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Discovering small-molecule senolytics with 
deep neural networks

Felix Wong1,2,3,7, Satotaka Omori2,3,4,7, Nina M. Donghia1,5, Erica J. Zheng2,6  
& James J. Collins    1,2,5 

The accumulation of senescent cells is associated with aging, inflammation 
and cellular dysfunction. Senolytic drugs can alleviate age-related 
comorbidities by selectively killing senescent cells. Here we screened 
2,352 compounds for senolytic activity in a model of etoposide-induced 
senescence and trained graph neural networks to predict the senolytic 
activities of >800,000 molecules. Our approach enriched for structurally 
diverse compounds with senolytic activity; of these, three drug-like 
compounds selectively target senescent cells across different senescence 
models, with more favorable medicinal chemistry properties than, and 
selectivity comparable to, those of a known senolytic, ABT-737. Molecular 
docking simulations of compound binding to several senolytic protein 
targets, combined with time-resolved fluorescence energy transfer 
experiments, indicate that these compounds act in part by inhibiting Bcl-2,  
a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, 
in aged mice and found that it significantly decreased senescent cell burden 
and mRNA expression of senescence-associated genes in the kidneys. Our 
findings underscore the promise of leveraging deep learning to discover 
senotherapeutics.

Cellular senescence is a permanent state of cell cycle arrest that is 
associated with cellular stress and aging. Although senescence pri-
marily protects against cancer, senescent cells (Sncs) exhibit altered 
phenotypes and secrete senescence-associated secretory phenotype 
factors, which include cytokines, chemokines, growth factors and pro-
teases that cause inflammation and tumorigenesis1,2. These factors, in 
turn, contribute to aging and the deleterious consequences of late-life 
diseases, including cancer, atherosclerosis and osteoarthritis. Recent 
studies have shown that the selective clearance of Sncs can ameliorate 
pathophysiological consequences associated with senescence3–5. In 
particular, senolytics, an emerging class of drugs that selectively kill 
Sncs, have been shown to extend healthspan and enhance the efficacy 
of chemotherapy in mice5–10. Yet, the removal of Sncs in mice has also 

been shown to slow wound healing11 and induce liver and perivascular 
tissue fibrosis12, highlighting the need to discover senolytic therapies 
that do not induce severe side effects.

Given the potential of senolytics with few side effects to mediate 
healthy aging, there has been considerable interest in discovering 
novel senolytics. The first senolytics—dasatinib, quercetin, fisetin 
and ABT-263—emerged in the mid-2010s from targeted bioinfor-
matics approaches that focused on pathways protecting Sncs from  
apoptosis13–16. Subsequently, senolytics including heat shock protein 
(HSP)-90 inhibitors6, cardiac glycosides7,17 and bromodomain and 
extra-terminal domain (BET) family protein inhibitors8 have been 
discovered through high-throughput screens and detailed mecha-
nistic studies. Many of these known senolytics have side effects or 
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formation of double-stranded DNA breaks, and cells were allowed to 
recover in etoposide-free medium. We confirmed senescence by stain-
ing for senescence-associated β-galactosidase (SA-β-gal) at timepoints 
corresponding to 1 day before compound treatment and the day of com-
pound treatment, which indicated substantively increased straining 
in etoposide-treated Sncs relative to vehicle (0.5% dimethyl sulfoxide 
(DMSO))-treated controls (Fig. 1b). Complementing these observa-
tions of SA-β-gal staining, we quantified p16, p21 and KI67 mRNA levels 
using quantitative PCR (Fig. 1c). Increased p16 and p21 mRNA levels 
are associated with senescence35–38, and decreased mRNA levels of 
KI67, a proliferation marker, are associated with growth arrest39,40. Our 
measurements indicated at least onefold increases (p16 and p21) and 
decreases (KI67) in mRNA levels in Sncs relative to vehicle-treated con-
trols (Fig. 1c). Sncs were then treated with 10 μM of each compound, and 
relative viability was measured by reduction of resazurin, a metabolic 
indicator, after a 3-day course of treatment (Extended Data Fig. 1 and 
Supplementary Data 1). As controls, vehicle-treated cells were counter-
screened in the same way.

As a starting point for senolytic activity, we defined active com-
pounds as those for which relative Snc viability was <0.5, relative viabil-
ity of control cells was >0.5 and the ratio of relative Snc/control viability 
was <0.7 (Fig. 1d). Requiring the relative viability of control cells to be 
>0.5 ensured that active compounds are not strongly cytotoxic, while 
requiring the ratio of relative Snc/control viability to be <0.7 ensured 
that active compounds have at least moderate selectivity against Sncs. 
With these criteria, 45 compounds emerged as active from our initial 
screens (Fig. 1d). These compounds included known senolytics such 
as ABT-737, ABT-263, A-1331852, A-1155463 and ouabain. We further 
validated a subset of the active compounds by performing detailed 
dose–response measurements, which demonstrated that these com-
pounds exhibit therapeutic indices against Sncs—that is, the ratio of 
Snc to control cell IC50 values—ranging from 1.5 (weakly selective) to 
24.5 (selective) and IC50 values against Sncs ranging from 0.32 to 25.1 μM 
(Extended Data Fig. 2). To explore the effects of different screening con-
centrations on the identification of active compounds, we repeated the 
screen with treatment at 1 μM and found substantially fewer—only six—
active compounds, which did not include known senolytics (Extended 
Data Fig. 2 and Supplementary Data 1). While these findings highlight 
the importance of screening at appropriate compound concentrations, 
we also note that our screening criteria provide only a starting point 
for defining senolytic activity: it is likely that not all active compounds 
identified here are true senolytics. Conversely, not all known senolytics 
emerge as active compounds in our screen, which may be due in part to 
the fact that several known senolytics are not selective at our screening 
concentrations of 1 and 10 μM (Supplementary Data 1).

On the basis of the foregoing criteria for active compounds, our 
screen at 10 μM revealed more active compounds, including known 
senolytics, than our screen at 1 μM. We therefore focused on using 
our screening results at 10 μM to train subsequent models. Due to the 
relatively small number of active compounds identified in our 10 μM 
screen, we reasoned that these data may be insufficient to accurately 
train detailed regression models; we therefore focused on develop-
ing binary classifier models, as we have previously done23. Neverthe-
less, as detailed further in Supplementary Note 1 and Supplementary 
Tables 1–11, additional analyses suggest that our model’s predictive 
performance is robust to variation in the criteria used to define active 
compounds and the type of classifier used.

Design and validation of graph neural network models
We next used our screening data to train deep learning models that 
predict senolytic activity on the basis of chemical structure. Building on 
our work in antibiotic discovery23, we employed message-passing graph 
neural network models34. Message-passing graph neural networks are 
a type of supervised model that takes as input a chemical structure of 
a molecule, integrates local information contained at each atom and 

limitations to clinical application. For instance, senolytics including 
fisetin and ABT-737 have limited bioavailability, and the evaluation 
of ABT-263 in phase II studies for the treatment of lung carcinoma 
revealed that thrombocytopenia and neutropenia were common side 
effects in patients18. Thus, the identification of novel senolytic com-
pounds is needed to advance the development of senolytics as a class 
of therapeutics.

Parallel to the discovery and development of senolytics, machine 
learning has proven versatile for facilitating drug discovery efforts19–22. 
Various machine learning models have combined training data gener-
ated from biological screens or available from public databases with 
architectures including neural networks to predict the activities and 
pharmacological properties of chemical compounds23–25, discover 
molecular binding targets and aging biomarkers26–30, and design mol-
ecules that satisfy predetermined criteria for biological activity and 
physicochemical properties31–33. While machine learning approaches 
have successfully enabled the discovery of chemical compounds 
targeting diverse indications, including bacterial infection23,24 and 
fibrosis31, they remain to be developed, tested and applied in differ-
ent therapeutic areas, including senolytics. In such applications, the 
design of appropriate conceptual frameworks, the generation of well-
controlled training data, the choice of suitable model architectures, 
and the experimental validation of model predictions are important 
for determining a model’s predictive accuracy and demonstrating the 
utility of machine learning for chemical compound discovery.

In this Technical Report, we reasoned that senolytic activity could 
be predicted in silico by machine learning models on the basis of chemi-
cal structure alone (Fig. 1a). We hypothesized that deep learning models 
could augment high-throughput screening efforts and identify seno-
lytic compounds from vast chemical spaces, as we have previously 
demonstrated for antibiotics23. To this end, we trained a graph neural 
network platform with the results of a screen for senolytic activity of 
2,352 compounds and applied it to predict senolytic activity in a chemi-
cal space of 804,959 compounds. In contrast to other architectures, 
graph neural networks enable molecular structures to be directly 
processed for training and prediction, and this architecture has pre-
viously been shown to improve predictive power23,34. After curating 
and testing an additional 266 compounds, our approach produced 
a working hit rate (positive predictive value) of 11.6%, enriching for 
structurally diverse senolytic compounds with favorable medicinal 
chemistry properties. Detailed studies of three selective compounds 
demonstrated that these compounds are effective senolytics (half-
maximal inhibitory concentration, IC50 <20 μM) and exhibit selectiv-
ity comparable to that of ABT-737 in different senescence models. In 
order to identify potential mechanisms of action of the identified 
compounds, we combined molecular docking simulations involving 
well-studied senolytic protein targets with time-resolved fluorescence 
energy transfer (TR-FRET) experiments, which together suggest that 
the compounds act in part by binding Bcl-2. Furthermore, we found 
that the identified compounds have encouraging safety profiles in 
initial toxicity tests and tested one compound, BRD-K56819078, in aged 
mice, finding that it reduces senescent cell burden and senescence-
associated messenger RNA (mRNA) expression in the kidneys. These 
results demonstrate the utility of graph neural networks for facilitating 
the identification of promising senolytic compounds, paving the way 
for effective senotherapeutics to be discovered using deep learning.

Results
Chemical screens of 2,352 compounds identify senolytics
To identify compounds with senolytic activity used to train our model, 
we first screened 2,352 compounds, largely from a library of US Food 
and Drug Administration-approved drugs and drugs undergoing clini-
cal trials, for senolytic activity in a model of therapy-induced senes-
cence (Methods). As a well-studied model system, human lung (IMR-90) 
fibroblasts were treated with etoposide to induce senescence via the 
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bond, and produces as output a prediction score representing the 
probability that the molecule possesses a property of interest. This 
model architecture has been shown to accurately predict properties, 
including antibiotic activity23, toxicity34 and side effects of drugs34. 
We assessed the ability of these models to predict senolytic activity 
by training and testing on 80–20 splits of our screening data. We then 
generated precision–recall curves, which plot the true positive rate 
against the positive predictive value (Fig. 1e). We found that the area 
under the precision–recall curve (auPRC), which measures the ability 
of the model to correctly identify a senolytic compound, was favorable, 
with a value of 0.24 (95% confidence internal 0.14–0.34). This indicates 

that the model can more accurately identify senolytic compounds in 
our training set as compared to random (auPRC of 0.019). In contrast, 
alternative models based on random forests resulted in reduced perfor-
mance, with at most an auPRC of 0.15 (Extended Data Fig. 3). Additional 
benchmarks of model performance using different metrics, including 
the positive predictive value at different prediction score thresholds, 
similarly indicated better performance in the graph neural network 
model (Supplementary Note 1).

Satisfied with the performance of our model, we retrained it using 
our entire screening dataset, and applied it to predict the senolytic 
activities of 804,959 compounds comprising the Broad Institute’s 
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Fig. 1 | Graph neural networks predict senolytic activity. a, Schematic of the 
approach. A total of 2,352 compounds, including known senolytics, are screened 
for senolytic activity, and the data are used to train graph neural networks. 
Trained models are applied to predict the senolytic activities of 804,959 
compounds. Compounds predicted to be active are tested for senolytic activity. 
b, SA-β-gal staining of vehicle- (0.5% DMSO) and etoposide-treated IMR-90 cells 
plated on the day before and day of compound addition. Each image represents 
two biological replicates. Scale bar, 100 μm. c, Relative mRNA expression of 
p16, p21 and KI67 in vehicle- (0.5% DMSO) and etoposide-treated IMR-90 cells 
on the day of compound addition. Data from three biological replicates are 
shown (black points), and bars represent average values. Error bars indicate 
one standard deviation. Two-sided two-sample t-test for differences in mean 
value: ***P < 0.005. d, Senolytic screening results for 2,352 compounds at a final 
concentration of 10 µM. Values show the mean of two biological replicates, 
and viability measurements are normalized by the interquartile mean of each 

plate. Active compounds (red points) are those for which relative control cell 
viability is >0.5, relative Snc viability is <0.7, and the ratio of Snc to control cell 
viability is <0.7. All other compounds are inactive (blue points). Three known 
senolytics, ABT-737, ABT-263 and A-1331852, are highlighted (large red points). 
Sncs were induced with etoposide, and control cells were treated with vehicle 
(0.5% DMSO). e, Precision–recall curves for ten Chemprop models trained and 
tested on the data in d. The black dashed curve represents the baseline fraction of 
active compounds in the training set (1.9%). Blue curves and the 95% confidence 
interval (CI) indicate the variation generated by bootstrapping. AUC, area under 
the curve. f, Rank-ordered prediction scores (PS) of 804,959 compounds, for 
20 Chemprop models trained on all the data in d. g, t-SNE plot of compounds 
with high and low predicted senolytic activity and the training set shown in d. 
Validated compounds refer to Fig. 2. Three validated compounds with high 
predicted activity, which we focus on in this study, and their corresponding 
identifiers are highlighted in magenta.
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Drug Repurposing Hub41 (with 5,819 unique compounds scored) and an 
extended Broad Institute library of 799,140 compounds. We found that 
the compounds exhibited a range of prediction scores, from 2.1 × 10−6 
to 0.70 (Fig. 1f and Supplementary Data 2), suggesting that our model 
discriminates between predicted active and inactive compounds. 
Our model predictions were also structurally diverse, as indicated by 
visualizing the predicted compounds with t-distributed stochastic 
neighborhood embedding (t-SNE)42. Here, compounds corresponding 
to closer points are more structurally similar, and our plot revealed 
that the chemical spaces covered by high-ranking compounds from 
the Drug Repurposing Hub and the extended Broad Institute library 
are similar to, but extend beyond, that of active compounds from our 
screen (Fig. 1g). Furthermore, high-ranking compounds were largely 
separated from low-ranking compounds, indicating that our model 
demonstrates discriminatory ability.

We next narrowed our search space by applying filters selective 
for favorable medicinal chemistry properties and structural novelty 
(Extended Data Fig. 4 and Supplementary Data 3). First, we filtered 
compounds with promiscuously reactive substructures (pan-assay 

interference compounds, PAINS) and pharmacokinetically unfavorable 
substructures (Brenk substructures)43,44. Second, we aimed to curate 
compounds that were structurally distinct from known senolytics; 
we did so utilizing the Tanimoto similarity, a set-based measure of 
similarity that has a value of 1 when two compounds are identical and 
a value of 0 if two compounds have no substructure in common. Of our 
remaining compounds, we retained only those with low Tanimoto simi-
larity (≤0.5) to any compound in our training dataset. From the filtered 
compounds, we curated all 10 compounds with prediction scores >0.4 
from the Drug Repurposing Hub, and 206 in-stock compounds with 
prediction scores >0.4 from the extended Broad Institute library. As 
a negative control, we curated the bottom-ranking 50 filtered com-
pounds, with prediction scores <7 × 10−5, from the Drug Repurposing 
Hub (Supplementary Data 3).

Measuring senolytic activity as before, our preliminary screens 
revealed that 25 of the 216 curated high-ranking compounds were 
active, in contrast to none of the 50 curated low-ranking compounds 
(Fig. 2a,b). The working hit rate (positive predictive value) of our 
approach was 11.6%, suggesting that our platform enriched for active 
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Fig. 2 | Identification of structurally diverse compounds with senolytic 
activity. a, Cell viability measurements for 266 curated compounds, including 
216 high-ranking compounds from the Broad Institute’s Drug Repurposing Hub 
or an extended Broad Institute library and the bottom-ranking 50 compounds 
from the Drug Repurposing Hub. Values indicate the mean of two biological 
replicates, and cell viability measurements are normalized with respect to 
the interquartile mean viability of each cell plate. The final concentration of 
all compounds was 10 μM. Sncs were treated with etoposide for senescence 
induction, and control cells were treated with vehicle (0.5% DMSO). b, Rank-
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compounds relative to our initial screen (1.9% baseline enrichment), 
and that improvements to the model may further increase prediction 
accuracy. The low false negative rate of our approach also suggests 
that our model can contribute to filtering out molecules that probably 
do not possess senolytic activity in high-throughput screens. Notably, 
nearly all validated hits possessed Lipinski-conforming45 molecular 
weights of <500 Da and were structurally dissimilar to all molecules 
in the training set, with Tanimoto similarity scores between 0.24 and 
0.49 (Fig. 2c). This indicated that the hit compounds were drug-like 
and structurally novel.

Validation of compounds in models of therapy-induced 
senescence
We studied in detail the dose–response of several compounds that 
were particularly selective at 10 μM: of these, three compounds, BRD-
K20733377, BRD-K56819078 and BRD-K44839765, exhibited encourag-
ing therapeutic indices of 8.3, 12.0 and 4.7, respectively, which were 
at least comparable to the therapeutic index of ABT-737 (7.5; Fig. 3a–e 
and Extended Data Fig. 5). Given ABT-737’s considerable selectivity 
and role in informing the discovery of other compounds with senolytic 
activity, including ABT-263, we focused on comparing the three identi-
fied compounds to ABT-737. Importantly, measurements of cellular 
viability across time indicate that all three compounds could selec-
tively kill Sncs without inhibiting the growth of control cells at selective 
concentrations, in contrast to ABT-737 (Fig. 3f). Cellular viabilities of 
control, nonsenescent cells were increased after 3 days of incubation 
with 1% DMSO as a vehicle, demonstrating proliferation of control 
cells; in contrast, viabilities of etoposide-treated Sncs were decreased, 
an effect that could arise from post-treatment etoposide lethality on 
the timescale of our experiments46,47. Nevertheless, as compared to 
DMSO-treated Sncs and control cells, treatment with BRD-K20733377, 
BRD-K56819078 and BRD-K44839765 at concentrations between 1.5 
and 3 μM resulted in the selective elimination of Sncs and no difference 
in the viabilities of control cells. In contrast, treatment with ABT-737 
resulted in decreases in the viabilities of control cells, by ~20 to 50%, 
at concentrations including 0.2 and 1.5 μM (Fig. 3f).

Given that the identified compounds may exhibit more prom-
ising selectivity than ABT-737, we investigated their structural and 
physicochemical properties in greater detail. All three compounds are 
drug-like compounds from the extended Broad Institute library with 
no current clinical use. BRD-K56819078 and BRD-K44839765 share 
a benzothiazole-containing substructure, and all three compounds 
occupy a chemical space distinct from that of the training dataset, with 
the closest compounds being sulfadiazine, 3,4-dimethyoxybenzoic 
acid and salicylanilide, as measured by Tanimoto similarity (Figs. 1g 
and 2c, and Extended Data Fig. 6). Importantly, all three compounds 
are Lipinski-conforming and possess seven to ten rotatable bonds 
and topological polar surface areas between 109 and 143 Å2 (Table 1 
and Supplementary Data 4). These chemical properties suggest that 
BRD-K20733377 and BRD-K44839765 can be orally bioavailable, as they 
satisfy the Veber criteria of ≤10 rotatable bonds and topological polar 
surface area of ≤140 Å2 (ref. 48). Additionally, the 143 Å2 topological 
polar surface area of BRD-K56819078 is only slightly larger than the 
140 Å2 threshold48. In contrast, ABT-737 possesses a molecular weight 
of 879.5 Da, 17 rotatable bonds and a topological polar surface area of 
164 Å2. Low oral bioavailability, as well as undesirable side effects, has 
indeed limited the clinical application of ABT-737.

To further investigate the senolytic activities of BRD-K20733377, 
BRD-K56819078 and BRD-K44839765, we verified that these com-
pounds were similarly selective against Sncs in an IMR-90 model of 
therapy-induced senescence using doxorubicin (Extended Data Fig. 7).  
SA-β-gal staining and quantification of p16, p21 and KI67 mRNA lev-
els revealed that doxorubicin-treated wells exhibited a senescence 
phenotype similar to that of etoposide-treated cells, and all three 
compounds were indeed selective against doxorubicin-treated cells, 

with therapeutic indices between 4.3 and 7.3 and IC50 values ≤12.1 μM 
(Extended Data Fig. 7). Furthermore, IC50 values for all three com-
pounds were ≥20 µM for human embryonic kidney (HEK293) and liver 
carcinoma (HepG2) cells (Table 1), suggesting that all three compounds 
may not be strongly nephrotoxic or hepatotoxic at concentrations 
that are selective against Sncs, and that the compounds might target 
pathways specifically involved in cellular senescence.

Validation of compounds in a model of replicative senescence
Orthogonal to our models of therapy-induced senescence, we measured 
the efficacy of BRD-K20733377, BRD-K56819078 and BRD-K44839765 
in a model of replicative senescence. We cultured early- and late-
passage IMR-90 cells, and late-passage cells were passaged until they 
became nondividing. To confirm senescence of late-passage cells, we 
performed SA-β-gal staining (Fig. 4a) and quantitation of p16, p21 and 
KI67 mRNA levels (Fig. 4b) as before; this revealed substantive SA-β-gal 
staining in late-passage cells and similarly increased or decreased p16, 
p21 and KI67 mRNA levels relative to those in the etoposide model. 
Treating early- and late-passage cells with each compound, we found 
that all three compounds were selective against late-passage Sncs  
(Fig. 4c–f). BRD-K20733377 and BRD-K56819078 were similarly selec-
tive against late-passage Sncs than ABT-737, while BRD-K44839765 was 
less—largely consistent with our findings for etoposide-treated Sncs 
(Fig. 3a–d). Intriguingly, the IC50 values of all compounds were gener-
ally increased in early-passage cells as compared to vehicle-treated 
controls in the etoposide model, and in late-passage cells as compared 
to etoposide-treated Sncs. It is possible that these differences in IC50 val-
ues might arise from continued post-treatment etoposide lethality46,47 
and increases in cellular permeability arising from DMSO treatment 
in the etoposide model, in addition to technical variability between 
experiments. Despite differences in IC50 values, these findings consist-
ently support the selectivity of the identified compounds in a model 
of replicative senescence.

Molecular docking and TR-FRET study of identified 
compounds
Given that BRD-K20733377, BRD-K56819078 and BRD-K44839765 are 
selective against Sncs in different models of senescence, we hypoth-
esized that they may act on targets conserved in senescence pathways. 
We reasoned that a starting point for determining their potential 
mechanisms of action was to focus on known senolytic protein tar-
gets49, including Bcl-2 and Bcl-2 family proteins, heat shock proteins 
such as Hsp90, and proteins involved in cell cycle regulation such as 
MDM2 and PI3K (Fig. 5a). Bcl-2 and Bcl-2 family proteins, including 
Bcl-XL, regulate cell death by apoptosis and are selectively inhib-
ited by several senolytics, including ABT-737, ABT-263 and A-1331852  
(refs. 10,12–15,50,51). Hsp90 is a ubiquitously expressed chaperone 
and stress response protein that stabilizes various client proteins, 
including those involved in oncogenesis and apoptosis, of which Akt 
aids in preventing apoptosis in Sncs6,52,53. Hsp90 inhibitors, including 
geldanamycin and 17-DMAG, have been identified as effective senolyt-
ics6,53. MDM2 directly binds to the transactivation domain of p53 and 
inhibits its transcriptional activity, an interaction that also results in 
the ubiquitination and proteomic degradation of p53, and senolytics 
including nutlin-3a and UBX0101 bind MDM2, inhibit the MDM2–p53 
interaction and increase the availability of pro-apoptotic p53 (refs. 
54–57). PI3K activation phosphorylates and activates Akt, which, as 
mentioned above, prevents apoptosis in Sncs, and senolytics including 
fisetin and quercetin bind PI3K (refs. 58–61).

Building on the above knowledge of senolytic protein targets, we 
performed molecular docking simulations to predict likely protein tar-
gets of BRD-K20733377, BRD-K56819078 and BRD-K44839765 (Fig. 5b).  
Here, as controls, we included known ligands of Bcl-2, Bcl-XL, Hsp90, 
MDM2 and PI3K (Fig. 5a), and we simulated the binding of each mol-
ecule to each of these proteins with a widely used molecular docking 
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platform, AutoDock Vina62. We obtained the protein structure of each 
target from a corresponding complex with a bound inhibitor from the 
Protein Data Bank (PDB)63–67, and we defined the active site of each 
protein structure on the basis of the conformation of the correspond-
ing bound inhibitor. Representing each chemical compound in three 
dimensions, docking each compound into the active site of each struc-
ture resulted in a range of predicted binding affinity values (Fig. 5c). 

Notably, taking the protein–ligand interaction with the lowest binding 
affinity (highest activity) to be the most likely—of the targets studied—
for any given compound, our approach accurately predicted the known 
binding interactions of ABT-737 to Bcl-2, geldanamycin to Hsp90, and 
fisetin to PI3K (Fig. 5c). Illustrating the potential limitations of our 
approach, nutlin-3a was predicted to bind Bcl-2 with lower affinity than 
that of its known primary target, MDM2 (ref. 66). Intriguingly, however, 
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Fig. 3 | Validation of identified compounds in a model of therapy-induced 
senescence. a–d, Dose–response curves of control and etoposide-treated  
IMR-90 cells treated with BRD-K20733377 (a), BRD-K56819078 (b), 
BRD-K44839765 (c) and ABT-737 (d) for comparison. Compounds were serially 
diluted twofold starting from a final concentration of 50 μM, and 0 μM (1% 
DMSO vehicle) treatment was included. Cells were treated for 3 days. Cellular 
viability was determined by the metabolic reduction of resazurin into fluorescent 
resorufin, and values are normalized by the fluorescence intensities of the 
average of two untreated samples from the same phenotype: here, a cellular 
viability of 1 indicates that of either untreated control cells or Sncs. Vehicle 
treatment may result in cellular viability values <1 due to effects of DMSO on 
cellular viability. Black curves indicate control (vehicle-treated) cells, and blue 
curves indicate (etoposide-treated) Sncs. Measurements are shown for two 
biological replicates in each treatment group (open points), and mean viability 

values (closed points) were fitted to calculate IC50 values. The therapeutic  
index (TI) is the ratio of IC50 values for vehicle- and etoposide-treated cells.  
The chemical structure of each compound is shown in the inset of each plot.  
e, Additional structurally diverse active compounds, with the therapeutic index 
(TI) of each compound indicated for vehicle- and etoposide-treated cells (see also 
Extended Data Fig. 5). f, Cellular viability measurements for control (untreated) 
and etoposide-treated IMR-90 cells treated with varying concentrations of 
BRD-K20733377, BRD-K56819078, BRD-K44839765 and ABT-737. Cells were 
treated for 3 days. Values shown are normalized to the mean cell viability value 
for cells treated with vehicle (1% DMSO) for 3 days, such that cell proliferation in 
the presence of DMSO vehicle between days 0 and 3 is indicated by an increase 
in cellular viability values. Data from two biological replicates are shown (black 
points), and bars represent average values. Red lines highlight inhibited control 
cell proliferation induced by treatment with ABT-737.
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nutlin-3a has also been evidenced in previous work to bind Bcl-2 family 
proteins, including Bcl-2 and Bcl-XL, suggesting that nutlin-3a may be 
promiscuous68. On the basis of these supportive preliminary results, 
we investigated in detail the docking predictions for BRD-K20733377, 
BRD-K56819078 and BRD-K44839765, which predicted that all three 
compounds most likely bind Bcl-2 with binding affinities comparable 
to those of the geldanamycin-Hsp90 and nutlin-3a-Bcl-2 interactions 
(Fig. 5c). To further interpret each predicted binding interaction, we 
visualized the docked pose of each compound in comparison to that of 
ABT-737 (Fig. 5d). Examination of each binding pose suggested that the 
three identified compounds could, like ABT-737, interact with residues 
in common binding pockets of Bcl-2, including those containing L97, 
A100, G145 and A149 (Fig. 5d).

To summarize, our molecular docking simulations suggested that 
BRD-K20733377, BRD-K56819078 and BRD-K44839765 most likely bind 
Bcl-2, and that this binding may involve similar residues or binding pock-
ets as those of ABT-737. We directly tested this hypothesis using a TR-
FRET assay, in which Bcl-2 binding activity to a peptide ligand specific 
to its active site is measured. We found that all three compounds indeed 
inhibited Bcl-2, and this inhibition occurs at micromolar concentra-
tions comparable to the corresponding Snc IC50 values in the therapy-
induced and replicative senescence models (Fig. 5e). Intriguingly, ABT-737 
appears to be a more potent inhibitor of Bcl-2 than the three compounds,  
an observation consistent with ABT-737’s lower IC50 value against Sncs 
(Figs. 3a–d and 4c–f, and Extended Data Fig. 7). Taken together, these 
results support the hypothesis that BRD-K20733377, BRD-K56819078 
and BRD-K44839765 selectively target Sncs in part by inhibiting Bcl-2.

Initial toxicity profiling of identified compounds
As BRD-K20733377, BRD-K56819078 and BRD-K44839765 exhibit prom-
ising senolytic activities and physicochemical properties, we further 
assessed their toxicity profiles. Diverse toxicological assays, includ-
ing those examining cardiotoxicity, neurotoxicity and mitochondrial 
toxicity, are needed to comprehensively evaluate the safety profiles 
of lead compounds and inform subsequent in vivo experiments and 
the possibility of side effects; for our preliminary studies, we focused 

on mechanistic toxicity, as surveyed by hemolysis, and genotoxicity, 
as assessed by mutagenic potential. Hemolysis is often a severe toxic 
liability of systemically-administered compounds that kill cells, and 
hemolytic activity may preclude the use of compounds for injection, 
a route of administration commonly used for senolytics in addition to 
oral69–71. Measuring the release of hemoglobin from human red blood 
cells extracted from whole blood, we found that treatment with all 
three compounds, in addition to ABT-737, did not induce substantial 
hemolysis up to a final concentration of 100 µM—approximately 10× the 
corresponding therapeutic concentrations in the therapy-induced and 
replicative senescence models (Extended Data Fig. 8). In contrast, treat-
ment with Triton X-100, a detergent with hemolytic activity, resulted in 
substantial hemolysis at concentrations ≥0.01% (w/w). Furthermore, 
we assessed potential genotoxic effects using a bacterial Ames test, in 
which the number of bacterial revertants from a base-pair substitution 
is measured after compound treatment to assess mutagenic potential. 
In contrast to treatment with ~1 µM 4-nitroquinoline 1-oxide, a potent 
mutagen, treatment with all three compounds at 100 µM, in addition 
to ABT-737, did not induce substantial reversion of bacterial cultures 
(Extended Data Fig. 8). These preliminary findings suggest that the 
identified compounds may possess favorable toxicity profiles, under-
scoring their potential for further development.

In vivo efficacy of BRD-K56819078 in an aged mouse model
Given the favorable selectivity and toxicity profiles of BRD-K20733377, 
BRD-K56819078 and BRD-K44839765, we selected BRD-K56819078, 
one of the more selective of the three compounds across all senes-
cence models (Figs. 3a–d and 4c–f, and Extended Data Fig. 7), for in vivo  
testing. Previous measurements of Sncs in animal models have focused 
on Snc accumulation in the kidneys72, which has been suggested to 
exhibit more salient increases in senescence-associated biomarkers 
than in other tissues in humans73. As a baseline experiment, we collected 
the kidneys of naïve young and aged C57BL/6J mice and measured SA-β-
gal staining and p16 and p21 mRNA expression (Fig. 6a). We found that 
the SA-β-gal-positive area in different images of young mouse kidneys 
were, on average, ~40% less than that of aged mouse kidneys (Fig. 6b). 

Table 1 | Physicochemical properties and cytotoxicity of identified compounds

Compound BRD-K20733377 BRD-K56819078 BRD-K44839765 ABT-737

Canonical SMILES string C1=CC=C(C=C1)
C2=CC=C(C=C2)C(=O)
NC3=CC=C(C=C3)S(=O)(=O)
NC4=NC=CC=N4

COC1=C(C=C(C=C1)C(=O)
NC2=CC3=C(C=C2)N=C(S3)
SCC(=O)NC4=CC=CC=C4F)
OC

CC1=CC=CC=C1C(=O)
NC2=CC3=C(C=C2)N=C(S3)
SCC(=O)NC4=CC=CC=C4

CN(C)CCC(CSC1=CC=CC=C1)
NC2=C(C=C(C=C2)
S(=O)(=O)NC(=O)
C3=CC=C(C=C3)N4CCN(CC4)
CC5=CC=CC=C5C6=CC=C(C=C6)
Cl)[N+](=O)[O-]

Molecular weight 430.48 Da 497.56 Da 433.55 Da 813.43 Da

Number of heavy atoms 31 34 30 56

Number of rotatable bonds 7 10 8 17

Topological polar surface area 
(TPSA)

109.43 Å2 143.09 Å2 124.63 Å2 164.49 Å2

Lipinski-conforming Yes Yes Yes No; MW >500 Da g mol−1, TPSA 
>140 Å2

Veber-conforming Yes No; TPSA >140 Å2 Yes No; number of rotatable bonds 
>10, TPSA >140 Å2

PAINS None None None None

Brenk substructures None None None Yes; nitro group and oxygen–
nitrogen single bond

HEK293 IC50 51.1 µM 21.4 µM 159.5 µM 28.8 µM

HepG2 IC50 70.3 µM 420.7 µM 382.6 µM 131.9 µM

For comparison, values for ABT-737 are shown. Lipinski-conforming indicates that a compound violates no more than one of Lipinski’s rule of five: (a) ≤5 hydrogen bond donors, (b) ≤10 hydrogen-
bond acceptors, (c) molecular weight <500 Da and (d) log P partition coefficient <5. Veber-conforming indicates that a compound violates none of Veber’s rules for oral bioavailability: (a) ≤10 
rotatable bonds and (b) TPSA ≤ 140 Å2. IC50 values for human embryonic kidney (HEK293) and human liver carcinoma (HepG2) cells represent values inferred from curve-fitting with data from two 
biological replicates, as detailed in Methods.
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Consistent with a decrease in senescent cell burden, average mRNA 
expression of p16 and p21 were decreased by >90% and ~30%, respec-
tively, in young mice relative to aged mice (Fig. 6c). These findings 
indicate that differences in mouse age, and hence the accumulation of 
Sncs, are reflected in senescence-associated biomarkers in the kidneys.

Building on the foregoing results, we treated aged C57BL/6J mice 
with vehicle (10% DMSO:45% PEG300:45% water for injection w/w) 
or BRD-K56819078 (intraperitoneally at 25 mg kg−1 per injection) 
on days 0, 2, 4, 7, 9 and 11 of a 14 day experiment (Fig. 6d). Notably, 

BRD-K56819078 was well tolerated by all treated mice and did not 
result in obvious toxicity, abnormal behavior or abnormal decreases 
in weight. We collected the kidneys of all mice on day 14 and measured 
SA-β-gal staining and p16 and p21 mRNA expression. This revealed sig-
nificant decreases in the SA-β-gal-positive areas of mice treated with 
BRD-K56819078, with average decreases of ~20% relative to vehicle-
treated mice (Fig. 6e). mRNA expression of p16 and p21 was significantly 
decreased in mice treated with BRD-K56819078, with average decreases 
of ~60% and ~30%, respectively, in mice treated with BRD-K56819078 
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Fig. 4 | Validation of identified compounds in a model of replicative 
senescence. a, SA-β-gal staining of early- and late-passage IMR-90 cells plated  
at times corresponding to the day before and day of compound addition.  
Each image is representative of two biological replicates. Scale bar, 100 μm.  
b, Relative mRNA expression of p16, p21 and KI67 in early- and late-passage IMR-
90 cells collected on the day of compound addition. Data from three biological 
replicates are shown (black points), and bars represent average values. Error bars 
indicate one standard deviation. Two-sided two-sample t-test for differences 
in mean value: **P < 0.01, ***P < 0.005. c–f, Dose–response curves of early- and 
late-passage IMR-90 cells treated with BRD-K20733377 (c), BRD-K56819078 (d), 
BRD-K44839765 (e) and ABT-737 (f) for comparison. Compounds were serially 
diluted twofold starting from a final concentration of 50 μM, and 0 μM (1% 

DMSO vehicle) treatment was included. Cells were treated for 3 days. Cellular 
viability was determined by the metabolic reduction of resazurin into fluorescent 
resorufin, and values are normalized by the fluorescence intensities of the 
average of two untreated samples from the same phenotype: here, a cellular 
viability of 1 indicates that of either untreated early- or late-passage cells. Vehicle 
treatment may result in cellular viability values <1 due to minor effects of DMSO 
on cellular viability. Black curves indicate control (early-passage) cells, and blue 
curves indicate (late-passage) Sncs. Measurements are shown for two biological 
replicates in each treatment group (open points), and mean viability (closed 
points) were fitted to calculate IC50 values. The therapeutic index (TI) is the ratio 
of IC50 values for early- and late-passage cells.
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relative to vehicle-treated mice (Fig. 6f). Taken together, these in vivo 
experiments indicate that BRD-K56819078 significantly decreased 
senescent cell burden and mRNA expression of senescence-associated 
genes in the kidneys, suggesting the promise of BRD-K56819078 and 
other compounds for further development.

Discussion
In this study, we trained deep learning models with the results of a small 
molecule screen for senolytic activity and applied our models to discover 

structurally diverse compounds with senolytic activity from a chemical 
space of >800,000 compounds (Fig. 1). Our approach augments high-
throughput screens for compounds with senolytic activity—leading to a 
sixfold increase in the working hit rate (positive predictive value)—and 
we anticipate that increasing the number of active compounds used 
in model training could further increase prediction accuracy (Fig. 2). 
Detailed studies of three senolytic compounds with favorable medicinal 
chemistry properties indicate that they are selective against Sncs in 
models of therapy-induced and replicative senescence (Figs. 3 and 4).  
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Fig. 5 | Molecular docking- and TR-FRET-based identification of Bcl-2 as 
a potential binding target. a, Known senolytic protein targets in humans. 
PDB identifiers used for molecular docking and relevant protein functions 
are indicated. As controls for the docking simulations, examples of known 
binding inhibitors of each protein were identified, and their molecular 
structures were used for docking. b, Schematic of the molecular docking 
approach. Experimentally determined protein structures in complex with 
various inhibitors were curated from the PDB, and protein active sites were 
determined from the inhibitor-bound conformations. Chemical compounds 
of interest were represented in three dimensions (3D) and docked in the active 
site of each protein structure using AutoDock Vina. Binding affinities were then 
calculated for each protein–ligand pair and used to rank likely binding targets 
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contrast. e, Relative Bcl-2 activity in the presence of varying concentrations of 
BRD-K20733377, BRD-K56819078, BRD-K44839765 and ABT-737, as measured by 
TR-FRET. Black points indicate values from individual biological replicates, and 
blue bars indicate average values. Unpaired two-sided t-tests for no change in  
Bcl-2 activity after compound treatment (compared to relative Bcl-2 activity 
values of 1 arising from vehicle treatment only): *P ≤ 0.05, ***P < 0.005.
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To study potential mechanisms of action, we developed a molecular 
docking-based approach to predict the interactions of these com-
pounds with known senolytic protein targets. Our results suggest that 
the compounds selectively target Sncs in part by inhibiting Bcl-2, a 
hypothesis supported by empirical TR-FRET measurements (Fig. 5). 
Moreover, we tested one compound, BRD-K56819078, in aged mice 
and found that it significantly decreased senescent cell burden and 
mRNA expression of senescence-associated genes in the kidneys 
(Fig. 6). Taken together, these findings demonstrate that combining 
experiment with computation and deep learning can enable one to 
efficiently discover senolytic compounds and rapidly elucidate their 
potential mechanisms of action. It is important to highlight that we 
anticipate this approach to facilitate lead generation: in addition to 
optimizing compounds for selectivity, additional studies should fur-
ther determine the in vivo efficacy, absorption, distribution, metabo-
lism and excretion (ADME) properties, and potential side effects of 
lead compounds in order to assess their clinical suitability. These 
are lines of additional research that our preliminary toxicity profil-
ing results (Extended Data Fig. 8) and in vivo experiments (Fig. 6)  
only begin to address.

While our deep learning approach is promising, it also has limi-
tations. First, machine learning approaches are generally limited by 
the training data used. Although our screen of 2,352 compounds and 
activity criteria resulted in enough active compounds to train models 
with predictive power, more structural diversity in the training set will 
allow models to more accurately infer the chemical substructures that 
confer senolytic activity. This will help to facilitate the identification 
of more structurally diverse senolytics. Datasets containing multidi-
mensional readouts of senescence-associated markers, in addition to 

cellular viability for different cell lines and compound concentrations, 
may improve the predictive capabilities of these models. Second, our 
approach relies on training data generated from phenotypic screens 
to make predictions of senolytic activity. Mechanistically elucidating 
compound binding targets remains a challenge, despite elegant stud-
ies that have aimed to address this problem25–27,74–76, in part because of 
the need for detailed predictions and their experimental validation. 
Our results suggest that canonical molecular docking simulations can 
discriminate between known binders and nonbinders of senolytic pro-
tein targets; yet, docking is also known to produce false positives77–79, 
and predictions arising from docking should be empirically validated 
to determine accuracy. Community efforts that build on the recent 
bioinformatics and cheminformatics literature to combine novel, and 
potentially explainable80, machine learning approaches with additional 
experimental data may help to address both these limitations.

Moving forward, we believe that the emerging field of senolytics 
is well positioned to benefit from machine learning-based approaches 
that rely on phenotypic information. Senolytics have been thought 
to be more similar to antibiotics than any other type of drug: they aim 
to target and eliminate a cellular phenotype as opposed to a specific 
receptor, enzyme or biochemical pathway16. Indeed, the phenotypic 
and network-based approaches used to discover and model the effects 
of senolytics have had more in common with those used for antibiot-
ics than typical one-target–one-drug–one-disease approaches16,81. In 
addition to further exploring chemical space, we anticipate that future 
work will leverage explainable machine learning approaches80 and 
detailed mechanism of action information to help elucidate the biologi-
cal principles, phenotypes and networks underlying how senolytics 
selectively target Sncs. Together, these approaches will enable the 
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Fig. 6 | In vivo efficacy of BRD-K56819078 in an aged mouse model.  
a, Schematic of the validation experiment. Kidneys were collected from naïve 
young and aged mice and tested for senescent cell burden, as measured by 
SA-β-gal staining and mRNA expression of p16 and p21. b, Relative SA-β-gal-
positive area in kidney sections of young and aged mice (n = 3 mice each, and 
one kidney per mouse). Data shown are from two fields of view for each kidney, 
and horizontal lines represent average values. c, Relative mRNA expression of 
p16 and p21 in the kidneys of young and aged mice (n = 3 mice each, and one 
kidney per mouse). Horizontal lines represent average values. One-sided, two-
sample permutation test for differences in mean value: *P ≤ 0.05. d, Schematic 
of the aged mouse experiment. Kidneys were collected from aged mice treated 

intraperitoneally six times with vehicle or BRD-K56819078 (25 mg kg−1 per 
injection) and tested for senescent cell burden, as measured by SA-β-gal staining 
and mRNA expression of p16 and p21. e, Relative SA-β-gal-positive area in kidney 
sections of vehicle- and BRD-K56819078-treated aged mice (n = 7 mice each, 
and one kidney per mouse). Data shown are from two fields of view for each 
kidney, and horizontal lines represent average values. One-sided, two-sample 
permutation test for differences in mean value: *P ≤ 0.05. f, Relative mRNA 
expression of p16 and p21 in the kidneys of vehicle- and BRD-K56819078-
treated aged mice (n = 8 mice each, and one kidney per mouse). Horizontal 
lines represent average values. One-sided, two-sample permutation test for 
differences in mean value: *P ≤ 0.05.
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efficient discovery of novel senolytic compounds and their biological 
targets, contributing to our evolving understanding of senolytics and 
facilitating their development as a class of therapeutics.

Methods
This study complies with all relevant ethical regulations; in particular, 
the experiment described below in ‘Aged mouse model experiments’ 
was performed in accordance with protocol IS00000852-6, approved 
by Harvard Medical School Institutional Animal Care and Use Commit-
tee and the Committee on Microbiological Safety.

Cell culture
Human lung fibroblast (IMR-90) cells were obtained from the American 
Type Culture Collection (ATCC, CCL-186) and passaged less than ten 
times (less than 30 population doublings) for all experiments, with 
the exception of high-passage cells used in the model of replicative 
senescence (see ‘Replicative senescence’ below). Cells were cultured 
in growth media comprising Eagle’s minimum essential medium (ATCC 
30-2003) supplemented with 10% fetal bovine serum (Thermo Fisher 
16140071) and 1% penicillin–streptomycin (Thermo Fisher 15070063). 
Cells were incubated in a humidity-controlled incubator at 37 °C with 5% 
CO2. Cells were detached using trypsin–EDTA (0.05%; Gibco 25300120).

Etoposide-induced senescence
IMR-90 cells were cultured as described above. At between 30% and 50% 
confluence, the medium was replaced with complete growth medium 
containing vehicle (0.5% DMSO, MilliporeSigma D5879) or complete 
growth medium containing 50 μM etoposide (prepared as a 1:200 
dilution of a 10 mM stock solution in DMSO; etoposide, MilliporeSigma 
E1383). Cells were treated for 2 days, after which the medium was 
replaced with fresh growth medium and cells were allowed to recover 
for 4 days. Cells were then plated as described below.

Doxorubicin-induced senescence
As an additional model of therapy-induced senescence, we used a 
model of doxorubicin-induced senescence. IMR-90 cells were cultured 
as described above. At between 30% and 50% confluence, the medium 
was replaced with complete growth medium containing vehicle (0.5% 
DMSO) or complete growth medium containing 0.5 μM doxorubicin 
(prepared as a 1:200 dilution of a 0.1 mM stock solution in DMSO;  
doxorubicin, Cayman Chemical 15007). Cells were treated for 2 days, after 
which the medium was replaced with fresh growth media and cells were 
allowed to recover for 4 days. Cells were then plated as described below.

Replicative senescence
As an orthogonal model of cellular senescence, we used a model of 
replicative senescence. Early-passage IMR-90 cells (passage number 
<3, corresponding to less than 9 population doublings from supplier’s 
stock) were used. High-passage IMR-90 cells were cultured as described 
above and passaged until cells became nondividing (passage number 
>10, corresponding to at least 30 population doublings from supplier’s 
stock). Senescence was confirmed with SA-β-gal staining and mRNA 
quantification, as described in the main text. Cells were then plated 
as described below.

SA-β-gal staining
On each of two days before or on the day of compound addition—cor-
responding to days 0 and 1 shown in Extended Data Fig. 1—cells treated 
with vehicle, etoposide or doxorubicin (models of therapy-induced 
senescence) or early-passage and late-passage cells (model of replica-
tive senescence) were plated onto six-well plates at an initial density 
of 0.2–0.5 × 106 cells per well. Cells were then incubated overnight for 
adhesion. The following day, SA-β-gal staining was performed using a 
commercial staining kit (Cell Signaling Technology 9860) following 
the manufacturer’s instructions. Briefly, cells in each well were rinsed 

once with 2 ml of Dulbecco’s phosphate-buffered saline (DPBS; VWR 
02-0119-0500). Cells in each well were fixed for 15 min at room tem-
perature using 1 ml of 1× fixative solution. Next, cells in each well were 
rinsed twice with DPBS, then 1 ml of β-galactosidase staining solution 
(pH 6.0) was added. Plates were sealed with parafilm and incubated 
overnight at 37 °C in a dry incubator. The next day, cells in each well 
were imaged with a light microscope to detect staining, as shown in 
Figs. 1b and 4a and Extended Data Fig. 7.

mRNA quantification using quantitative PCR
Total RNA was extracted using an RNeasy mini kit from Qiagen (Qiagen 
74104) following the manufacturer’s instructions. For qPCR analysis, 
complementary DNAs were synthesized using a QuantiTect Reverse 
Transcription Kit from Qiagen following the manufacturer’s instruc-
tions (Qiagen 205311). Real-time PCR amplifications were performed 
in 96-well optical reaction plates using a Power SYBR Green PCR Master 
Mix from Thermo Fisher (Thermo Fisher 4368577). The following prim-
ers were used, and the relative expression of each gene was determined 
by normalization to GAPDH expression for each sample:

p16 forward primer: CCCAACGCACCGAATAGTTA
p16 reverse primer: ACCAGCGTGTCCAGGAAG
p21 forward primer: TGTCCGTCAGAACCCATGC
p21 reverse primer: AAAGTCGAAGTTCCATCGCTC
KI67 forward primer: GAGGTGTGCAGAAAATCCAAA
KI67 reverse primer: CTGTCCCTATGACTTCTGGTTGT
GAPDH forward primer: GGAGCGAGATCCCTCCAAAAT
GAPDH reverse primer: GGCTGTTGTCATACTTCTCATGG
Relative expression values for each of p16, p21 and KI67 were then 

normalized to those of control (DMSO-treated or early passage) cells 
for comparison, as shown in Figs. 1c and 4b and Extended Data Fig. 7.

Chemical compounds for screens
The screening library is from MicroSource Discovery Systems and 
consists largely of US Food and Drug Administration-approved drugs, 
drugs currently in clinical trials, and natural products23 (2,560 com-
pounds total). We supplemented the screening library with 20 com-
pounds, most of which have senolytic activity reported in the literature, 
and all of which were procured from commercial suppliers, as detailed 
in Supplementary Data 1. After deduplication of 228 compounds, 
we screened the 2,352 unique compounds for senolytic activity as 
described below. All compounds used in our screen can be found in 
Supplementary Data 1.

Chemical screening
For all screening experiments, 99 μl of cells were plated into each well 
of a 96-well clear flat-bottom, black polystyrene tissue-culture-treated 
plate (Corning 3904) at a density of ~104 cells per well. Plates were 
incubated overnight for adhesion. The day after plating, 1 μl of each 
compound, prepared as either a 1 mM stock solution in DMSO (10 μM 
final concentration screen) or 0.1 mM stock solution in DMSO (1 μM 
final concentration screen), was added to each well using an Agilent 
Bravo liquid handler. A built-in slow mixing step involving aspirat-
ing and dispensing was used to enhance distribution of the added 
compounds in solution. Cells were incubated for 3 days, after which 
resazurin (MilliporeSigma R7017) was added to each well to a final 
concentration of 0.15 mM. After an additional 1 day of incubation, the 
fluorescence excitation/emission at 550/590 nm was read using a Spec-
traMax M3 plate reader and manufacturer software (SoftMax Pro 6).  
Experiments were performed in biological duplicate.

For the validation dose–response measurements shown in 
Extended Data Fig. 2, threefold serial dilutions of compound were 
prepared in DMSO, then added to cell plates (final concentration 
of DMSO, 1%). Cell viability was then assayed as detailed above, and  
resazurin fluorescence values were linearly interpolated with respect 
to values from empty and positive control (nontreatment) wells. 
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Experiments were performed in biological duplicate each on two 
independent occasions. When possible, chemical stocks from com-
mercial suppliers were used: econazole nitrate (Cayman Chemical 
20223), artenimol (Cayman Chemical 19846) and ABT-263 (Cayman 
Chemical 11500) were from Cayman Chemical, and dehydrodeguelin 
was aliquoted from the screening library.

Calculation of cellular viability values in dose–response 
curves
To determine relative cell viability values for the dose–response curves 
shown in Figs. 3 and 4 and Extended Data Figs. 2, 5 and 7, resazurin 
fluorescence intensity measurements were measured after 3 days 
of compound treatment and 1 day of resazurin incubation. For each 
sample, the fluorescence intensity value was normalized by the mean 
of two untreated control values. Cellular viability values are therefore 
indicated as fractions of the cellular viability of untreated controls. 
Vehicle (1% DMSO) control values are included in each dose–response 
curve. Experiments were performed in biological duplicate each on 
two independent occasions.

Calculation of baseline cellular viability values
In Fig. 3f, cellular viability was calculated as above for untreated IMR-
90 cells and etoposide-treated IMR-90 cells, which were treated with 
DMSO or compounds for 3 days and then incubated in the presence of 
resazurin for 1 day. Additionally, baseline cellular viability values were 
calculated for untreated cells at the start of the experiment. Resazurin 
was added to a final concentration of 0.15 mM on the day of seeding 
(corresponding to day 0 in Extended Data Fig. 1). Cells were incubated 
for 1 day, then fluorescence intensity values were read. These fluores-
cence intensity values were normalized by the mean of two vehicle 
(1% DMSO)-treated control values at day 3, such that cell proliferation 
between days 0 and 3 in the presence of DMSO vehicle is indicated by 
an increase in cellular viability values. Experiments were performed in 
biological duplicate on one independent occasion.

Curve-fitting and estimation of IC50 values
To estimate IC50 values in dose–response curves, we used nonlinear 
least-squares fitting (the lsqcurvefit function in MATLAB, ver. R2019b) 
to fit relative growth values to Hill functions of the form

H (x) = b0 +
mxβ

xβ0.5 + xβ
,

while enforcing H ≥ 0 for all x. IC50 values were determined by numeri-
cally solving the best-fit Hill function for x given H(x) = 0.5.

Deep learning model
The deep learning model used in this work builds on that applied in  
ref. 23 and uses Chemprop (https://github.com/chemprop/chemprop), 
a software package for molecular property prediction that implements 
the graph neural networks described below and in the main text. For 
each compound, a graph-based molecular representation was gen-
erated from the compound’s simplified molecular-input line-entry 
system (SMILES) string using RDKit (ver. 2021.09.01). A feature vector 
for each atom and bond in the compound was generated on the basis 
of the following computable features:

	1.	 atom features including the atomic number, number of bonds 
for each atom, formal charge, chirality, number of bonded 
hydrogen atoms, hybridization, aromaticity and atomic mass;

	2.	 bond features including the bond type (single, double, triple or 
aromatic), conjugation, ring membership and stereochemistry.

The model implements the bond-based message-passing convo-
lutional neural network described in ref. 34. Here, each message (a real 
number) associated with a bond is updated by summing the messages 

from neighboring bonds, concatenating the current bond’s message 
with the sum, and applying a single neural network layer with a non-
linear activation function. After a fixed number of message-passing 
steps, the messages across the molecule are summed to produce a 
final message representing the molecule. This message is inputted 
into a feed-forward neural network, which outputs a final prediction 
of the compound’s senolytic activity. The final output is a real number 
between 0 (is not senolytic) and 1 (is senolytic), describing the prob-
ability that the compound is predicted to be senolytic.

Model optimization
Following ref. 23, three model optimizations were used to improve 
model performance. First, 200 molecule-level features computed 
with RDKit, as summarized in Supplementary Data 1, were added 
to the graph-based representation of each compound. This step 
was performed to provide additional information about predicted 
global properties of each compound, augmenting the local message-
passing approach. Second, we used Bayesian hyperparameter opti-
mization in order to select hyperparameters for the model. Doing 
so using Chemprop’s hyperopt function, we found and utilized the 
following hyperparameters for all Chemprop models: depth, 2; drop-
out, 0; number of feedforward layers, 3; hidden size, 600. Finally, 
we used ensembling to increase the robustness of Chemprop model 
predictions, as detailed separately for ‘Model evaluation’ and ‘Model 
predictions and filtering’ below.

Model evaluation
Each compound in our initial training dataset of 2,352 compounds was 
assigned a binary activity value of 0 (no senolytic activity) or 1 (pos-
sesses senolytic activity), as shown in Fig. 1d. To evaluate model per-
formance using the auPRC, the initial training dataset was partitioned 
such that 80% of the compounds (1,882 compounds) were reserved 
for training and validation and 20% of compounds (470 compounds) 
were withheld for testing and calculation of PRCs. Active compounds 
in each group were distributed similarly as in the overall dataset (10 
of 470 compounds, or 2.1%). For each Chemprop model, training was 
performed for 30 epochs using random 80–10–10 training–validation–
testing splits of the training subset, with each model being assigned a 
different random seed. By default, and consistent with previous work23, 
the binary cross entropy was used as the loss function. Ten models were 
then pooled together to form an ensemble. This ensemble of models 
was applied to the withheld testing subset, and prediction scores of 
the ensemble were taken as the average of the prediction scores of all 
ten models in the ensemble. Precision–recall curves were generated 
by comparing the prediction score to the withheld activity value for 
each compound in the testing subset using scikit-learn.

Random forest classifiers were independently trained using scikit-
learn. The same training and withheld test sets as above were used, and 
an exhaustive hyperparameter grid search was performed. A total of 
360 random forest models were trained for hyperparameters in the 
following combinatorial space: maximum depth between 5 and 40, in 
intervals of 5; number of estimators between 20 and 100, in intervals 
of 20; maximum features between 20 and 180, in intervals of 20. Preci-
sion–recall curves were generated using scikit-learn as above. For both 
our Chemprop and random forest models, bootstrapping with 100 
subsamples, each subsample with size equal to the test set, was used 
to calculate 95% confidence intervals for the auPRC and bootstrapped 
variations of precision–recall curves (Fig. 1e and Extended Data Fig. 3).

t-SNE and visualization
For the t-SNE analysis shown in Fig. 1g, we used sklearn.manifold’s TSNE 
function in conjunction with Morgan fingerprint representations of all 
compounds (radius 2 and number of bits 2,048) to visualize compounds. 
The Jaccard distance, which is another name for Tanimoto distance, 
was used as the distance metric; the Tanimoto distance is defined as 
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Tanimoto distance = 1 – Tanimoto similarity, and the Tanimoto similar-
ity between two fingerprints is given by the quotient of the number of 
1-bits in the intersection of both fingerprints divided by the number of 
1-bits found in their union. All calculations of Tanimoto similarity used 
in this work are based on Morgan fingerprint representations of all com-
pounds (radius 2 and number of bits 2,048). The choice of the Jaccard 
metric implies that the distance between points reflects the Tanimoto 
similarity of the corresponding compounds, with greater t-SNE distance 
corresponding to lower Tanimoto similarity23. A perplexity parameter 
of 10 was used to generate plots with well-spaced data points.

Model predictions and filtering
For the final model, 20 Chemprop models were each trained for 30 
epochs using random 80–10–10 training–validation–testing splits. 
The models were then deployed to predict the senolytic activities of 
804,959 compounds comprising the Broad Institute’s Drug Repurpos-
ing Hub41 (with 5,819 unique compounds scored) and an extended 
Broad Institute library of 799,140 compounds. For each compound, 
the prediction scores of all models were averaged to determine the 
final prediction score for the compound. All final prediction scores are 
provided in Supplementary Data 2. Following prediction of senolytic 
activity, compounds with high prediction scores (>0.4) possessing 
PAINS and Brenk substructures were filtered out using rdkit.Chem’s 
FilterCatalog package. The remaining compounds with high predic-
tion scores were filtered on the basis of the Tanimoto similarity, and all 
calculations of Tanimoto similarity were performed as described above.

Chemical curation
For initial screens of compounds with high or low predicted senolytic 
activity, most compounds were procured from the Broad Institute 
Center for the Development of Therapeutics. ABT-737 was from Cay-
man Chemical (Cayman Chemical 11501). For all other experiments, 
compounds were purchased commercially from ChemBridge and 
Maybridge. All catalog numbers are provided in Supplementary Data 3.

Calculation of physicochemical properties
For each compound, the physicochemical properties presented in 
Table 1 and Supplementary Data 4 were calculated from the corre-
sponding SMILES string using SwissADME82.

Measuring cytotoxicity against HepG2 and HEK293 cells
Cytotoxicity in human embryonic kidney (HEK293) and liver carcinoma 
(HepG2) cells was assayed as above using a resazurin assay. Cells were 
obtained from ATCC (ATCC CRL-1573 and HB-8065), passaged <10 times 
and grown in Dulbecco’s modified Eagle’s Medium (Corning 10-013-CV) 
supplemented with 10% fetal bovine serum and 1% penicillin–strepto-
mycin. Then, 99 μl of cells were plated into each well of a 96-well clear 
flat-bottom, black polystyrene tissue-culture-treated plate at a density 
of ~104 cells per well, and plates were incubated overnight for adhesion. 
The day after plating, 1 μl of each compound, prepared as twofold serial 
dilutions of 5 mM stock solutions in DMSO, was added to each well. 
Cells were incubated for 3 days, after which resazurin was added to 
each well to a final concentration of 0.15 mM. After an additional 1 day 
of incubation, the fluorescence excitation/emission at 550/590 nm was 
read using a SpectraMax M3 plate reader. Experiments were performed 
in biological duplicate. IC50 values were determined by normalizing 
with respect to the fluorescence intensity values of untreated control 
cells on day 3, as described in ‘Calculation of cellular viability values in 
dose–response curves’ above.

Molecular docking simulations
Molecular docking simulations were performed using AutoDock Vina 
1.2.0 (ref. 62), as we have done in previous work79. Compounds were 
provided as SMILES strings and represented in three dimensions using 
OpenBabel. Protein structures were curated from the PDB using the 

accession codes tabulated in Fig. 5a, and the coordinates of the bound 
inhibitors were retrieved using PyMOL to define the active site of each 
protein (as detailed further below). Next, AutoDockTools83 (ver. 1.5.7) 
was used to prepare each protein and compound for docking, by con-
verting each file into AutoDock Vina’s PDBQT format. For compound 
preparation, hydrogen atoms were added at pH 7.4, and hydrated dock-
ing was used whenever possible. For protein preparation, the default 
prepare_receptor command was used. For each protein, the active site 
was based on the bounding box of the corresponding bound inhibitor 
from the PDB: the center of the active site was taken to coincide with the 
center of the bounding box, and the length of each edge of the bound-
ing box was multiplied by a factor of 1.5 to specify the corresponding 
edge of the active site, to allow for broader conformational sampling. 
Docking was performed with a default exhaustiveness of 32, which 
specifies the number of runs that start with a random ligand conforma-
tion, and a default n_poses of 20, which specifies the final number of 
ligand poses to report. All binding affinities predicted by our docking 
simulations are reported in Fig. 5c. The predicted bound conformations 
shown in Fig. 5d were visualized using PyMOL (ver. 2.5.2).

BCL-2 TR-FRET
Inhibition of Bcl-2 binding to a peptide ligand was measured using 
the BCL-2 TR-FRET Assay Kit from BPS Bioscience (BPS Bioscience 
50222). Briefly, the provided BCL TR-FRET assay buffer was diluted 
1:3 with ultrapure Milli-Q water. The anti-His terbium-labeled donor 
and dye-labeled acceptor were each diluted 1:100 with diluted assay 
buffer. The BCL-2 peptide ligand was thawed on ice and diluted 1:40 
with diluted assay buffer, and BCL-2 protein was diluted with diluted 
assay buffer to a working concentration of 1 ng µl−1. Test compounds at 
the indicated final concentrations were prepared as stock 10% DMSO 
solutions in ultrapure Milli-Q water. The reaction was performed by 
combining 5 µl diluted donor, 5 µl diluted acceptor, 2 µl test compound, 
5 µl diluted ligand and 3 µl diluted protein in each well of the provided 
white, flat-bottom 384-well plate. Positive control reactions had 2 µl 
10% DMSO in water in lieu of test compound. Negative control reac-
tions had 2 µl 10% DMSO in water and 5 µl diluted assay buffer in lieu of 
test compound and diluted ligand. Reactions were incubated at room 
temperature for 3 h, and fluorescence intensities were measured using 
a SpectraMax M5 plate reader and manufacturer software (SoftMax 
Pro 6) with the following TR-FRET settings: for terbium-labeled donor 
emission, excitation/emission, 340/620 nm; lag time, 100 µs; integra-
tion time, 500 µs; for dye-acceptor emission, excitation/emission, 
340/665 nm; lag time, 100 µs; integration time, 500 µs. The TR-FRET 
ratio, 665 nm emission/620 nm emission, was calculated for all reac-
tions, and percentage activity was calculated by linearly interpolating 
the positive and negative control TR-FRET ratio values between relative 
activity values of 0 and 1. Experiments were performed in biological 
duplicate and repeated on independent occasions.

Hemolysis assay
Following previous work84, for the hemolysis experiments shown in 
Extended Data Fig. 8, whole human blood containing EDTA (Innova-
tive Resarch IWB1K2E) was centrifuged at 120g at 4 °C for 5 min and 
resuspended in DPBS (VWR 02-0119-0500). These washing steps were 
repeated until the supernatant was clear. Red blood cells were then 
resuspended in DPBS to 5 × 108 cells ml−1, and 100 µl of cells was plated 
into each well of a 96-well clear round-bottom plate. Compounds 
were added to the indicated concentrations, and DMSO was used as 
a vehicle. Samples were incubated for 1 h at 37 °C without shaking, 
after which plates were centrifuged at 1,500g at room temperature 
for 5 min to pellet cells. Sixty microliters of the supernatant from each 
sample was then transferred to a 96-well clear flat-bottom plate, and the 
absorbance was read at 405 nm using a SpectraMax M3 plate reader to 
quantify the amount of soluble hemoglobin. Fractional hemolysis was 
determined by linearly interpolating absorbance values with respect 
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to a positive control (saturation with 10% Triton X-100) and a negative 
control (1% DMSO vehicle).

Genotoxicity assay
For the mutagenesis experiments shown in Extended Data Fig. 8, 
an Ames 384-ISO test (6041-1S) from Environmental Bio-Detection 
Products was used following the manufacturer’s instructions. Briefly,  
Salmonella typhimurium TA100 was grown overnight (16–18 h) at 37 °C 
with shaking at 300 r.p.m. and treated with the provided exposure 
media and compound samples at the final concentrations indicated. 
Treatment with the provided 4-nitroquinoline 1-oxide, a mutagen, 
was used as a positive control. Cells were then added to the provided 
reversion solution, and each sample was split into 48 wells of 384-well 
plates. Plates were incubated at 37 °C for 2 days, after which the number 
of revertant (yellow-colored) wells corresponding to each sample was 
counted. Additionally, we verified that each test compound did not 
inhibit the growth of S. typhimurium TA100. An overnight bacterial 
culture was diluted 1:10,000 in LB medium (Becton Dickinson 244620) 
and plated using 99 µl working volumes into the wells of a clear flat-
bottom 96-well plate. One microliter of twofold dilutions of each test 
compound in DMSO, starting from a final concentration of 500 µM, was 
added across wells, and plates were sealed and incubated overnight at 
37 °C to determine bacterial growth.

Aged mouse model experiments
For the baseline experiment shown in Fig. 6a–c, young (6–8-week-old) 
and aged (90-week-old) female C57BL/6J mice were procured from The 
Jackson Laboratory and quarantined at least 2 days before use. For the 
experiment shown in Fig. 6d–f, aged (80-week-old) female C57BL/6J 
mice were procured from The Jackson Laboratory and quarantined at 
least 2 days before use. Animals were housed in a facility maintained 
at 20–26 °C ambient temperature, 40–65% relative humidity and a 
12:12 light–dark cycle. Enrichment devices were included in the animal 
environments as required and changed bi-weekly. All mice in this study 
were treated in accordance with protocol IS00000852-6, approved by 
Harvard Medical School Institutional Animal Care and Use Committee 
and the Committee on Microbiological Safety.

For compound administration, BRD-K56819078 (ChemBridge 
7507010) was prepared fresh in 10% DMSO:45% PEG300:45% water for 
injection w/w, and for each mouse a total of six intraperitoneal injec-
tions over a 14 day period were performed at 25 mg kg−1 per injection, 
as determined by weighing each mouse immediately before injection. 
All mice were killed by CO2 asphyxiation and dissected, and one kidney 
was collected per mouse. Each kidney was divided for SA-β-gal staining 
and mRNA measurements. Samples that were designated for SA-β-gal 
staining were embedded in optimal cutting temperature medium and 
flash-frozen in liquid nitrogen. Samples that were designated for mRNA 
measurements were placed in RNAlater Stabilization Solution (Thermo 
Fisher AM7021) and flash-frozen with dry ice.

For SA-β-gal staining, kidney samples were oriented and cut into 
10-µm-thin sections using a Leica CM1950 cryostat. SA-β-gal stain-
ing was then performed similarly to the above, but with modifica-
tions. Frozen sections were fixed for 15 min using 2% formaldehyde 
and 0.2% glutaraldehyde in PBS (pH 7.4). Sections were then washed 
in PBS and incubated overnight at 37 °C in a dry incubator with β-gal 
staining solution, an aqueous solution containing 40 mM citric acid/
sodium phosphate (MilliporeSigma C0759 and S9763), 5 mM potassium 
ferrocyanide (MilliporeSigma P9387), 5 mM potassium ferricyanide 
(MilliporeSigma P8131), 2 mM magnesium chloride (MilliporeSigma 
M8266), 150 mM sodium chloride (Fisher Scientific S271) and 1 mg ml−1 
X-gal (MilliporeSigma 9660), titrated to pH 6.0, as described in previous 
work4,85. Sections were washed in PBS, counterstained with Nuclear Fast 
Red (VWR AAJ61010-AP) for 5 min at room temperature, then washed 
again in PBS before imaging. Imaging was performed on an EVOS XL 
Core or a Leica DMi1 equipped with a Flexacam C1 camera. Two fields 

of view were captured for each kidney section, the images were thres-
holded by color using ImageJ ver. 2.0.0-rc-69/1.52p (National Institutes 
of Health) and the ratios of blue area (SA-β-gal-positive area) to total 
red and blue area (all cells) were calculated for each field of view. One 
kidney sample from each of the vehicle- and BRD-K56819078-treated 
aged mice groups failed to stain for SA-β-gal, which may arise if the 
sections did not contain any kidney cortical region86; data from these 
samples were discarded.

For mRNA measurements, kidney samples were homogenized 
using an SP Bel-Art ProCulture cordless homogenizer, and mRNA was 
extracted and quantified as described above in ‘mRNA quantification 
using quantitative PCR’, using a PureLink RNA Mini Kit (Thermo Fisher 
12183020) for extraction. The following primers were used, and the 
relative expression of each gene was determined by normalization to 
β-actin expression for each sample:

p16 forward primer: AGGGCCGTGTGCATGACGTG
p16 reverse primer: GCACCGGGCGGGAGAAGGTA
p21 forward primer: AACATCTCAGGGCCGAAA
p21 reverse primer: TGCGCTTGGAGTGATAGAAA
β-Actin forward primer: GGCTGTATTCCCCTCCATCG
β-Actin reverse primer: CCAGTTGGTAACAATGCCATGT

Statistics and reproducibility
No statistical method was used to predetermine sample size for all 
experiments in this study, but our sample sizes are similar to those 
reported in previous publications (refs. 3–8). We were not blinded to 
allocation during experiments and outcome assessment, and data 
collection and analysis were not performed blind to the conditions 
of the experiments. For mouse experiments, no substantial bias was 
observed across initial groups. No data were excluded from the analyses 
in this study, with the exception of one kidney sample from each of the 
vehicle- and BRD-K56819078-treated aged mice groups for SA-β-gal 
experiments (as detailed above in ‘Aged mouse model experiments’).

Two-sided, two-sample unpaired t-tests or one-way analysis of 
variance tests were performed using MATLAB in Figs. 1c and 4b and 
Extended Data Fig. 7 to test the hypothesis that mRNA expression val-
ues for p16, p21 and KI67 were different from control (vehicle-treated 
or early passage) cell values in the therapy-induced and replicative 
senescence models. Two-sided, two-sample unpaired t-tests were 
performed using MATLAB in Fig. 5e to test the hypothesis that the Bcl-2 
activity values in each treatment condition have mean values different 
from that of corresponding positive control measurements (relative 
Bcl-2 activity values of 1). One-sided, two-sample permutation tests for 
differences in mean value87 were performed using MATLAB in Fig. 6c,e,f 
to test the hypothesis that SA-β-gal-positive areas or mRNA expression 
values for p16 and p21 were different from control (naïve aged mice or 
vehicle-treated aged mice) values for mouse model experiments. Exact 
permutation tests, in which all possible combinations were considered, 
were used for all comparisons with the exception of Fig. 6e, for which 
100,000 random combinations were used due to the larger sample 
sizes. Where relevant, data distribution was assumed to be normal, 
but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data generated from chemical screens, machine learning models and 
computational analyses are available as Supplementary Data 1–4. For 
molecular docking studies, protein structures from accession codes 
6qgh (Bcl-2), 3wiz (Bcl-XL), 1osf (Hsp90), 4hg7 (MDM2) and 4f1s (PI3K) 
were obtained from the PDB at https://www.rcsb.org/. All other data are 
available from the corresponding author upon request. Source Data 
are provided with this paper.
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Code availability
Chemprop is publicly available at https://github.com/chemprop/chem-
prop. A detailed code platform, including a Jupyter notebook and the 
Chemprop checkpoints for the different models developed in this work, 
is publicly available at https://github.com/felixjwong/senolyticsai.
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Extended Data Fig. 1 | Timeline of etoposide-induced senescence. Control (DMSO-treated) and senescent (etoposide-treated) cells were treated with test compounds 
and assayed for cellular viability at the indicated times for compound screening and dose-response experiments.
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Extended Data Fig. 2 | Screening of 2,352 compounds for senolytic activity 
and validation of four active compounds. a, Cellular viability of vehicle- and 
etoposide-treated cells after a 3-day course of test compound treatment (10 
μM). Values are from two biological replicates, and viability measurements are 
normalized by the interquartile mean of each cell plate. Active compounds (red 
points) are those for which the relative control cell viability is >0.5, the relative 
Snc viability is <0.7, and the ratio of Snc to control cell viability is <0.7. All other 
compounds are inactive (blue points). The Pearson’s correlation coefficient, 
R, and two-sided p-value are shown. b, Dose-response curves of control and 
etoposide-treated IMR-90 cells, treated with each compound shown. Zero μM 
(1% DMSO vehicle) treatment was included. Values are normalized by the average 
of two untreated samples from the same phenotype: here, a cellular viability of 
1 indicates that of either untreated control cells or Sncs. Black curves indicate 
control (vehicle-treated) cells, and blue curves indicate (etoposide-treated) Sncs. 
Measurements are shown for two biological replicates in each treatment group 

(open points), and mean viability values (closed points) were fitted to calculate 
IC50 values. The therapeutic index (TI) is the ratio of IC50 values for vehicle- and 
etoposide-treated cells. The chemical structure of each compound is shown 
at the bottom of each plot. Note that, with our criteria for activity, ABT-263 has 
borderline activity at 1 µM and was inactive in our screen at 1 µM (panel (c)), 
due to marginal decreases in Snc viability. c, Senolytic screening results for 
2,352 compounds at a final concentration of 1 µM. Values indicate the mean of 
two biological replicates, and viability measurements are normalized by the 
interquartile mean of each cell plate. Active and inactive compounds (red and 
blue points, respectively) are designated as in (a). Two known senolytics, ABT-
737 and A-1331852, are inactive and highlighted with large blue points, and two 
active compounds, sulfisoxazole and imipramine hydrochloride, are highlighted 
with large red points. Sncs were induced with etoposide, and control cells were 
treated with vehicle (0.5% DMSO). d, Similar to (a), but for the screen shown in (c).
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Extended Data Fig. 3 | Comparison of machine learning models. Shown are 
precision-recall curves for the two-best random forest models, trained and tested 
on the data shown in Fig. 1d. The black dashed curves represent the baseline 
fraction of active compounds in the training set (1.9%). Blue curves and the 95% 

confidence interval (CI) indicate the variation generated by bootstrapping.  
AUC, area under the precision-recall curve. The model hyperparameters used 
were: a, max depth, 5; number of estimators, 80; max features, 20; b, max depth, 5; 
number of estimators, 40; max features, 40.
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Extended Data Fig. 4 | Chemical filters for favorable medicinal chemistry properties and structural novelty. The numbers of compounds after each chemical 
filtering step are shown, for both the Broad Institute Drug Repurposing Hub and the extended Broad Institute library. Numbers of curated compounds are indicated  
at bottom.
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Extended Data Fig. 5 | See next page for caption.

http://www.nature.com/nataging


Nature Aging

Technical Report https://doi.org/10.1038/s43587-023-00415-z

Extended Data Fig. 5 | Screening of 216 compounds with high predicted 
senolytic activity, 50 compounds with low predicted senolytic activity, 
and validation of six additional active compounds. a, Relative viability of 
vehicle- and etoposide-treated cells after a 3-day course of test compound 
treatment (10 μM). Values are from two biological replicates, and viability 
measurements are normalized by the interquartile mean of each cell plate. 
Active compounds (red points) are those for which relative control cell viability 
is >0.5, relative Snc viability is <0.7, and the ratio of Snc to control cell viability is 
<0.7. All other compounds are inactive (blue points). The Pearson’s correlation 
coefficient, R, and two-sided p-value are shown. b, Dose-response curves of 
control and etoposide-treated IMR-90 cells, treated with each compound shown. 
Compounds were serially diluted twofold starting from a final concentration 
of 50 μM, and 0 μM (1% DMSO vehicle) treatment was included. Cells were 

treated for 3 days. Cellular viability was determined by the metabolic reduction 
of resazurin into fluorescent resorufin, and values are normalized by the 
fluorescence intensities of the average of two untreated samples from the same 
phenotype: here, a cellular viability of 1 indicates that of either untreated control 
cells or Sncs. Vehicle treatment may result in cellular viability values <1 due to 
minor effects of DMSO on cellular viability. Black curves indicate control (vehicle-
treated) cells, and blue curves indicate (etoposide-treated) Sncs. Measurements 
are shown for two biological replicates in each treatment group (open points), 
and mean viability values (closed points) were fitted to calculate IC50 values.  
The therapeutic index (TI) is the ratio of IC50 values for vehicle- and etoposide-
treated cells. The chemical structure of each compound is shown at the bottom 
of each plot.
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Extended Data Fig. 6 | Structural comparisons of identified compounds. Shown are the compounds in the training dataset with highest structural similarity to each 
of BRD-K20733377, BRD-K56819078, and BRD-K44839765, as measured by the Tanimoto similarity.
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Extended Data Fig. 7 | BRD-K20733377, BRD-K56819078, and BRD-K44839765 
exhibit senolytic activity in a model of doxorubicin-induced senescence. 
a, SA-β-gal staining of vehicle- (0.5% DMSO) and doxorubicin-treated IMR-90 
cells plated at times on corresponding to the day before and day of compound 
addition (see also Fig. 1b and Extended Data Fig. 1). Each image is representative 
of two biological replicates. Scale bar, 100 μm. b, Relative mRNA expression of 
p16, p21, and KI67 in vehicle- (0.5% DMSO), doxorubicin-, and etoposide-treated 
IMR-90 cells harvested on the day of compound addition. Data for vehicle-and 
etoposide-treated cells are identical to those shown in Fig. 1c of the main text, and 
are shown here for comparison. Data from three biological replicates are shown. 
Error bars indicate one standard deviation. One-way, two-sided ANOVA with 
Tukey’s multiple comparisons: *p≤0.05,**p<0.01,***p<0.001. c, Dose-response 
curves of control and doxorubicin-treated IMR-90 cells, treated with each 
compound shown. Compounds were serially diluted twofold starting from a final 

concentration of 50 μM, and 0 μM (1% DMSO vehicle) treatment was included. 
Cells were treated for 3 days. Cellular viability was determined by the metabolic 
reduction of resazurin into fluorescent resorufin, and values are normalized by 
the fluorescence intensities of the average of two untreated samples from the 
same phenotype: here, a cellular viability of 1 indicates that of either untreated 
control cells or Sncs. Vehicle treatment may result in cellular viability values <1 
due to minor effects of DMSO on cellular viability. Black curves indicate control 
(vehicle-treated) cells, and blue curves indicate (doxorubicin-treated) Sncs. 
Measurements are shown for two biological replicates in each treatment group 
(open points), and mean viability values (closed points) were fitted to calculate 
IC50 values. The therapeutic index (TI) is the ratio of IC50 values for vehicle- and 
doxorubicin-treated cells. The chemical structure of each compound is displayed 
in each inset. Data for control cells are identical to those shown in Fig. 3a–d of  
the main text.
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Extended Data Fig. 8 | Preliminary assessments of compound toxicological 
properties. a, Fractional hemolysis measurements of human red blood cells 
treated with BRD-K20733377, BRD-K56819078, BRD-K44839765, and ABT-737 
at the indicated final concentrations. Vehicle (1% DMSO) was used as a negative 
control, and Triton X-100 was used as a positive control. Black points indicate 
values from individual biological replicates, and red bars indicate average 
values. b, Ames test mutagenesis measurements of the fractions of revertant 

S. typhimurium TA100 cultures treated with BRD-K20733377, BRD-K56819078, 
BRD-K44839765, and ABT-737 at a final concentration of 100 µM. Vehicle (1% 
DMSO) was used as a negative control, and 0.25 µg/mL (~1 µM) 4-nitroquinoline 
1-oxide was used as a positive control. Black points indicate values from 
individual biological replicates, and purple bars indicate average values. Higher 
fractions of revertant cultures indicate higher mutagenic potential.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All software used for data collection and analysis are described in detail in the Methods section, and a Jupyter notebook which takes readers 
step-by-step through the process is available at https://github.com/felixjwong/senolyticsai. Briefly, Chemprop (https://github.com/chemprop/
chemprop, commit 9c8ff4074bd89b93f43a21adc49b458b0cab9e7f) and RDKit (version 2021.09.01) were used to build the graph neural 
networks as described in the Methods section. scikit-learn (https://scikit-learn.org/stable/, version 1.0) was used to build the random forest 
classifier models and for t-SNE visualization. AutoDock Vina 1.2.0, AutoDockTools 1.5.7, and PyMOL 2.5.2 were used to perform molecular 
docking and docking-related analyses. Manufacturer software from Molecular Devices (SoftMax Pro 6) for the SpectraMax M3 and 
SpectraMax M5 was used for plate reader measurements. ImageJ ver. 2.0.0-rc-69/1.52p was used for image analyses. 

Data analysis RDKit (https://www.rdkit.org/, version 2021.09.01) was used for cheminformatics. MATLAB (R2019b, Mathworks) was used for data 
processing.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data generated from chemical screens, machine learning models, and computational analyses are available as Supplementary Data 1 to 4. For molecular docking 
studies, protein structures from accession codes 6qgh (Bcl-2), 3wiz (Bcl-XL), 1osf (Hsp90), 4hg7 (MDM2), and 4f1s (PI3K) were obtained from the Protein Data Bank 
at https://www.rcsb.org/. All other data are available from the corresponding author upon request.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed, and sample sizes were typically determined based on the availability of experimental data. All data 
from all experiments were considered. 

Data exclusions No data were excluded for all experiments, with the exception of data from one mouse in each arm in the senescence-associated beta-
galatosidase staining experiment shown in Fig. 6e. There, as discussed in the Methods section, one kidney sample from each of the vehicle- 
and BRD-K56819078-treated aged mice groups failed to stain for SA-β-gal, which may arise if the sections did not contain any kidney cortical 
region (ref. 86); data from these samples were discarded and not shown in Fig. 6e.

Replication All data were representative of at least two biological replicates performed on at least one occasion, and the numbers of replications of each 
experiment are indicated as relevant. All attempts at replication were successful.

Randomization There were no preallocation considerations.  For mouse experiments, no significant bias was observed across initial groups. 

Blinding As we were not aware of any potential sources of bias in our experiments, we were not blinded to allocation when performing experiments or 
performing measurements.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) As described in the Methods section, human lung fibroblast (IMR-90) cells were obtained from ATCC (CCL-186). Human 
embryonic kidney (HEK293) and liver carcinoma (HepG2) cells were obtained from ATCC (ATCC CRL-1573 and HB-8065).
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Authentication All cells were authenticated using STR profiling by the supplier, ATCC.

Mycoplasma contamination All cells were assayed for mycoplasma contamination by the supplier, ATCC. Mycoplasma contamination was not detected.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For the baseline experiment shown in Fig. 6a-c, young (6- to 8-week-old) and aged (90-week-old) female C57BL/6J mice were 
procured from The Jackson Laboratory and quarantined at least 2 days prior to use. For the experiment shown in Fig. 6d-f, aged (80-
week-old) female C57BL/6J mice were procured from The Jackson Laboratory and quarantined at least 2 days prior to use. Animals 
were housed in a facility maintained at 20-26ºC ambient temperature, 40-65% relative humidity, and a 12:12 light-dark cycle. 
Enrichment devices were included in the animal environments as required and changed bi-weekly. All mice in this study were treated 
in accordance with protocol IS00000852-6, approved by Harvard Medical School Institutional Animal Care and Use Committee and 
the Committee on Microbiological Safety.

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight Studies were performed at the Wyss Institute at Harvard and approved by the Harvard Medical School IACUC. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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