respectively). To study these cells further,  
we subcultured cells from the endpoints of both experiments and 
selected individual colonies in biological duplicate for sequencing. 
Whole-genome sequencing of these colonies indicated that the main 
mutations to arise were inconsistent between colonies and largely in 
genes involved in osmoregulation and virulence pathways, as opposed 
to mutations arising consistently across different colonies (as in DNA 
topoisomerase for ciprofloxacin; Supplementary Data 3). Taken 
together, these findings suggest that compounds 1 and 2 can evade  
substantial resistance.

To investigate the phenotypic effects of compounds 1 and 2 further, 
we combined microscopic observation with cellular physiology meas-
urements. As we have previously done for other classes of antibiotics35–39,  
we first performed single-cell imaging; here, we focused on B. subtilis, 
whose rod-like shape exhibits more salient morphological changes 
than does S. aureus. Single-cell imaging revealed that cells treated 
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S. aureus RN4220 was passaged in liquid LB every 24 h for 30 days. Two biological 
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168 during treatment with DMSO (1%), valinomycin and nigericin (approximately 
1 mg ml−1), and compounds 1 and 2 (32 μg ml−1). Cells were treated at 300 s 
(vertical lines). Results shown represent three biological replicates. a.u., 
arbitrary units. f, Optical density (OD600) measurements from S. aureus RN4220 
cultures incubated overnight with compounds 1 and 2 at different medium pH 
values. Each growth curve shows one biological replicate, and results shown 
represent two biological replicates. g, MIC values of compounds 1 and 2 against 
CDC MRSA and VRE isolates, shown on a log scale. Bars show the means of two 
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isolates. All other bars correspond to MRSA isolates.



Nature | www.nature.com | 7

with compound 1 or 2 lysed (Fig. 4d), consistent with the bacteri-
cidal activity of these compounds (Fig. 4a) and suggestive of a cell 
envelope-targeting mechanism of action. To study this suggestion 
further, we used DiSC3(5), a dye sensitive to the membrane proton 
motive force (PMF), in bulk culture experiments. In S. aureus and  
B. subtilis, the PMF is generated by two components, the membrane 
potential, ΔΨ, and the pH gradient, ΔpH, across the membrane, and 
bacterial cultures treated with DiSC3(5) display increases in fluores-
cence when ΔΨ is disrupted and decreases in fluorescence when ΔpH 
is disrupted40. Treatment with both compounds 1 and 2 resulted in 
fluorescence quenching of DiSC3(5) in S. aureus and B. subtilis, indi-
cating that both compounds disrupt ΔpH (Fig. 4e). Furthermore, we 
found that the growth-inhibitory effects of both compounds were 
antagonized by higher medium pH levels, which result in increases in 
ΔpH1 (Fig. 4f). Together, these findings establish dissipation of ΔpH 
as a primary mechanism of action of compounds 1 and 2. Notably, 
although halicin has been shown to exhibit a similar mechanism of 
action1 and bacterial membrane-sensitive mechanisms of action have 
often been de-prioritized in antibiotic drug discovery owing in part 
to potential lack of selectivity41, compounds 1 and 2 selectively target 
Gram-positive bacteria over Gram-negative bacteria and human cells. 
Additional studies measuring DiSC3(5) in S. aureus cells and leveraging 
Chemprop to predict PMF alterations suggest that the mechanism of 
action of compounds 1 and 2 might be accurately predicted from their 
chemical structure (Methods and Supplementary Data 4).

Given that compounds 1 and 2 exhibit a structural scaffold dis-
tinct from those of known antibiotics and dissipate ΔpH, we further 
expected that these compounds would be active against diverse 

antibiotic-resistant pathogens. We found that both compounds were 
active (MIC ≤ 16 μg ml−1) against 40 US Centers for Disease Control and 
Prevention (CDC) isolates of different bacterial species containing 
various resistance factors, including vancomycin, aminoglycoside/
tetracycline and oxazolidinone resistance (Fig. 4g and Supplementary 
Table 4). Across these isolates, the median MICs for compounds 1 and 
2 were 4 and 3 μg ml−1, respectively, and both compounds exhibited 
MIC ranges of 2 to 16 μg ml−1. Of note, both compounds were active 
against vancomycin-resistant enterococci (VRE), a serious antimicro-
bial resistance threat42 (Fig. 4g and Supplementary Table 4). Moreover, 
time-kill experiments indicate that both compounds were effective 
against B. subtilis persisters, resulting in the eradication of a log-phase 
culture after treatment with kanamycin (Extended Data Fig. 8). These 
findings suggest that compounds 1 and 2 can overcome common 
resistance determinants and antibiotic tolerance in Gram-positive 
bacteria.

Toxicology, chemical properties and in vivo efficacy
Given the favourable in vitro selectivity of compounds 1 and 2 (Fig. 3g), 
we investigated whether these compounds may be useful for the 
treatment of Gram-positive pathogens in clinical contexts. We first 
investigated their toxicological and chemical properties, including 
haemolysis, metal ion binding, genotoxicity and chemical stability. 
Haemolysis is a severe toxic liability; metal iron binding may suggest 
compound reactivity, an undesirable property; genotoxicity often 
arises from alkylating agents; and chemical stability is predictive of 
compound availability in solution. We found that compounds 1 and 2 
are non-haemolytic, do not chelate iron, are not genotoxic, are chemi-
cally stable in solutions of various pH, and are non-toxic when applied 
topically (1%) to ex vivo human skin and injected intraperitoneally 
(80 mg kg−1) in mice (Extended Data Fig. 9 and Methods).

We next investigated the efficacy of compound 1 in the treatment 
of MRSA when administered topically and systemically to mice. We 
tested topical administration in a neutropenic mouse superficial skin 
infection1,6,14 model using an aminoglycoside and tetracycline-resistant 
clinical isolate of MRSA. Treatment with compound 1 decreased mean 
bacterial load by approximately 1.2 logs relative to vehicle (Fig. 5a), 
demonstrating efficacy similar to that of complestatin and corbomycin, 
two Gram-positive antibiotics recently discovered through phylogeny 
and evolution analyses6. We further tested systemic administration 
of compound 1 in a mouse neutropenic thigh infection model43 using 
an oxazolidinone-resistant clinical isolate of MRSA. Treatment with 
compound 1 at 80 mg kg−1 significantly decreased mean bacterial load 
by around 1.2 logs relative to vehicle treatment (Fig. 5b). The efficacy of 
compound 1 in a thigh infection model indicates that compounds 1 and 
2, and structural analogues thereof, represent a promising chemical 
series for development as novel antibiotic candidates. Indeed, struc-
ture–activity relationship analyses indicate that the structure–activity 
space of our rationale of interest is not flat, supporting the sugges-
tion that compounds 1 and 2 hold promise for further optimization 
(Extended Data Fig. 10 and Supplementary Note 4).

Discussion
The need to discover novel structural classes of antibiotics is pressing 
given the antibiotic resistance crisis. This challenge has manifested in 
the 38-year interval between the introduction of the fluoroquinolone 
class of antibiotics in 1962 and the next new structural class, the oxa-
zolidinones, in 200044. In the present study, we identified putative 
structural classes of antibiotics using graph-based explanations of 
deep learning model predictions of antibiotic activity and cytotoxicity 
in a space of 12,076,365 compounds. Our approach revealed multiple 
compounds with antibiotic activity against S. aureus. Of these, we found 
that one structural class exhibits high selectivity, overcomes resistance, 
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possesses favourable toxicological and chemical properties, and is 
effective in both the topical and systemic treatment of MRSA in mouse 
infection models. Mechanistic and structure–activity relationship 
analyses additionally suggest that this structural class can be further 
optimized for higher selectivity against Gram-positive pathogens and 
increased permeability against Gram-negative pathogens.

This work demonstrates a deep learning approach to discover-
ing structural classes of antibiotics, one that systematically builds 
on predictions of lone compound hits and enables the efficient, 
substructure-based exploration of vast chemical spaces. In addition 
to down-sampling chemical space, a useful feature of our approach is 
the ability to automate the identification of unprecedented structural 
motifs, particularly in the context of deep learning models. This capa-
bility provides a source of chemical novelty that can suggest chemi-
cal spaces to explore and productively augment current discovery 
pipelines, for instance, by generating chemical fragments of inter-
est for de novo design efforts. Importantly, this capability cannot be 
accomplished using alternative approaches, such as traditional QSAR 
analyses, that build on known scaffolds and do not identify novel scaf-
folds based on generalizing the patterns of molecular atoms and bonds 
in chemical structures29. We anticipate that a better understanding of 
graph-based rationale predictions could aid the discovery and design 
of additional, much-needed classes of antibiotics—for instance, those 
active against Gram-negative bacteria—as well as drug classes that 
target other biological processes and diseases, including anti-viral 
and anti-cancer drugs.

An important implication of the present study is that deep learning 
models in drug discovery can be made explainable. Indeed, a funda-
mental limitation of the black box models that are commonly used in 
machine learning has been that such models typically do not provide 
information into the underlying decision-making processes20. Yet, 
model explainability may lead to generalizable insights that could bet-
ter inform the use and development of next-generation approaches to 
exploring chemical spaces. Our study demonstrates that graph neural 
networks can be better understood and explained using graph-based 
searches for chemical substructure rationales that recapitulate model 
predictions. This provides meaningful chemical insights into what was 
learned by a particular model or ensemble of models. We anticipate 
that future work will build on this and similar approaches45,46 to further 
analyse and understand the predictions generated by deep learning 
models, for instance by using methods centred on perturbing model 
inputs47 for additional tests of explainability, as well as perturbing 
neural network structure for interpretability.

The approach presented here—which includes in silico predictions 
of compound cytotoxicity and stringent medicinal chemistry filtering 
steps that might inform work in other areas of drug discovery—could be 
further refined to consider more detailed representations of chemical 
space and factors important to antibiotic activity, such as protein bind-
ing in serum. By iterating the tasks of data generation, model retraining 
and substructure identification, more complete representations of 
chemical space may be constructed, and promising predictions may 
be better identified and triaged. The discovery of structural classes 
using explainable deep learning could facilitate the process of iden-
tifying and optimizing potential leads by focusing on key scaffolds of 
interest, with which we may begin to efficiently explore novel chemical 
spaces and gain specific insights into the chemical substructures that 
underlie biological activity.
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Methods

Deep learning model
The deep learning approach used in this work builds on that applied  
in ref. 1. For each compound, RDKit was used to generate a graph-based 
molecular representation from the compound’s simplified molecular- 
input line-entry system (SMILES) string. A feature vector for each 
atom and bond in the compound was generated based on the follow-
ing computable features: atom features include the atomic number, 
number of bonds for each atom, formal charge, chirality, number 
of bonded hydrogen atoms, hybridization, aromaticity and atomic 
mass; bond features include the bond type (single, double, tripe, 
or aromatic), conjugation, ring membership, and stereochemistry. 
The model then implements the bond-based message-passing con-
volutional neural network described in refs. 1,11, which builds on the 
atom-based message-passing approach developed in ref. 10. Here, each 
message (a real number) associated with a bond is updated by summing 
the messages from neighbouring bonds, concatenating the current 
bond’s message with the sum, and then applying a single neural net-
work layer with a nonlinear activation function. After a fixed number of 
message-passing steps, the messages across the molecule are summed 
to produce a final message representing the molecule. This message is 
passed through a feed-forward neural network that outputs a prediction 
of the compound’s activity. For models predicting antibiotic activity, 
the final output is a real number between 0 (does not inhibit bacterial 
growth) and 1 (inhibits bacterial growth), describing the probability 
that the compound inhibits growth of S. aureus RN4220. For models 
predicting cytotoxicity, the final output is a real number between 0 
(is not cytotoxic) and 1 (is cytotoxic), describing the probability that 
the compound is cytotoxic to HepG2 cells, HSkMCs, or IMR-90 cells. 
For models predicting proton motive force-altering activity, the final 
output is a real number between 0 (does not alter the proton motive 
force) and 1 (alters the proton motive force), describing the probability 
that the compound either increases or decreases DiSC3(5) fluorescence 
in S. aureus RN4220.

Model optimization
Building on ref. 1, three model optimizations were employed to improve 
model performance. First, 200 additional molecule-level features 
computed with RDKit, as summarized in Supplementary Data 1, were 
added to the graph-based representation of each compound. This 
step was performed in order to provide additional information about 
global properties of each compound, which the local message-passing 
approach may not encapsulate. Second, we used hyperparameter 
optimization in order to select best-performing hyperparameters 
for each antibiotics model. For all Chemprop models with RDKit fea-
tures predicting antibiotic activity, a limited grid search was used to 
find hyperparameters resulting in good performance; the parameter 
search ranges used are indicated in Supplementary Table 5. The same 
hyperparameters were used for the Chemprop models without RDKit 
features and without further optimization. For random forest classifiers 
based on Morgan fingerprints (radius = 2 and number of bits = 2,048), 
we used an exhaustive grid search in the preselected region of hyperpa-
rameter space indicated in Supplementary Table 5. We note here that, 
in contrast to our Chemprop embedding (which produces vectors of 
dimension NF, where N is the number of atoms in a molecule and F is the 
number of features), the Morgan fingerprint representation encodes 
only a count of F substructures and produces vectors of dimension F; for 
this reason, Morgan fingerprints are better suited as inputs to random 
forest models and the t-SNE analyses described below. For all Chemprop 
models predicting cytotoxicity, a more limited grid search suggested 
that the same hyperparameters as those for Chemprop models pre-
dicting antibiotic activity were suitable, and no further optimization 
was performed. For all models, the final hyperparameters used are 
tabulated in Supplementary Table 5. Finally, we used ensembling to 

increase the robustness of the model predictions. For each Chemprop 
model, 20 models were trained on a different random split of the train-
ing data. For benchmarking, the highest-scoring 10 models, according 
to the AUPRC on the withheld test set, were used in the ensemble. For 
predictions, all 20 models were used in the ensemble. We note here 
that training for all final models was performed using data from the full 
screening dataset of 39,312 compounds; requirements for structural 
novelty were enforced after making predictions (as described below), 
as opposed to removing known structural motifs from model training.

Model evaluation
Screening data for 39,312 compounds were acquired experimentally, 
as described below. To evaluate model performance using the AUPRC, 
the training dataset was partitioned, such that 80% of the compounds 
(~31,647 compounds) were reserved for training and validation and 20% 
of the compounds (~7,911 compounds) were withheld for testing and 
calculation of PRCs. Active compounds in each group were distributed 
similarly as in the overall dataset (1.3% for antibiotic activity, 8.5% for 
HepG2 cytotoxicity, 3.8% for HSkMC cytotoxicity, and 8.8% for IMR-90 
cytotoxicity). For each Chemprop model, training was performed for 30 
epochs using random 80%:10%:10% training:validation:testing splits of 
the training subset, with each model being assigned a different random 
seed. All models were then pooled together to complete an ensemble. 
The ensemble of models was then applied to the withheld testing subset,  
and prediction scores of the ensemble were taken as the average of the 
prediction scores of all models in the ensemble. Random forest classi-
fiers were trained using the software package scikit-learn. Bootstrap-
ping with 100 subsamples, where each subsample had size equal to 
the test set, was used to calculate 95% AUPRC confidence intervals and 
variations of PRCs. The area under the receiver operating characteristic 
curve (AUROC) values shown in Supplementary Table 1 were calculated 
using the sklearn package in Python, and exact P values for DeLong’s 
test of the statistical significance of the difference in AUROC values48 
were calculated using a Python implementation49.

After selection of the best-performing type of model based on 
our benchmarks (for each predicted output property, an ensemble  
of Chemprop models with RDKit features), 20 models were retrained on 
the entire training dataset and applied to make predictions on a total of 
12,076,365 compounds. While previous work has used a similar model 
for E. coli to predict the antibiotic activity of 107 million molecules in 
the ZINC15 database18, here we were interested in assessing compounds 
that could be readily procured, without recourse to in-house or special-
ized chemical synthesis. We therefore applied the final models to the 
entire Mcule purchasable database of 11,277,225 compounds (version 
June 2020)24, combined with an in-house database of 799,140 com-
pounds from the Broad Institute. Prediction score thresholds for hits 
and non-hits were chosen to generate computationally tractable groups 
of ~103 compounds, but we note that the ability of our final models of 
antibiotic activity to discriminate between hits and non-hits is generally 
similar across different prediction score cut-offs (Extended Data Fig. 4).

Given the lower AUPRC values of all our models predicting cytotoxic-
ity, as compared to our models predicting antibiotic activity, we aimed 
to further validate the performance of our cytotoxicity models. The 
final, trained cytotoxicity models were further benchmarked on two 
Tox21 datasets22 and a human metabolites database23, as described in 
Supplementary Note 1 and Supplementary Tables 7 and 8. Here, 7,151 
compounds independently screened for cytotoxicity against HepG2 
cells and 5,726 compounds screened for mitochondria toxicity from 
the Tox21 dataset were evaluated, and we found AUPRC values of ~0.3 
for both datasets and all three Chemprop models (HepG2, HSkMC and 
IMR-90). Consistent with the expected model performance, evaluating 
3,126 human metabolites that are putatively non-cytotoxic resulted 
in false-positive rates of ~1% to ~10%, with lower false-positive rates 
associated with higher cytotoxicity prediction score thresholds 
(Supplementary Note 1). Additionally, we procured and tested 100 



structurally dissimilar compounds that were predicted to be cytotoxic 
by all Chemprop models (prediction score >0.4 across all models) and 
90 compounds that were predicted to be non-cytotoxic (prediction 
score <0.05 across all models). Assessing these compounds tested the 
models’ generalizability, as the Tanimoto similarity values were <0.5 
with respect to all cytotoxic compounds for any cell type in the training 
set (Supplementary Data 1). We found that 24 and 8 compounds, respec-
tively, were cytotoxic to all three cell types (reducing cell viability by 
≥10%), suggesting a working true positive rate of 0.75. Taken together, 
these findings support the suggestion that our models can be produc-
tively used to filter out cytotoxic compounds, thereby augmenting our 
antibiotic discovery efforts.

t-SNE and visualization
For t-SNE analyses, we used sklearn.manifold’s TSNE() function in con-
junction with Morgan fingerprint representations of all compounds 
(radius = 2 and number of bits = 2,048) to visualize compounds in two 
dimensions. Following previous work1,14, the Jaccard distance, which 
is another name for Tanimoto distance for binary variables, was used 
as the distance metric; the Tanimoto distance is defined as Tanimoto 
distance = 1 – Tanimoto similarity, and the Tanimoto similarity between 
two fingerprints is given by the quotient of the number of 1-bits in the 
intersection of both fingerprints divided by the number of 1-bits found 
in their union. All calculations of Tanimoto similarity used in this work 
are based on Morgan fingerprint representations of all compounds 
(radius = 2 and number of bits = 2,048). The choice of the Jaccard metric 
for the t-SNE plot implies that the distance between points reflects the 
Tanimoto similarity of the corresponding compounds, with greater 
t-SNE distance indicating lower Tanimoto similarity1. We note here that 
the Tanimoto similarity depends on the global chemical structures of 
both inputs, and thus, does not necessarily quantify hits with common 
substructures or rationales. A perplexity parameter of 30 was found to 
produce clear visualizations and used for all plots. The initialization of 
embedding used was PCA.

Monte Carlo tree search for substructure rationales
We employed graph neural network-based rationale explanations to 
determine, for each molecule with high predicted antibiotic activity, 
the smallest subgraph resulting in the molecule being classified as 
active (Fig. 3, Extended Data Figs. 5 and 6 and Supplementary Data 2). 
Formally, a rationale should satisfy three properties. First, its maximum 
size must be no more than a set number of atoms. Second, it must be 
a connected subgraph. Third, its predicted property must be greater 
than an activity threshold. We used Chemprop’s built-in ‘interpret’ 
function to produce rationales yielding a minimal prediction score of 
0.1. Given any input molecule with high prediction score, the ration-
ale search proceeds by running a Monte Carlo tree search (MCTS; 
described below). An initial substructure size of 8 atoms was chosen 
to produce reasonably-sized outputs, a batch size of 500 parallel runs 
were used, and at each node, 10 rollout steps were performed wherein 
the rationale was expanded to distinct nodes. The expanded rationale 
was then scored with the same trained Chemprop models used to make 
the initial hit prediction. For searches in which no rationale producing 
a prediction score above 0.1 could be obtained after 10 min of search 
using all available CPUs on a Google Cloud c2-standard-60 instance, no 
rationales were deemed to have been computed for the hit of interest.

Finding the rationale of a molecule is a discrete optimization prob-
lem, which can be solved by the MCTS algorithm. The root of the search 
tree is the original active molecule and each state in the search tree is a 
subgraph derived from a sequence of bond or ring deletions. To ensure 
that each state is chemically valid and remains connected, we only allow 
deletion of one peripheral bond or ring from each state. A bond or ring 
is called peripheral if a molecule remains connected after deleting it.

During the search process, each state S in the search tree stores the 
following statistics:

•	N(S) is the number of times state S has been visited during the search 
process, and is a quantity used for exploration-exploitation trade-off 
in the MCTS algorithm.

•	W(S) is the total long-term reward, which indicates how likely state S 
will eventually lead to a valid rationale.

•	R(S) is the predicted activity score of S, viewed as a subgroup and 
input to Chemprop in its own right, which indicates the immediate 
reward by choosing this state.
Guided by these statistics, the MCTS algorithm searches for ration-

ales through an iterative process. Each iteration consists of two phases:
1. Forward pass. The MCTS algorithm selects a path from the root (the 

starting compound) to a leaf state, Sleaf (a candidate rationale). At 
each intermediate state S, a deletion action is selected based on the 
mean action value:
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where the parameter cs controls the trade-off between the long-
term reward, W(s), and immediate reward, R(s). This parameter is set  
according to the well-known PUCT (predictor upper confidence 
bound applied to trees) equation50.

2. Backward pass. The state statistics are updated for each visited state 
in the selected path: N(S) ⟵ N(S) + 1; W(S) ⟵ W(S) + R(Sleaf).

Based on the backward pass update, W(S) represents the sum of the 
predicted activity of all valid rationales (leaf nodes) derived from state 
S. Different from the immediate reward R(S), W(S) measures long-term 
reward because it focuses on the predicted activity of the leaf nodes. 
The intuition is that the immediate reward is useful for filtering poor 
choices: states are unlikely to contain a rationale if R(S) is low. Among 
states with similar R(S) values, W(S) aids in selecting those with higher 
long-term reward. To better illustrate the MCTS algorithm, we provide 
an example in Extended Data Fig. 5 using compound 1: Extended Data 
Fig. 5a illustrates the MCTS forward pass, and Extended Data Fig. 5b 
shows a complete search path from the root to a rationale.

As described in the main text, we reasoned that further exploring 
the scaffolds of the rationales would better inform the chemical motifs 
underlying structural classes. The focus on scaffolds that are conserved 
across rationales is important, as we found that rationales were often 
large (>17 atoms), could contain most of the hit structures of interest, and 
may differ from hits and other structurally similar rationales by a small 
(<3) number of atoms. These observations imply that a direct matching 
of rationales will often result in groups of large rationales that may not be 
as productive or informative for structural class-based discovery efforts. 
Accordingly, here we have calculated the scaffold conserved between 
two randomly chosen rationales using RDKit’s FindMCS() function (as 
described in detail below) and assigned any remaining rationale to this 
scaffold if the scaffold contained at least 12 atoms—a threshold chosen to 
exclude small and generic substructures. We then repeated this process 
for at least 103 iterations, in order to sample the combinatorial space of 
all scaffolds defined by the rationales. Independent runs of this sampling 
procedure resulted in samples with similar scaffolds. All rationales and 
scaffolds presented in this work are provided as SMILES arbitrary target 
specification (SMARTS) strings in Supplementary Data 2.

Leave-one-out analyses
Compounds in the training set were checked for the presence of the 
quinolone bicyclic core or β-lactam ring using RDKit’s FindMCS() func-
tion as below, with respect to the molecules described by two SMILES: 
“C1 = CC = C2C( = C1)C( = O)C = CN2” (quinolone) or “C1CNC1 = O” 
(β-lactam). Compounds (active or inactive) whose MCSs shared ≥11 
(quinolone) or ≥4 (β-lactam) atoms with the respective substructures 
were withheld. The remaining training sets were checked visually to con-
firm the absence of any quinolone or β-lactam structure, respectively. 
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Given the similarity in size of the remaining training sets to the full 
training set, we used the same Chemprop model hyperparameters as 
with the final model (Supplementary Table 5) and trained ensembles 
of 20 Chemprop models with RDKit features to make binary classifica-
tion predictions of antibiotic activity. The models were then applied to 
make predictions of the antibiotic activities of the respective withheld 
quinolone and β-lactam compounds (Supplementary Data 2).

MCS identification and analyses
The importance of MCSs and their identification have been acknowl-
edged in prior studies28,51. As mentioned in the main text, we found that 
MCS-based approaches did not necessarily yield substructures that 
were diagnostic of high predicted antibiotic activity when applied to 
deep learning model predictions (Extended Data Fig. 6, Supplementary 
Note 2 and Supplementary Table 9). Indeed, Supplementary Note 2 
shows that MCSs shared between hits can have antibiotic prediction 
scores <0.005, demonstrating that MCSs have low predictive capability 
as compared to rationales. In Supplementary Note 2, we were interested 
in quickly identifying MCSs that were enriched in sets of compounds. 
Methods for addressing this problem remain limited: the mismatch 
tolerant matching mode of the fmcsR package51 allows for integer atom 
or bond mismatches that often effectively lower the atom threshold for 
MCS matches, while typical molecular fingerprinting methods rely on 
the deconstruction of a chemical structure into rigid substructures. We 
therefore employed a simple method. Given an integer N0 and a list, N, of 
compounds, we first chose, at random, two compounds n1 and n2 from N. 
Using RDKit’s FindMCS() function with the options of bondCompare set 
to rdFMCS.BondCompare.CompareOrderExact (bonds are equivalent 
if and only if they have the same bond type) and completeRingsOnly 
set to True (if an atom is part of the MCS and the atom is in a ring of the 
entire molecule, then that atom is also in a ring of the MCS), we com-
puted the MCS, M, shared by n1 and n2. If the number of atoms of M was 
less than N0, then M was discarded and the combination of n1 and n2 not 
chosen again; otherwise, N was transversed, and whether or not each 
compound n ∈ N (n ≠ n1, n2) properly contained M was determined using 
the HasSubstructMatch() function in RDKit. If n properly contained M, 
then n was eliminated from N and said to be associated with M; other-
wise, n remained in N. This process was repeated for a predetermined 
number of iterations or until a prespecified fraction of all compounds 
remained, which were not associated with any M. In the best case that 
all elements of N are associated with any MCS between any two mem-
bers of N, this method requires |N| − 1 MCS or substructure matching 
computations; in the worst case that no elements of N are associated 
with any suitable MCS, this method requires |N|(|N| − 1)(|N| − 2) MCS or 
substructure matching computations. We implemented this method 
in a Python notebook, available as described below ‘Code availability’.

We applied the foregoing method on hits and non-hits with varying 
atom number thresholds and the number of iterations set to 5,000, 
which resulted in the identification of MCSs A1–A12, B1–B12, C1–C12 
and D1–D12 (Extended Data Fig. 6). We note here that increasing the 
number of iterations did not substantially change the MCSs identified. 
MCSs A1–A12, B1–B12, C1–C12 and D1–D12 are provided as SMARTS 
strings in Supplementary Data 2.

The MCS prediction scores shown in Extended Data Fig. 6 were cal-
culated by calculating Chemprop model predictions for the SMARTS 
strings computed above, viewed as inputs in their own right. For a small 
subset of MCSs, the corresponding SMARTS strings were invalid inputs 
due to ambiguity in the bond type (single or double) of specific bonds. 
In these cases, the bond type was manually chosen either as single or 
double bonds to create valid SMILES strings, which were then inputted 
into the Chemprop models to generate MCS prediction scores.

Computational hit analyses
The PAINS and Brenk alerts30,31 refer to chemical substructures that 
may be promiscuous or toxic. PAINS and Brenk substructures were 

calculated for each compound passing antibiotic activity prediction 
score and cytotoxicity prediction score thresholds (Fig. 2) using RDKit’s 
FilterCatalogParams.FilterCatalogs.PAINS and FilterCatalogParams.
FilterCatalogs.BRENK classifications, respectively. We calculated Tani-
moto similarity scores of each remaining compound with respect to all 
active compounds in the training set using the FingerprintSimilarity() 
function in RDKit, in conjunction with Morgan fingerprint represen-
tations of all compounds (radius = 2 and number of bits = 2,048), as 
mentioned above. Compounds were then checked for the presence 
of the β-lactam ring or the quinolone bicyclic core using RDKit’s Find-
MCS() function as above, with respect to the molecules described by 
two SMILES: “C1CNC1 = O” (β-lactam) or “C1 = CC = C2C( = C1)C( = O)
C = CN2” (quinolone). Compounds whose MCSs shared ≥4 (β-lactam) or 
11 atoms (quinolone) with the respective substructures were discarded. 
The medicinal chemistry property predictions shown in Supplemen-
tary Table 3 were performed using SwissADME52. Of note, Lipinski’s 
rule of five32, which is often used as a guideline for oral bioavailability 
but also viewed as a guideline for druglikeness, demands that a com-
pound possesses (1) number of hydrogen bond donors ≤5; (2) number 
of hydrogen bond acceptors ≤10; (3) molecular weight ≤500 Da; and (4) 
an octanol-water partition coefficient (log P) ≤ 5. The Ghose criteria33 
for druglikeness demand that a compound possesses (1) molecular 
refractivity ≥40 and ≤130; (2) number of atoms ≥20 and ≤70; (3) an 
octanol-water partition coefficient (log P) ≥−0.4 and ≤5.6; and (4) a 
molecular weight ≥160 and ≤480.

Chemical compound sourcing
To systematically source compounds for testing, we developed a custom  
Python script which queries the PubChem database for vendors of 
each compound, according to its SMILES string. Of note, while the 
Mcule purchasable database contains compounds that are readily 
purchasable, compounds may not be purchasable from Mcule. The 
query results were tabulated for all compounds, and we shortlisted a 
subset of compounds which were available in high purity (>90%) and 
could be purchased from common vendors. Compounds were then 
sourced from multiple suppliers, including ChemBridge, Vitas-M and 
Enamine; catalogue details for each procured compound are provided 
in Supplementary Data 2.

Bacterial strains
A list of all common bacterial strains used in this study is provided 
in Supplementary Table 6. Main strains include S. aureus RN4220, 
FPR3757 (MRSA USA300; ATCC BAA-1556), B. subtilis 168 (ATCC 23857), 
E. coli BW25113, A. baumannii ATCC 17978 and P. aeruginosa PAO1. The 
resistance phenotype of S. aureus FPR3757 was verified by comparing 
growth inhibition against S. aureus RN4220 on 2 and 4 μg ml−1 oxacillin 
salt-containing Mueller Hinton agar (Becton Dickinson 225250; oxacil-
lin, MilliporeSigma 28221). Additional bacterial isolates, as shown in 
Supplementary Table 4, were obtained from the CDC AR Isolate Bank.

Bacterial culture and growth
All cells were grown in liquid LB medium (Becton Dickinson 244620). 
LB medium containing 1.5% Difco agar (Becton Dickinson 244520) 
was used to grow individual colonies. Cells were grown from single 
colonies aerobically at 37 °C in 14-ml Falcon tubes using 2 ml working 
volumes without antibiotic selection. Cell cultures were incubated 
in a light-insulated, humidity-controlled incubation chamber with 
shaking at 300 rpm.

Antibiotics
Unless otherwise stated, stock solutions and serial dilutions of all 
antibiotics were freshly prepared in dimethyl sulfoxide (DMSO; Mil-
liporeSigma D5879) before each experiment. Stock solutions and serial 
dilutions of kanamycin, ampicillin, fosfomycin, vancomycin, and teico-
planin were prepared with ultrapure Milli-Q water. Stock solutions of 



ciprofloxacin and tetracycline were prepared by dissolving in weak 
acid (0.1 M HCl), then diluted in ultrapure Milli-Q water.

Compound screening and antibiotic activity training data 
generation
The compound library used in this work builds on the one used to 
screen for growth inhibition in E. coli in previous work from our lab53. 
Compounds were sourced and dissolved in DMSO to generate work-
ing stocks of 5 mM concentration. Stock solutions were maintained at 
−20 °C for long-term storage. S. aureus RN4220 was grown overnight in 
LB medium as described above, then diluted 1:10,000 in fresh LB and 
plated into either (1) 96-well flat-bottom clear plates (Corning 9018) 
using 100 μl final working volumes or (2) 384-well clear plates (Corning 
3702) using 50 μl final working volumes. Compounds were added to 
a final concentration of 50 μM and automatically mixed to facilitate 
homogeneous distribution, and plates were incubated at 37 °C without 
shaking overnight (16 to 24 h) in sealed plastic bags. The optical density 
(OD600) was then read using a SpectraMax M3 plate reader and SoftMax 
Pro software (version 7.1, Molecular Devices) to quantify cell growth. 
Plate data were normalized by the interquartile mean of each plate to 
calculate relative growth. All screens were performed in biological 
replicate. After screening all 39,312 compounds in this way, a subset of 
51 randomly chosen active compounds were rescreened for secondary 
validation according to the same procedures described above. The 
replicate results for all 51 active compounds were consistent with the 
results of the main screen. Furthermore, we note here that the Pearson’s 
correlation coefficient between relative growth values of replicates in 
the screen, respectively, was R = 0.8 (P < 10−14), demonstrating good 
reproducibility between replicates (Fig. 1b).

Cytotoxicity screening and testing
Cytotoxicity in human cells was assayed using a resazurin (alamar-
Blue) assay. HepG2 cells were obtained from ATCC (ATCC HB-8065), 
passaged <10 times, and grown to log phase in high-glucose Dul-
becco’s Modified Eagle Medium (DMEM; Corning 10-013-CV) supple-
mented with 10% fetal bovine serum (FBS; ThermoFisher 16140071) 
and 1% penicillin-streptomycin (ThermoFisher 15070063). HSkMCs 
were obtained from ATCC (ATCC PCS-950-010), passaged <5 times, 
and grown to log phase in mesenchymal stem cell basal medium for 
adipose, umbilical and bone marrow-derived MSCs (ATCC PCS-500-
030) supplemented with ATCC’s primary skeletal muscle growth kit 
(ATCC PCS-950-040) and 1% penicillin-streptomycin. IMR-90 cells 
were obtained from ATCC (ATCC CCL-186), passaged <10 times, and 
grown to log phase in Eagle’s Minimum Essential Medium (EMEM; ATCC 
30-2003) supplemented with 10% FBS and 1% penicillin-streptomycin. 
Cells were tested for mycoplasma contamination by the supplier, and 
the HepG2 and IMR-90 cell lines were authenticated by the supplier 
using short tandem repeat profiling. For IMR-90 cytotoxicity, data for 
a subset of 2,335 compounds, corresponding to the Pharmacon and 
natural products library used to screen for growth inhibition in E. coli 
in previous work from our lab1, have previously been generated by us 
for cells treated with 0.5% DMSO15; as the experimental conditions of 
the screen are similar to those considered here, these data were used 
and expanded upon for the current IMR-90 dataset in lieu of screening 
the same subset of compounds again. For all other compounds or cell 
types, cells were plated into either (1) 96-well clear flat-bottom black 
tissue-culture-treated plates (Corning 3603) at a density of 104 cells/
well using 100 μl working volumes or (2) 384-well clear flat-bottom 
black tissue-culture-treated plates (Corning 3764) at a density of 5,000 
cells/well using 30 to 50 μl working volumes, then incubated at 37 °C 
with 5% CO2. Twenty-four h after plating, test compounds were added 
to a final concentration of 10 μM (final DMSO concentration of 0.5%) 
and automatically mixed to facilitate homogeneous distribution of 
compounds. Cells were re-incubated for either 2 days (HepG2 and HSk-
MCs) or 3 days (IMR-90), with the incubation period chosen to reflect 

the relative timescales of cell doubling for each cell type, after which 
resazurin (MilliporeSigma R7017) was added to each well to a final 
concentration of 0.15 mM. After an additional 4 to 24 h of incubation, 
the fluorescence excitation/emission at 550/590 nm was read using a 
SpectraMax M3 plate reader or an EnVision plate reader and EnVision 
Workstation software (version 1.14.3049.1193, PerkinElmer). Plate data 
were normalized by the interquartile mean of each plate to calculate 
relative cell viability (Fig. 1d,f,h). All screens were performed in biologi-
cal replicate. We note here that the Pearson’s correlation coefficients 
between relative cell viability values of replicates in the screens, respec-
tively, were R = 0.9 (HepG2), R = 0.96 (HSkMC) and R = 0.81 (IMR-90; 
P < 10−14 for all cell types), demonstrating good reproducibility between 
replicates (Fig. 1d,f,h). For testing cytotoxicity model predictions, 190 
compounds were procured from commercial vendors and assayed in 
the same manner for each cell type, with the exception that relative 
viability values were normalized by the mean of two DMSO (final con-
centration, 0.5%) controls.

MIC and bacterial growth inhibition assays
We used the microbroth dilution method for determining MICs in this 
study, including the values shown in Fig. 3g. A 1:10,000 dilution of 
overnight cell culture in fresh LB was plated into 96-well flat-bottom 
clear plates using 99 μl working volumes. One microlitre of a serial 
dilution of compound in DMSO was added to each well, with twofold 
serial dilutions across wells. Plates were sealed with breathable mem-
branes (MilliporeSigma Z763624) and incubated at 37 °C with shaking 
at 900 rpm. The MIC was determined as the concentration of com-
pound resulting in inhibited growth of the culture (OD600 < 0.2) after 
overnight (16 to 24 h) incubation. Where applicable, FBS was added 
to fresh LB to a final concentration of 10% before addition of bacterial 
inocula and compounds. All MIC experiments were replicated at least in 
biological duplicate, and optical density was read using a SpectraMax 
M3 plate reader.

Cytotoxicity IC50 assays
Cells were cultured as described in ‘Cytotoxicity screening’ and seeded 
at a density of ~2 × 104 cells per well into 96-well clear flat-bottom black 
tissue-culture-treated plates. For each compound, 1 μl of twofold serial 
dilutions in DMSO was added to 99 μl of medium containing cells. Addi-
tion of 1 μl DMSO to 99 μl of medium containing cells was used as a 
negative control, and doxorubicin (Cayman Chemical Company 15007) 
was used as a positive control. To facilitate comparison across cell 
types, plates for all cell types were incubated for ~2 days. IC50 values  
were calculated as the minimal concentration used for which the fluo-
rescence intensity values were decreased by at least 50% from those of 
negative controls (DMSO), with baseline values being those of blank 
wells containing medium with resazurin only. The effects of vehicle (1% 
DMSO) were found to be minimal (<10% decrease) on cell viability, as 
determined by comparing values from negative controls to those of 
untreated wells containing cells only. Experiments were performed at 
least in biological replicate on two independent occasions.

Bacterial time-kill assays and CFU measurements
Cells were diluted 1:10,000 or 1:100 from an overnight culture into fresh 
LB and plated into 96-well flat-bottom clear plates using 99 μl working 
volumes. Plates were then sealed with breathable membranes, and 
cells were grown to early exponential phase, OD600 ≈ 0.01 or 0.1—cor-
responding to ~106 or ~107 CFU ml−1—in a 37 °C incubator with shaking at 
900 rpm. Unless otherwise indicated, 1 μl of compound in twofold serial 
dilutions in DMSO was then added to each well to the final concentra-
tions indicated, and bacterial cell cultures were sealed and re-incubated 
at 37 °C with shaking at 900 rpm. At the indicated times, cells were 
removed from incubation, serially diluted in room temperature LB, and 
spotted on LB agar. We performed serial dilutions of cells in LB instead 
of other media, such as PBS, in order to better control for osmolarity 
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and nutrient shifts (as described previously35,36). Petri dishes contain-
ing plated cells on LB agar were allowed to dry at room temperature 
before stationary incubation at 37 °C overnight (16 to 24 h). CFUs were 
determined by manual counting, and all measurements are based on 
counts containing at least six colonies.

Serial passaging experiments
S. aureus RN4220 was diluted 1:10,000 from an overnight culture in 
fresh LB and plated into 96-well flat-bottom clear plates using 99 μl 
working volumes. One microlitre of a serial dilution of compound in 
DMSO was added to each well, with twofold serial dilutions across 
wells. Cells were incubated at 37 °C with shaking at 900 rpm. After 
24 h, plates were read using a SpectraMax M3 plate reader, and cells 
that grew (OD600 > 0.3) in the presence of the highest concentra-
tion of compound were diluted into fresh LB at the optical density 
equivalent of 1:10,000 of an overnight culture. Cells were then plated 
using 99 μl working volumes into 96-well flat-bottom clear plates. 
One microlitre of a serial dilution of compound in DMSO was again 
added to each well, with twofold serial dilutions across wells, and 
this process was repeated every 24 h over 30 days. Stock serial dilu-
tions in DMSO of all compounds used for passaging were prepared 
at day 0 and stored at −20 °C. For all compounds tested, 64 or 128× 
baseline MIC was the highest concentration used. After 30 days, cells 
that grew in the presence of the highest concentration of compound 
were streaked on blank LB agar plates to isolate individual colonies. 
Individual colonies picked from LB agar plates were grown in blank 
LB overnight, serial dilutions of all tested compounds were prepared 
fresh, and the MIC values were determined again. MIC values were com-
pared to those determined using overnight cultures of non-passaged  
S. aureus RN4220 cells, in order to confirm MIC changes where appli-
cable. As a negative control, cells were serially passaged in 1% DMSO 
as described above, and without selection, for 30 days, and all MICs 
were confirmed to be identical to those of the ancestral strain in two  
biological replicates.

Suppressor mutant generation experiments
S. aureus RN4220 was picked from single colonies and grown over-
night in fresh LB. For each replicate in each tested condition, 1 ml of 
overnight culture (~109 CFU) was aliquoted and centrifuged at 3,700g 
for 5 min. The cell pellet was resuspended to a final volume of 50 μl in 
fresh LB, then pipetted onto the surface of LB agar plates containing 
the indicated concentrations of compounds. Cells were then spread 
using a bent, sterile inoculating loop, and plates were dried and inverted 
before stationary incubation at 37 °C for 5 days. At the end of 5 days, 
plates were removed from incubation, and colonies that grew on each 
plate were picked and streaked on fresh compound-containing LB agar 
plates (up to 6 colonies streaked per plate). These plates were then 
incubated overnight in a stationary incubator at 37 °C, and bacterial 
growth was assessed by eye.

Genomic sequencing
For serial passaging experiments, passaged cells were streaked onto 
blank LB agar as described above. Following MIC determination and 
validation, cells from the same liquid culture were struck again on 
blank LB agar and incubated overnight. Single colonies were picked 
and grown in 2 ml blank LB overnight at 37 °C with shaking at 300 rpm. 
One millilitre of cell culture was then aliquoted and pelleted by cen-
trifugation at 3,700g for 5 min. The supernatant was discarded, and 
cell pellets were frozen and kept at −80 °C until sequencing. For sup-
pressor mutant generation experiments, plates with bacterial growth 
after the last overnight incubation step were taken, and bacterial cells 
were sampled from each streak and used to inoculate 2 ml of fresh LB. 
Liquid cultures were then incubated overnight at 37 °C with shaking at 
300 rpm, and cell pellets were prepared as described above for serially 
passaged cells.

On the day of sequencing, genomic DNA was extracted after pre- 
treating cells with lysostaphin (MilliporeSigma SAE0091) for 30 min, 
using a Qiagen DNeasy Blood and Tissue Kit (Qiagen 69504) according 
to the manufacturer’s instructions. Illumina DNA library preparations 
were used following the manufacturer’s instructions. Genomic DNA 
extraction and sequencing were performed at the Microbial Genome 
Sequencing Center.

Sequencing analysis
Sequencing results were analysed by aligning each read set to the fin-
ished RN4220 genome (GCF_018732165.1) using the BWA-MEM algo-
rithm. Pilon54 was used to call variants for each read set. Variants with 
low mapping quality (<10) were filtered from the final results (Sup-
plementary Data 3).

Phase-contrast microscopy
As in previous work35–37, microscopy experiments were performed 
with cells sandwiched between agarose pads and glass slides unless 
otherwise stated. B. subtilis 168 was grown from a 1:100 dilution of 
an overnight culture in 14-ml Falcon tubes to early exponential phase 
(OD600 ≈ 0.1), and cells were treated with the indicated compounds for 
the indicated durations at 37 °C with shaking at 300 rpm. Cells were 
concentrated by centrifugation at 7,000g for 5 min and resuspended 
in a smaller volume of supernatant. We placed 2 μl of the resuspended 
bacterial culture between 3 in. × 1 in. × 1 in. microscope slides (Fisher 
Scientific 125444) and 1 mm thick agarose (1.5%) pads made from growth 
medium (agarose: MilliporeSigma A2576). Cells were imaged immedi-
ately afterward at room temperature using a Zeiss Axioscope A1 upright 
microscope equipped with a Zeiss Axiocam 503 camera and a Zeiss 
100× NA 1.3 Plan-neofluar objective (Zeiss, Jena, Germany). Images 
were recorded using Zen Lite Blue (version 2.3, Zeiss) software. All 
microscopy experiments were replicated at least in biological duplicate.

DiSC3(5) fluorescence
S. aureus RN4220 and B. subtilis 168 were picked from individual colo-
nies and grown in liquid LB overnight at 37 °C with shaking at 300 rpm. 
Cells were then diluted 1:100 from the overnight cultures into liquid 
LB and grown to mid-log phase, OD600 ≈ 0.5, at 37 °C with shaking at 
300 rpm. DiSC3(5) (Invitrogen D306) was dissolved in DMSO and added 
to liquid cultures at a final concentration of 1 μM. After additional incu-
bation in the presence of DiSC3(5) for 1 to 2 h, cells were plated in 200 μl 
working volumes in black, opaque flat-bottom 96-well plates, after 
which fluorescence was measured every 10 to 30 s at an excitation/
emission of 622/670 nm using a SpectraMax M3 plate reader. Cells 
were then treated with DMSO (1%) as a negative control, valinomycin 
(MilliporeSigma V0627) and nigericin (MilliporeSigma N7143) at a 
final concentration of 1 mM as positive controls, and compounds 1 and 
2 at a final concentration of 32 μg ml−1. Fluorescence was measured 
immediately following treatment according to the same specifica-
tions as above.

pH-dependent growth inhibition
S. aureus RN4220 was picked from individual colonies and grown in 
liquid LB overnight at 37 °C with shaking at 300 rpm. Cells were then 
diluted 1:10,000 into liquid LB titrated to pH 8.0 and 9.0 using ammo-
nium hydroxide (MilliporeSigma 09859), and MIC values were deter-
mined as detailed in ‘MIC and bacterial growth inhibition assays’.

Membrane-specific activity model development
Bacterial membrane-sensitive mechanisms of action, such as that of 
compounds 1 and 2, have often been de-prioritized in antibiotic drug 
discovery due, in part, to potential lack of selectivity41. In order to study 
the generality of this mechanism of action, we further quantified and 
trained Chemprop models to predict membrane-specific activity. Addi-
tional screens of membrane disruption for a subsample of 475 active 



antibacterial compounds emerging from our initial screen (Fig. 1b), 
used to treat exponentially-growing S. aureus cells at a final concentra-
tion of 50 μM, indicate that 35 compounds (7.3%) induce alterations in 
the proton motive force, as measured by relative changes of ≥30% in 
DiSC3(5) fluorescence (Supplementary Data 4). In brief, this subset of 
475 active compounds, comprising all compounds for which additional 
compound stock was available, was procured at 10 mM for stock solu-
tions in DMSO. S. aureus RN4220 was picked from individual colonies 
and grown in liquid LB overnight at 37 °C with shaking at 300 rpm. 
Cells were then diluted 1:100 from the overnight cultures into liquid 
LB and grown to mid-log phase, OD600 ≈ 0.8 to 1.0, at 37 °C with shaking 
at 300 rpm. As above, DiSC3(5) was dissolved in DMSO and added to 
liquid cultures at a final concentration of 1 μM. After additional incu-
bation in the presence of DiSC3(5) for 1 h, cells were plated in 20 μl 
working volumes in black, clear- and flat-bottom 384-well plates, after 
which each of the 475 procured compounds were immediately added 
to a final concentration of 50 μM. After a 5 min incubation at room 
temperature, fluorescence was measured at an excitation/emission 
of 625/660–720 nm using a GloMax Discover microplate reader and 
GloMax Discover software (version 4.0.0, Promega). Relative DiSC3(5) 
fluorescence was calculated by normalizing with respect to values 
for vehicle (DMSO) treatment, and experiments were performed in 
biological duplicate (Supplementary Data 4).

Compounds increasing or decreasing DiSC3(5) fluorescence by 30% 
relative to DMSO control were declared as active (35 compounds). This 
suggests that alteration of the proton motive force is not necessarily a 
widespread mechanism of action of antibacterial compounds. Building 
on these data, we trained Chemprop models to predict the probability 
that any given compound induces alterations in the proton motive 
force. The 35 compounds declared active, together with the inactive 
tested compounds and all inactive antibacterial compounds (which 
were assumed to not alter proton motive force), were used to train 
an ensemble of 20 Chemprop models. Model hyperparameters were 
determined using Bayesian hyperparameter optimization (Chemprop’s 
hyperopt function) with ten iterations (Supplementary Table 5). The 
trained models were then applied to make binary classification pre-
dictions on the Broad Institute database of 799,140 compounds. We 
identified 5,759 compounds (0.72% of the Broad Institute database) 
with activity prediction scores greater than the prediction scores of 
compounds 1 and 2 (0.040 and 0.043, respectively); these compounds 
were then shortlisted and filtered to ensure that the Tanimoto similarity 
with respect to the 35 active training set compounds was <0.5, with no 
other filters applied. Fifteen readily available filtered compounds were 
procured from the Broad Institute and tested as above to determine 
proton motive force-altering activity (Supplementary Data 4). Defin-
ing active compounds as above, we found that these models have an 
encouraging working positive predicted value of 0.4, supporting the 
notion that the membrane-specific mechanism of action of compounds 
1 and 2 might be accurately predicted from chemical structure (Supple-
mentary Data 4). We anticipate that these and additional models based 
on bacterial cytological profiling will guide further in silico screens of 
membrane-targeting compounds.

Haemolysis measurements
Following previous work55, for the haemolysis experiments shown in 
Extended Data Fig. 9, whole human blood containing EDTA (Innova-
tive Resarch IWB1K2E) was centrifuged at 120g at 4 °C for 5 min and 
resuspended in Dulbecco’s PBS (DPBS; VWR 02-0119-0500). These 
washing steps were repeated until the supernatant was clear (at least 
10 times). Red blood cells were then resuspended in DPBS to a density 
of 5 × 108 cells ml−1, and 100 μl of cells was plated into each well of a 
96-well round-bottom clear plate (Corning 3788). Compounds were 
added to the indicated final concentrations, and DMSO was used as a 
vehicle. Samples were incubated for 1 h at 37 °C without shaking, after 
which plates were centrifuged at 1,500g at room temperature for 5 min 

to pellet cells. Sixty microlitres of the supernatant from each sample 
was then transferred to a 96-well flat-bottom clear plate, and the optical 
density was read at 405 nm using a SpectraMax M3 plate reader to quan-
tify the amount of soluble haemoglobin. Fractional haemolysis was 
determined by linearly interpolating absorbance values with respect 
to a positive control (saturation with 10% Triton X-100) and a negative 
control (1% DMSO vehicle). We found that treatment with compounds 
1 and 2 did not induce substantial haemolysis up to a final concentra-
tion of 128 μg ml−1, the highest tested (64× MIC; Extended Data Fig. 9).

Iron chelation measurements
In Extended Data Fig. 9, iron chelation was assayed based on the fer-
rous iron chelating assay kit from ZenBio (AOX-15) with modifica-
tions. Briefly, FeSO4 stock solutions were prepared by adding 1.8 ml 
of ultrapure Milli-Q water to 5 mg FeSO4. Ferrozine stock solution was 
prepared by adding 400 μl of ultrapure Milli-Q water to 5 mg ferrozine. 
Both stock solutions were diluted 100-fold in water, and 99 μl of work-
ing FeSO4 solution was plated into each well of a 96-well flat-bottom 
clear plate. One microlitre of test compound in DMSO or EDTA (Mil-
liporeSigma E7889) was added into each well to the final concentra-
tions indicated and mixed via pipette. After 10 min incubation at room 
temperature, 100 μl of working ferrozine solution was added to each 
well, and the plate was incubated again at room temperature for 10 min. 
The absorbance at 562 nm was then read using a SpectraMax M3 plate 
reader. Fractional ferrous iron chelating activity was determined by 
linearly interpolating absorbance values with respect to untreated and 
EDTA-treated (128 μg ml−1 final concentration) controls. We found that 
treatment with compounds 1 and 2 did not result in substantial iron 
chelation up to a final concentration of 128 μg ml−1 (Extended Data 
Fig. 9).

Bacterial Ames assay for genotoxicity
For the mutagenesis experiments shown in Extended Data Fig. 9, a 5041 
Modifed Ames ISO from Environmental Bio-Detection Products, Inc. 
was used following the manufacturer’s instructions. In brief, Salmonella 
typhimurium TA100 was grown overnight (16–18 h) at 37 °C with shaking 
at 300 rpm and treated with the provided exposure medium and com-
pound samples at the final concentrations indicated. Treatment with 
the provided sodium azide, a mutagen, was used as a positive control. 
Cells were added to the provided reversion solution, and each sample 
was aliquoted into 48 wells of 96-well plates. Plates were incubated at 
37 °C for 3 days, after which the number of revertant (yellow-coloured) 
wells corresponding to each sample was counted by eye. Addition-
ally, we verified that each test compound did not inhibit the growth 
of S. typhimurium TA100. An overnight bacterial culture was diluted 
1:10,000 in LB medium and plated using 99 μl working volumes into 
the wells of a 96-well flat-bottom clear plate. One microlitre of twofold 
dilutions of each test compound in DMSO, starting from a final concen-
tration of 500 μM, was added across wells, and plates were sealed and 
incubated overnight at 37 °C to determine bacterial growth. In contrast 
to treatment with 5 μg ml−1 sodium azide, a potent mutagen, treatment 
with compounds 1 and 2 up to a final concentration of 128 μg ml−1 did not 
induce substantial reversion of bacterial cultures (Extended Data Fig. 9).

Chemical stability measurements
To assess the chemical stability of compound 1 in various solutions, 
we injected the compound into acidic (pH 5.0), neutral (pH 7.0), and 
basic (pH 10.0) medium. Acetate buffer (0.1 M, pH 5.0), PBS (pH 7.1), 
and glycine buffer (0.08 M, pH 10.0) were prepared as aqueous solu-
tions using ultrapure Milli-Q water. Ten microlitres of a 500 μM stock 
solution of compound 1 in DMSO was then added to 990 μL of buffer 
in 1.5 ml centrifuge tubes (final compound concentration, 5 μM), vor-
texed, and incubated at 37 °C with shaking at 300 rpm and protected 
from light for 0, 45, or 120 min. Samples were then flash-frozen on dry 
ice and kept at −80 °C until processing at the Harvard Center for Mass 
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Spectrometry using liquid chomatography–mass spectrometry (LC–
MS), as described in ‘Liquid chromatography–mass spectrometry’. We 
found that compound 1 was stable across the three buffers used at 0, 45 
and 120 min after compound addition, with no substantial decrease in 
the concentration of free compound across all timepoints measured 
(Extended Data Fig. 9).

Liquid chromatography–mass spectrometry
All reagents used were LC–MS grade. For sample preparation, 100 μl 
of each sample was mixed with 100 μl of water containing 10 μM of 
compound 2 as internal standard. Next, 800 μl of methanol was added, 
and samples were stored overnight at −20 °C. Samples were centrifuged 
for 10 min at max speed at 4 °C, and the supernatants were transferred 
to microcentrifuge tubes and dried under N2 flow. Dried samples were 
resuspended in 100 μl of acetonitrile:water (1:1 w/w) and centrifuged 
for 10 min at max speed at 4 °C. The supernatants were then transferred 
to microinserts. A standard curve was prepared using seven 1/3 dilu-
tion series of a 100 μM solution of compound 1 in water. One hundred 
microlitres of each standard was prepared similarly to samples, and the 
lower limit of quantification was determined to be 150 nM.

All samples were run on an Agilent Triple Quadrupole. The column 
used was Phenomenex Kinetex EVO C18, 2.6 μm, 100 Å, 150 × 2.1 mm. The 
source used was AJS ESI negative. MS parameters were as follows: gas 
350 °C at 9 l min−1, nebulizer 30 psi, sheath 350 °C at 10 l min−1, nozzle  
at 1,300 V, capillary at 2,200 V. The mobile phases were A: water and 0.1% 
NH4OH and B: acetonitrile, 0.03% NH4OH. The following gradient was 
used: 5 min at 0% B, then to 50% B at 5 min, then to 100% B at 7.01 min, 
followed by 0% B at 12.01 min. The column was then equilibrated at 0% 
B for 5 min. The flow rate was 0.2 ml min−1, the column was maintained 
at 35 °C, and 5 μl of each sample was injected.

Ex vivo human skin toxicity
WoundSkin 11 mm models were procured from Genoskin from a 
46-year-old Hispanic female donor. Upon arrival, 1 ml of the provided 
ex vivo culture medium was added to each well containing Wound-
Skin sample and samples were incubated at 37 °C with 5% CO2 for 1 h. 
Compound 1 was prepared as a stock solution in DMSO, then formu-
lated using 50% polyethylene glycol 300 (PEG300, MilliporeSigma 
202371) and 50% water for injection as solvent. Thirty microlitres of 
a 1% formulation of compound 1 was administered topically by pipet-
ting directly onto each of six WoundSkin models. As controls, 30 μl of 
a corresponding formulation of DMSO was administered topically by 
pipetting directly onto each of six WoundSkin models. All models were 
incubated at 37 °C with 5% CO2 for 24 h and assessed for typical signs 
of toxicity, including tissue death, skin discolouration, and irritation. 
Consistent with the predictions of our cytotoxicity models and its char-
acterized selectivity profile, we found that compound 1 was non-toxic 
when applied topically (1%) to ex vivo human skin (Extended Data Fig. 9).

In vivo mouse toxicity
Studies were performed at the Wyss Institute at Harvard in accord-
ance with protocol IS00000852-6, approved by the Harvard Medical 
School Institutional Animal Care and Use Committee and the Com-
mittee on Microbiological Safety. Female C57BL/6 J mice, 6–8 weeks 
old, 22 ± 2 g, received from The Jackson Laboratory, were quarantined 
at least 2 days prior to use. Compound 1 was prepared as a stock solu-
tion in DMSO, then formulated using PEG300 and water for injection 
as solvent so that the final formulation was 10%:45%:45% DMSO stock 
of compound 1:PEG300:water for injection (w/w). The formulation 
was injected intraperitoneally to a final concentration of 80 mg kg−1, 
and mice were observed for at least 24 h for typical signs of toxicity, 
including impaired movement, lethality, and irritation. We found that 
compound 1 was well-tolerated after intraperitoneal injection in all 
mice, with results representative of three mice (n = 3) injected with 
compound 1.

Mouse topical wound infection model
Studies were performed at the Wyss Institute at Harvard in accordance 
with protocol IS00000852-6, approved by the Harvard Medical School 
Institutional Animal Care and Use Committee and the Committee on 
Microbiological Safety. Female C57BL/6 J mice, 6–8 weeks old, 22 ± 2 g, 
received from The Jackson Laboratory, were quarantined at least 2 days 
prior to use. Animals were housed in a facility maintained at 20–26 °C 
ambient temperature, 40–65% relative humidity, and a 12:12 light-dark 
cycle. Enrichment devices were included in the animal environments as 
required and changed bi-weekly. As illustrated in Extended Data Fig. 9, 
mice were rendered neutropenic by a 0.2 ml intraperitoneal injection of 
cyclophosphamide (Cytoxan) at 150 mg kg−1 (day −4) and at 100 mg kg−1 
(day −1) pre-infection. Each mouse was anaesthetized and kept sedated 
during the initial procedure under isoflurane vapours (3%). For each 
mouse, the fur on the back dorsal surface was shaved, then sterilized 
with alcohol. An area of the shaved skin was abraded using a sterile gauze 
pad. Following this procedure, the skin became visibly damaged and was 
characterized by reddening and glistening, but no bleeding. The skin 
was then wiped with an alcohol swab and allowed to dry completely. 
The resulting surface area for infection and treatment was ~1.5 cm2. 
The S. aureus AR Bank no. 0563 isolate was struck onto LB agar plates 
from a freezer stock and incubated at 37 °C overnight. Overnight cul-
tures were grown from single colonies in LB to 109 CFU ml−1 (OD600 ≈ 1), 
then diluted in LB to achieve the indicated inoculum concentration. 
The diluted overnight culture was serially diluted in PBS and plated 
onto LB agar to determine input CFU. Five microlitres of the diluted 
culture, corresponding to an inoculum of ~105 CFU, was placed on the 
skin to initiate the bacterial infection. Treatment was initiated at 1 h 
post-infection, then continued at 4, 8, 12, 20 and 24 h post-infection. 
Compound 1 (1% final concentration) was prepared as a stock solu-
tion in DMSO, then formulated using PEG300 and water for injection  
as solvent so that the final formulation was 10%:45%:45% DMSO stock 
of compound 1:PEG300:water for injection (w/w). A 1% formulation of 
compound 1 was chosen for our preliminary experiments, as higher con-
centrations of compound 1 were found to result in cloudy suspensions, 
suggestive of limits to compound solubility. Fusidic acid (0.25% final 
concentration) was used as a positive control, and appropriate vehicle 
treatments of DMSO:PEG300:water for injection (10%:45%:45%) were 
included. For each treatment, ~40 μl of formulation was applied topi-
cally on the infected skin at the indicated times. At ~25 hrs post-infection 
( ~ 1 h following the last topical treatment), all mice were euthanized by 
CO2 asphyxiation, and wounds were wiped with an alcohol pad, excised, 
weighed, rinsed in sterile saline, and homogenized together with 3 ml 
of sterile PBS using a Polytron PT10-35 with a 12 mm aggregate. Homog-
enized wounds were serially diluted and plated onto LB agar to deter-
mine bacterial titres (CFU per g tissue), and each data point represents 
the mean of two technical replicates for plating and CFU enumeration.

Mouse systemic thigh infection model
Studies were performed at the Wyss Institute at Harvard in accordance 
with protocol IS00000852-6, approved by the Harvard Medical School 
Institutional Animal Care and Use Committee and the Committee on 
Microbiological Safety. Female C57BL/6 J mice, 6–8 weeks old, 18 ± 2 g, 
received from Charles River, were quarantined at least 2 days prior to use 
and kept under the housing conditions described above. As illustrated 
in Extended Data Fig. 9, mice were rendered neutropenic by a 0.2 ml 
intraperitoneal injection of cyclophosphamide (Cytoxan) at 150 mg kg−1 
(day −4) and at 100 mg kg−1 (day −1) pre-infection. S. aureus AR Bank no. 
0706 was cultured overnight on tryptic soy agar plates at 37 °C. Isolated 
colonies were suspended in PBS to achieve an OD600 of 0.1, then further 
diluted 1:1,000 in tryptic soy broth to prepare the infecting inoculum 
of ~0.5 × 107 CFU ml−1. Under anaesthesia and sedation, mice were intra-
muscularly injected with 50 μl of the infecting inoculum into the right 
thigh. One hour post-infection, mice received a single intraperitoneal 



injection of compound 1 (80 mg kg−1 in 10% DMSO, 45% PEG300, 45% 
water; 200 μl, 6 mice), vancomycin (50 mg kg−1 in endotoxin-free water; 
200 μl, 6 mice), or vehicle control (10% DMSO, 45% PEG300, 45% water; 
200 μl, 6 mice). At ~25 h post-infection (~24 h after treatment), mice were 
euthanized by CO2 asphyxiation, and thighs were aseptically removed 
and homogenized in 2 ml of ice-cold sterile PBS using a Polytron PT10-35 
with a 12 mm aggregate. For each sample, 200 μl of homogenized thigh 
were serially diluted and plated onto LB and MRSA CHROMagar to deter-
mine bacterial titres (CFU per ml thigh homogenate), and each data point 
represents one technical replicate for plating and CFU enumeration.

Structure–activity relationship analyses
The analogues of compounds 1 and 2 procured for the structure–activity 
relationship analyses shown in Extended Data Fig. 10 and Supplementary 
Note 4 were chosen based on the following criteria: (1) the compound of 
interest contains the rationale shown in Extended Data Fig. 10; (2) the 
antibiotic prediction score for the compound of interest was at least 0.15; 
and (3) the compound of interest did not contain any PAINS or Brenk 
substructures, which may confound interpretation of structure–activity 
relationship results. This resulted in a list of 17 additional commercially 
available compounds (Supplementary Data 2), which we procured from 
multiple suppliers including ChemBridge, Vitas-M, and Specs. The com-
pounds were dissolved in DMSO to prepare stock solutions and, where 
applicable, MIC and IC50 values were determined as described in ‘MIC 
and bacterial growth inhibition assays’ and ‘Cytotoxicity IC50 assays’.

Statistics and reproducibility
No statistical method was used to predetermine sample size for all 
mouse experiments in this study, but our sample sizes are similar to 
those reported in previous publications1–4,6–8,14. We were not blinded 
to allocation during experiments and outcome assessment, and 
data collection and analysis were not performed blind to the condi-
tions of the experiments. For mouse experiments, no significant bias  
was observed across initial groups. No data were excluded from the 
analyses in this study. One-sided, two-sample permutation tests for 
differences in mean value56 were performed using MATLAB (Mathworks, 
Natick, MA) in Fig. 5a,b to test the hypothesis that log10 CFU g−1 or log10 
CFU ml−1 titres were different from vehicle values for mouse model 
experiments. Exact permutation tests, in which all possible combina-
tions were considered, were used for all comparisons.

Ethics statement
The human skin biopsy experiment shown in Extended Data Fig. 9 
involved skin tissue obtained with inform consent of human donors by 
Genoskin, in compliance with all applicable regulations and approved 
and authorized by the French Ministry of Research and Higher Educa-
tion. All tissue donors support the use of human skin tissue for experi-
ments and research purposes, in compliance with the Declaration of 
Helsinki.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data generated from chemical screens, machine learning models and 
whole-genome sequencing experiments are available as Supplemen-
tary Data 1–4. Source Data are available for Figs. 4 and 5 and Extended 
Data Figs. 8 and 9. Data from whole-genome sequencing reads have 
been deposited on BioProject under accession number PRJNA1026995.  
A copy of model predictions for the Mcule purchasable database (ver. 
200601) and the Broad Institute database used in this work is avail-
able at https://github.com/felixjwong/antibioticsai. Source data are 
provided with this paper.

Code availability
Chemprop is available at https://github.com/chemprop/chemprop. The 
Chemprop checkpoints for the final antibiotic activity, cytotoxicity, 
and proton motive force-alteration models, along with a code platform 
for performing and adapting the analyses developed in this work, are 
available at https://github.com/felixjwong/antibioticsai and https://
zenodo.org/records/1009587957.
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Extended Data Fig. 1 | Molecular weight distribution of the 39,312 
compounds screened. Data are from an original set of 39,312 compounds 
containing most known antibiotics, natural products, and structurally diverse 

molecules, with molecular weights between 40 Da and 4,200 Da. Frequency is 
shown on a log scale.



Extended Data Fig. 2 | Comparison of deep learning models for predicting 
antibiotic activity. a,b, Precision-recall curves for predictions of antibiotic 
activity, for an ensemble of 10 Chemprop models without RDKit features  
(a) and the best-performing random forest classifier model based on Morgan 
fingerprints (b), trained and tested using data from a screen of 39,312 molecules 

(Fig. 1 of the main text). The black dashed line represents the baseline fraction 
of active compounds in the training set (1.3%). Blue curves and the 95% confidence 
interval indicate the variation generated by bootstrapping. AUC, area under 
the curve.
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Extended Data Fig. 3 | Comparison of deep learning models for predicting 
human cell cytotoxicity. a,b, Precision-recall curves for predictions of HepG2 
cytotoxicity, for an ensemble of 10 Chemprop models without RDKit features 
(a) and the best-performing random forest classifier model based on Morgan 
fingerprints (b), trained and tested using data from a screen of 39,312 molecules 
(Fig. 1 of the main text). The black dashed line represents the baseline fraction 
of active compounds in the training set (8.5%). Blue curves and the 95% 
confidence interval indicate the variation generated by bootstrapping. AUC, 
area under the curve. c,d, Precision-recall curves for predictions of HSkMC 
cytotoxicity, for an ensemble of 10 Chemprop models without RDKit features 
(c) and the best-performing random forest classifier model based on Morgan 

fingerprints (d), trained and tested using data from a screen of 39,312 molecules 
(Fig. 1 of the main text). The black dashed line represents the baseline fraction 
of active compounds in the training set (3.8%). Blue curves and the 95% 
confidence interval indicate the variation generated by bootstrapping.  
e,f, Precision-recall curves for predictions of IMR-90 cytotoxicity, for an 
ensemble of 10 Chemprop models without RDKit features (e) and the best- 
performing random forest classifier model based on Morgan fingerprints  
(f), trained and tested using data from a screen of 39,312 molecules (Fig. 1 of  
the main text). The black dashed line represents the baseline fraction of active 
compounds in the training set (8.8%). Blue curves and the 95% confidence 
interval indicate the variation generated by bootstrapping.



Extended Data Fig. 4 | Visualizing chemical space across different 
prediction score thresholds. a,b, t-Distributed neighbor embedding (t-SNE) 
plot of compounds with high and low antibiotic prediction scores, in addition 
to compounds in the training set, for different prediction score thresholds. The 

plot shows the chemical similarity or dissimilarity of various compounds, and 
active compounds in the training set (red dots) are seen to largely separate 
compounds with high prediction scores (green, black, and purple dots) from 
compounds with low prediction scores (brown dots).
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Extended Data Fig. 5 | Examples of rationale calculations using Monte-Carlo 
tree search. a, Illustration of the MCTS forward pass using compound 1. The 
figure shows three possible search paths from the root (compound 1) by deleting 
peripheral bonds or rings (highlighted in red). Due to space limitations, only 

three steps from the root are shown. b, Illustration of a complete search path 
from the root (compound 1) to a leaf node (the rationale). Chemprop is used to 
predict the activity of each leaf node, and these predictions are used to make 
updates to the statistics of each intermediate node in the backward pass.
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Extended Data Fig. 6 | Maximal common substructure identification 
reveals known antibiotic classes, but are less predictive than Chemprop 
rationales across all hits. a,b, Rank-ordered numbers of hits (a) and non-hits 
(b) associated with maximal common substructures (MCSs) identified by a 
grouping method. Here, any hit associated with any of the MCSs shown shares  
a minimum of 12 atoms with the MCS. Dashed lines in MCSs indicate either  
single or double bonds. Each green or brown bar shows the prediction score  
of each MCS viewed as a molecule in its own right. Where bars are thin, the 
corresponding MCS prediction scores are approximately zero (including all 

brown bars in (b)). c,d, Similar to (a), but here, any hit associated with any  
of the MCSs shown shares a minimum of 10 (c) or 15 (d) atoms with the MCS.  
e, Illustration of the rationales (red) determined using a Monte Carlo tree search 
for example hits (black) associated with MCSs A1-A12. No hit associated with 
MCS A12 possessed a rationale. f, MCS prediction scores (blue bars) and the 
average prediction scores of all rationales of all hits associated with MCSs 
A1-A12 (red bars). Where blue bars are thin, the corresponding MCS prediction 
scores are approximately zero. No hit associated with MCS A12 possessed a 
rationale.
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Extended Data Fig. 7 | Closest active training set compounds to, and 
selectivities of, four validated hits associated with rationale groups G1-G5. 
a, Closest active compounds (right), as measured by Tanimoto similarity, are 
from the training set of 39,312 compounds. Compounds are colored according 
to associated rationale groups (as indicated in parentheses), and the identifier 

and Tanimoto similarity score of each closest active compound are displayed. 
b, S. aureus MIC and human cell IC50 values of the four compounds in (a), shown 
on a log scale. Bars show the means of two biological replicates (points) and are 
colored by the bacterial strain, human cell type, or media condition tested. 
Asterisks indicate values larger than 128 μg/mL.
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Extended Data Fig. 8 | Comparison of MICs of different compounds against 
methicillin-susceptible and methicillin-resistant S. aureus, and eradication 
of kanamycin persisters by treatment with compounds 1 and 2. a, MICs of 
various antibiotics against S. aureus RN4220 (black) and S. aureus USA300 
(blue) on a log scale. Bars show the mean of two biological replicates (individual 
points). b, Survival curves of B. subtilis 168 after combination treatment with 

kanamycin and compounds 1 and 2, respectively, as determined by plating and 
CFU counting. Initial CFU values are ~107. Each point is representative of the 
mean of two biological replicates. Cultures treated with kanamycin in addition 
to compounds 1 and 2 were eradicated after 24 h (CFU/mL = 0), and these values 
were truncated to a log survival value of −7 on this plot.



Extended Data Fig. 9 | Toxicity, chemical properties, and in vivo efficacy  
of compounds 1 and 2. a, Fractional hemolysis measurements of human  
red blood cells (RBCs) treated with compounds 1 and 2 at the indicated final 
concentrations. Vehicle (1% DMSO) was used as a negative control, and Triton 
X-100, a detergent, was used as a positive control. Black points indicate values 
from two biological replicates, and red bars indicate average values. b, Ferrous 
iron chelation measurements of compounds 1 and 2. Vehicle (1% DMSO) was 
used as a negative control, and ethylenediaminetetraacetic acid (EDTA), an  
iron chelator, was used as a positive control. Black points indicate values from 
two biological replicates, and gray bars indicate average values. c, Ames test 
mutagenesis measurements of the fractions of revertant S. typhimurium TA100 
cultures treated with compounds 1 and 2 at the indicated final concentrations. 
Vehicle (1% DMSO) was used as a negative control, and 5 μg/mL sodium azide 

was used as a positive control. Black points indicate values from two biological 
replicates, and purple bars indicate average values. Higher fractions of revertant 
cultures indicate higher mutagenic potential (inset). d, Chemical stability of 
compound 1 in various buffers as a function of incubation time at 37 °C. Values 
are normalized to the mean measurement at time zero, and each point is 
representative of the mean of two biological replicates. Error bars indicate the 
full range of values arising from two biological replicates. e, Photographs of 
WoundSkin models 24 h after topical treatment with compound 1 (1%) or DMSO 
vehicle. Images are representative of six biological replicates in each treatment 
group. Scale bar, 2 mm. f, Illustration of the in vivo study of a neutropenic mouse 
wound infection model using MRSA CDC 563 shown in Fig. 5a of the main text. 
g, Illustration of the in vivo study of a neutropenic mouse thigh infection model 
using MRSA CDC 706 shown in Fig. 5b of the main text.
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activity relationships. a, The rationale of compounds 1 and 2, overlaid with 
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(Supplementary Data 2). SAR, structure-activity relationships. b, Analogues of 
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assessment, and data collection and analysis were not performed blind to the conditions of the experiments. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Eukaryotic cell lines
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) As described in the Methods section, HepG2 cells were obtained from ATCC (ATCC HB-8065), HSkMCs were obtained from 
ATCC (ATCC PCS-950-010), and IMR-90 cells were obtained from ATCC (ATCC CCL-186).

Authentication HepG2 and IMR-90 cells were authenticated using STR profiling by the supplier, ATCC.

Mycoplasma contamination All cells were assayed for mycoplasma contamination by the supplier, ATCC. Mycoplasma contamination was not detected.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Female C57BL/6J mice, 6-8 weeks old, 22 ± 2 g, received from The Jackson Laboratory, were used for the mouse topical wound 
infection model described in the study and quarantined at least 2 days prior to use. Female C57BL/6J mice, 6-8 weeks old, 18 ± 2 g, 
received from Charles River, were used for the mouse thigh infection model described in the study and quarantined at least 2 days 
prior to use. Animals were housed in a facility maintained at 20-26ºC ambient temperature, 40-65% relative humidity, and a 12:12 
light-dark cycle. Enrichment devices were included in the animal environments as required and changed bi-weekly. All mice in this 
study were treated in accordance with protocol IS00000852-6, approved by Harvard Medical School Institutional Animal Care and 
Use Committee and the Committee on Microbiological Safety.

Wild animals No wild animals were used.

Field-collected samples No field-collected samples were used.

Ethics oversight Studies were performed at the Wyss Institute at Harvard in accordance with protocol IS00000852-6, approved by the Harvard 
Medical School Institutional Animal Care and Use Committee and the Committee on Microbiological Safety. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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