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Abstract

Deep learning approaches have been increasingly applied to the discovery 
of novel chemical compounds. These predictive approaches can accurately 
model compounds and increase true discovery rates, but they are typically 
black box in nature and do not generate specific chemical insights. Explainable 
deep learning aims to ‘open up’ the black box by providing generalizable and 
human-understandable reasoning for model predictions. These explanations 
can augment molecular discovery by identifying structural classes of 
compounds with desired activity in lieu of lone compounds. Additionally, 
these explanations can guide hypothesis generation and make searching large 
chemical spaces more efficient. Here we present an explainable deep learning 
platform that enables vast chemical spaces to be mined and the chemical 
substructures underlying predicted activity to be identified. The platform 
relies on Chemprop, a software package implementing graph neural networks 
as a deep learning model architecture. In contrast to similar approaches, 
graph neural networks have been shown to be state of the art for molecular 
property prediction. Focusing on discovering structural classes of antibiotics, 
this protocol provides guidelines for experimental data generation, model 
implementation and model explainability and evaluation. This protocol does 
not require coding proficiency or specialized hardware, and it can be executed 
in as little as 1–2 weeks, starting from data generation and ending in the 
testing of model predictions. The platform can be broadly applied to discover 
structural classes of other small molecules, including anticancer, antiviral and 
senolytic drugs, as well as to discover structural classes of inorganic molecules 
with desired physical and chemical properties.

Key points

 • This protocol enables the 
computational discovery of 
chemical compounds using a 
deep learning architecture called 
graph neural networks, which, 
given the chemical structure 
of any compound, can predict 
whether the compound has a 
property of interest.

 • The platform leverages 
explainable deep learning to 
facilitate the identification 
of structural classes of novel 
compounds. This approach 
guides hypothesis generation and 
makes searching large chemical 
spaces more efficient compared 
with previous approaches, which 
are typically black box in nature 
and do not generate specific 
chemical insights.
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Introduction

Artificial intelligence (AI) is a subfield of computational science that aims to create systems 
to perform tasks, and machine learning (ML) is a subfield of AI using computers that model 
input–output relationships to accomplish this goal1,2 (see Box 1 for a brief introduction to ML). 
In recent years, there has been a sharp increase in the scientific applications of AI and ML due to 
increased computational resources, the development of models that process different forms 
of data and the increased accessibility of codebases and databases. AI and ML have enabled 
notable scientific advances, including the development of AlphaGo3, the development of 
AlphaFold and other protein sequence-to-structure models4–6, and the discovery of a structural 
class of antibiotics7.

Many scientific advances have been driven by the capability of AI and ML models to perform 
extensive computations that exploit often subtle patterns in data, enabling combinatorically 
large spaces to be productively searched8,9. Such large search spaces are domain specific but 
can include, for example, possible Go moves, possible geometric conformations of a protein or 
possible chemical compound structures. Searching chemical space for bioactive compounds 
is a particularly important application: novel bioactive compounds are constantly needed for 
drug discovery, and it has been estimated that there are ~1060 possible, largely organic, drug-like 
compounds10. Given this large chemical space—made larger by including additional inorganic 
compounds—applying AI and ML models to efficiently search it has been a longstanding 
goal. Early work in this area focused on applying simple ML models, including support vector 
machines and decision trees, to identify novel bioactive compounds in virtual screening 
libraries11–14. More recent work has applied deep learning (DL) methods, including neural 
networks and variational autoencoders, to discover bioactive compounds more efficiently in 
virtual libraries and to generate compounds de novo1,2,7,15–33.

DL approaches have accurately modeled compounds, with increased true discovery rates, 
and resulted in the discovery of drug candidates including antibiotics7,17–22, senolytics23 and 
anticancer and antiviral combinations24,25. However, a major limitation to DL approaches is that 
they are typically black box in nature or unable to provide reasoning behind model predictions. 
Explainable DL is an emerging field that aims to open up the black box by providing this 
reasoning7,34–37. Explainable DL contrasts with interpretable DL, which aims to reveal patterns 
of decision-making steps the models perform to arrive at their predictions38 (see Box 2 for 
further comparison). As applied to molecular discovery, explainable DL identifies patterns of 
chemical atoms and bonds—chemical substructures—that have positive predictive value for a 

BOX 1

A brief introduction to ML and DL
While the terms are often used interchangeably, ML is a general 
subfield of AI that includes DL, which uses neural network models 
to perform ML tasks. The foundations of ML and DL emerged in 
the 1950s, when computer scientists aimed to perform human-
like reasoning with computers using rule-based approaches79 and 
mimic the neural circuits of the human brain80. Early work in ML 
introduced basic algorithms that were used to extract patterns 
from data and make predictions on unseen data. However, ML 
models have become substantially more powerful in recent 
years due to innovations in DL. Starting from the development of 
backpropagation81, which allowed complex neural networks to be 
trained, progress in DL has been driven by the widespread adoption 
of graphics processing units for training and the proliferation of 
large-scale datasets8. These advances were underscored in 2012 

by the development of large convolutional neural networks for 
accurate image recognition82, and DL models are now state-of-the-
art for tasks including natural language processing and speech 
recognition8.

While ML as a field has increased in popularity in recent years, 
additional DL models, particularly generative models such as 
transformers83, are currently being developed and refined. Further 
research has also focused on leveraging ML and DL models 
for scientific and mathematical reasoning applications84 and 
improving the modeling framework by increasing explainability 
and interpretability (Box 2). As demonstrated by this protocol, we 
anticipate that next-generation DL models—including explainable 
and interpretable models—will continue to provide valuable insights 
into scientific problems such as molecular discovery.

http://www.nature.com/NatProtocol
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property of interest. The ability to move beyond predictions for lone compounds to predictions 
for classes of compounds defined by shared substructures enables substantial generalization. 
By enabling models to predict structural classes directly, explainable DL can produce specific 
chemical insights, efficiently narrow chemical spaces and lead researchers toward effective 
chemical scaffolds.

In this protocol, we present an explainable DL platform for molecular discovery (Fig. 1). 
Although we focus on applying the platform to antibiotic discovery, the platform is general-
purpose and can be used to discover molecules with other biological or chemical properties 
of interest. The platform uses graph neural networks (GNNs) as a DL model architecture. GNNs 
model chemical structures as collections of nodes (chemical atoms) and edges (chemical 
bonds) and perform computations that pool together information from neighboring atoms 
and bonds16,39–42. We provide a practical introduction to Chemprop16,43–45, a software package 
implementing GNNs, and guide users through the process of experimental data generation, 
model implementation, model explainability and evaluation and experimental evaluation. This 
protocol includes both computational and experimental components, and it does not require 
coding proficiency or specialized hardware. Starting from data generation and ending in the 
testing of model predictions, this protocol can be executed in as little as 1–2 weeks, depending 
on dataset size and the time required for experiments.

Development of the protocol
AI and ML have been increasingly applied to molecular discovery. Pioneering studies in the 
2010s used simple ML models (such as support vector machines) to identify functional chemical 
compounds. Since then, advances in DL and computing have enabled the application of highly 
predictive neural network-based model architectures to drug discovery16,45. GNNs are a type of 
neural network in which convolution steps are performed on the basis of the two-dimensional 
structure of graphs. They differ from other neural network models in that they directly operate 
on the graph structure, as opposed to other computed elements (such as physicochemical 
parameters). Various types of GNNs have been proposed, but they can be unified under the 
framework of message passing GNNs (MPNNs)39. Message passing refers to the convolutions 
GNNs perform on numerical values (messages) associated with each node (chemical atom) or 
edge (chemical bond). MPNNs were first developed and applied to infer quantum properties 
of compounds in 2017, and a technical description of GNNs and MPNNs is provided in Box 3.

BOX 2

Explainability and interpretability in ML
DL approaches are generally black box in nature or unable to provide 
reasoning as to how model predictions were made. Explainable DL 
and interpretable DL address this issue in different ways. Explainable 
DL aims to understand and articulate why a model makes specific 
predictions, while interpretable DL aims to reveal the specific 
patterns of decision-making steps the models perform to arrive at 
their predictions38. Explainability and interpretability both underlie 
shifts in research toward increased comprehension, trustworthiness, 
and accountability of AI and ML models.

Explainability provides insights into the input features that are 
important for model predictions, helping to make model predictions 
more transparent and understandable. Two ways in which models 
can be made explainable are by using feature importance analyses 
and individual instance explanations. For instance, Shapley Additive 
Explanations (SHAP) values numerically quantify the impact 
of any feature on predicted activity85. In molecular discovery, 

SHAP analyses have been used to identify specific chemical 
substructures that influence a compound’s predicted activity36,37; 
these approaches are similar to the MCTS approach described in 
this protocol, and the extent to which they would produce similar 
or meaningfully different results requires further investigation. 
Additionally, Local Interpretable Model-agnostic Explanations is an 
explanation technique and a special form of SHAP that provides local 
explanations for individual predictions by approximating complex 
models with simpler ones86.

Interpretability aims for deconstructive understanding of how 
models operate and the relationships between input features and 
outputs. Two ways in which models can be made interpretable are 
by approximating their predictions with the predictions of logical or 
sparse models38 (for example, using decision trees) and leveraging 
visualizations of the input to guide predictions (for example, using 
k-nearest neighbors).

http://www.nature.com/NatProtocol
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Fig. 1 | Overview of the protocol. The protocol stages involving experimentation 
and computation are illustrated. This protocol includes the generation of 
training data from experimental high-throughput screens of ~2,500 compounds 
for antibacterial activity and cytotoxicity. These data are used to train GNNs 
to predict the antibacterial activity and cytotoxicity of up to >109 molecules in 
silico, contrasting with expensive and time-consuming experimental screening 
of large chemical libraries. Shortlisted compounds (‘hits’) are filtered for 

desirable chemical properties and analyzed using a MCTS-based approach that 
identifies substructure rationales as explanations of model predictions. These 
rationales lead to predictions of structural classes of hits, and all predicted hits 
are experimentally tested to confirm activity. This approach can be iterated and 
the model can be retrained to generate new predictions of structural classes and 
associated hits. The figure is adapted from ref. 7, Springer Nature Ltd.
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Chemprop is a software package implementing a variant of MPNNs, in which messages 
are associated with directed edges in contrast to nodes16,45. Chemprop has been developed, 
benchmarked and applied in several publications16–19,23,24,43–45. Key features of Chemprop are that 
it is user friendly, possesses diverse functionalities and customization options and, since its 
development in 2019, has been constantly maintained. Its application to antibiotic discovery, 
resulting in the identification of halicin as an antibacterial compound17, was reported by our 
laboratory in 2020. Since then, Chemprop has also been used to discover small-molecule 
senolytics23 and antiviral drug combinations24, and these applications exemplify Chemprop-
based approaches and provide additional references on best practices.

We recently showed that Chemprop models can be made explainable and that model 
explainability enables the discovery of structural classes of antibiotics7,44. Explainability is now 
built into Chemprop, as detailed in the ‘Procedure’ section below, and relies on an algorithm 
called Monte Carlo tree search (MCTS; Box 4). MCTS is a nondeterministic search algorithm 
that can efficiently explore large search spaces44,46 and is notable for having been used by 
AlphaGo to identify Go moves3. As applied in Chemprop, MCTS takes any compound with 

BOX 3

A technical primer on GNNs
Artificial neural networks (ANNs) are computational frameworks that 
make predictions on input data by passing the input through layers 
of connected nodes or ‘neurons’. These nodes can communicate 
with each other using mathematical functions that can be specified 
or learned from the training data. ANNs make high-level predictions 
(such as antibiotic activity of a molecule) by performing successive 
convolutions at each node that extract features from input data as 
the data are passed through the network. By iteratively adjusting the 
relative contributions—the weights—of each convolutional step to 
the final output in a way that depends on the training data, ANNs have 
been shown to be able to make accurate predictions for a variety of 
inputs, including text and images.

GNNs are a type of ANN designed to operate on input data 
represented as graphs. Graphs are mathematical objects that consist 
of nodes and edges. For molecular discovery, these nodes and 
edges represent chemical atoms and bonds, respectively. In this 
way, graphs provide mathematical encodings of two-dimensional 
chemical structures.

Unlike feed-forward ANNs, which pass data linearly from input 
to output layers, GNNs perform convolutions simultaneously 
based on all the nodes and edges of the input. To incorporate 
local connectivity information, message passing—a step where 
embeddings from a node or edge’s neighbors are pooled with its 
preexisting embeddings—is often incorporated into a GNN layer’s 
update function, resulting in an architecture called MPNNs. Given 
an undirected graph G with node features xv and edge features evw, 
at step t of the message passing, hidden states hv

t and messages mv
t 

associated with each node v are updated using a message function 
Mt and vertex update function Ut as follows:

mt+1
v = ∑

w∈N(v)
Mt(ht

v,ht
w, evw),ht+1

v = Ut (ht
v,mt+1

v ) .

Here, N(v) is the set of neighbors of v in G and hv
0 is a function 

of the initial atom features, xv. The number of message passing 

steps (n) per layer determines how far information from a node 
or edge propagates: a given graph component only receives 
messages from components n steps away. At the end of message 
passing, the final set of hidden states, {hv

T}, is passed into a 
feedforward network or other readout function to make a prediction 
for the entire graph.

As implemented by Chemprop, directed MPNNs are a variant of 
MPNNs in which messages are associated with the directed edges 
of a graph, in contrast to its nodes. As shown in the image below 
representing message passing (adapted with permission from ref. 16), 
messages from the grey directed edge 3 → 2 (and any other edge into 
node 2, such as 4 → 2) are used to update the hidden state associated 
with the red directed edge 2 → 1, and this process is repeated across 
all edges. Directed MPNNs were first introduced as structure2vec in 
ref. 87 and were further developed in ref. 16.

In general, GNNs have been shown to be state-of-the-art for many 
tasks and additional applications—including their use in transfer 
learning88, dynamical modeling89 and integration with transformers 
and other generative models90—have recently been studied to 
improve their applicability to other problems and domains.

NNN 1
2

3

4

5

Edges into 2:
3→2, 4→2
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Sum

Concatenate
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high predicted activity score as an input and produces a chemical substructure (or ‘rationale’) 
contributing substantively to the compound’s prediction score as an output. In contrast to 
other substructures, such as the maximal common substructures shared between compounds 
with high predicted activity, these rationales are guaranteed by construction to result in at 
least a baseline prediction score when inputted into their models. In this way, the models have 
‘explained’ their predictions.

Overview of the protocol
This protocol includes both computational and experimental components, combining 
experimental data generation with Chemprop to guide users through the process of discovering 
compounds with antibacterial activity (Fig. 1). The protocol broadly consists of four stages:

Stage 1, data generation (Steps 1–20)
Data quality is paramount to ML models, as nonstandardized datasets make it difficult to 
consistently infer a property of interest and incorrectly labeled inputs hamper the ability of ML 
models to generalize. The protocol, therefore, starts by outlining the experimental procedures 
needed to perform a standardized screen of a library of compounds for antibacterial activity. 
To focus on compounds with selective antibacterial activity, we also outline experimental 

BOX 4

The MCTS
For each molecule with a suitably high prediction score (‘hit’), we 
aim to determine the smallest substructure resulting in the molecule 
being classified as active (the molecule’s ‘rationale’). As detailed in 
ref. 7, a rationale should satisfy three properties: its maximum size 
must be no more than a set number of atoms, it must be a connected 
structure and its predicted activity value, when the rationale is 
provided as an input to Chemprop in its own right, must be greater 
than a threshold value.

The MCTS algorithm solves the discrete optimization problem 
of finding the rationale of a molecule. MCTS is a search process 
in which the root of the search tree is the full molecule, and each 
state in the search tree is a substructure (subgraph) resulting from a 
sequence of bond or ring deletions. We ensure that the substructure 
is chemically valid by requiring it to always be connected throughout 
the process.

Formally, during the search process, each state (S) in the search tree 
contains the following statistics7:

 • N(S) is the number of times state S has been visited during 
the search process and is a quantity used for the exploration–
exploitation tradeoff in the MCTS algorithm

 • W(S) is the total long-term reward, which indicates how likely state 
S will eventually lead to a valid rationale

 • R(S) is the predicted activity score of S, viewed as an input to 
Chemprop in its own right, which indicates the immediate reward 
from choosing this state

Guided by these statistics, the MCTS algorithm searches for rationales 
through an iterative process. Each iteration consists of two phases:
1. Forward pass: the MCTS algorithm selects a path from the root 

(the starting compound) to a leaf state, Sleaf (a candidate rationale). 
At each intermediate state S, a deletion action is selected on the 
basis of the mean action value:

S′ = argmaxs∈child(S)
W (s) + csR (s)

1 + N (s) ,

where the parameter cs controls the tradeoff between the long-
term reward, W(s), and immediate reward, R(s). This parameter 
is set according to the well-known predictor upper confidence 
bound applied to trees equation48.

2. Backward pass: the state statistics are updated for each visited 
state in the selected path: N(S) ← N(S) + 1; W(S) ← W(S) + R(Sleaf).
Based on the backward pass update, W(S) represents the sum of 

the predicted activity of all valid rationales (leaf nodes) derived from 
state S. Different from the immediate reward R(S), W(S) measures 
long-term reward because it focuses on the predicted activity of the 
leaf nodes. The intuition is that the immediate reward is useful for 
filtering poor choices: states are unlikely to contain a rationale if R(S) 
is low. Among states with similar R(S) values, W(S) aids in selecting 
those with higher long-term reward.

To illustrate the MCTS algorithm, we provide an example in 
Fig. 5. Here, the starting molecule is a molecule that was predicted 
to be active (antibacterial activity score >0.2) using ensembles of 
20 Chemprop models trained on 39,312 compounds, as detailed in 
ref. 7. The starting molecule and its output rationale are shown in Fig. 4h.

In Chemprop, MCTS is implemented as part of the built-in 
‘interpret’ function, which outputs rationales for input hit molecules. 
These rationales contain scaffolds that describe chemical motifs 
underlying putative structural classes of active compounds. 
However, the computed rationales can differ from other, structurally 
similar rationales by a small (typically <3) number of atoms due to 
the stochastic nature of the MCTS. Thus, calculating the chemical 
scaffolds shared between similar rationales, for instance, by using 
RDKit’s FindMCS function, provides ‘rationale groups’ that most 
generally describe the models’ predictions of structural classes.

http://www.nature.com/NatProtocol
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procedures for generating data in a counter-screen of human cell cytotoxicity. The result of this 
stage is a table of compound structures and their associated activity values. The compound 
structures can be represented as text strings in a simplified molecular input line-entry system 
(SMILES) format, and the associated activity value can be represented as discrete values (for 
example, binary ‘0’ or ‘1’ values for binary classification models) or continuous values (for 
example, any positive number for regression models) depending on the type of prediction 
performed in Stage 2. In general, different sources and types of data can also be used (Fig. 2).

Stage 2, model training and benchmarking (Steps 21–35)
This protocol trains Chemprop models using the datasets generated in Stage 1. Several 
parameters of the models must be specified, including the type of model (for example, 
classification or regression), the number of models to train, model hyperparameters and 
additional optional inputs (for example, how to split the data for validation, which additional 
features and loss function to use for training and which metrics to use for benchmarking). 
Depending on dataset size and compute power, training times may vary (‘Timing’ section). 
For the datasets described in this protocol and a typical computer, model training can typically 
be completed within 1–2 d. Trained models should then be benchmarked, a process which 
entails applying the models to withheld subsets of the training data, comparing the model 
predictions to the known ground-truth values and quantitatively evaluating the results using 
a suitable metric such as the area under the precision–recall curve (AUPRC) or the area under 
the operating characteristic curve (AUROC).

Stage 3, rationale analysis and filtering (Steps 36–44)
After the user is satisfied with model performance, Chemprop models can be trained using the 
full training dataset as described in Stage 2 and applied to other chemical spaces. Compounds 
from these chemical spaces that are predicted to be active (‘hits’) can be shortlisted for further 
validation. To make these predictions explainable, we describe Chemprop’s ‘interpret’ function, 
which performs MCTS to identify rationales from hits. Due to the large number of possible 
MCTS steps needed to arrive at each rationale, it is possible that the MCTS may not converge 
for certain hits. However, when rationales are successfully generated, studying frequently 
occurring rationales can provide chemical substructure insights into what Chemprop models 
view as indicative of activity. Additionally, these rationales provide an efficient means of down-
sampling compounds to validate in Stage 4. At any stage of this process, compounds of interest 
may be computationally filtered to remove compounds with undesirable properties, for 
instance, unfavorable physicochemical parameters or problematic chemical substructures.

a Examples of training data sources

High-throughput
screening

Computer generated
and molecular docking

Available databases Literature search

Examples of training data types

Classification based
(qualitative labels)

Regression based
(quantitative values)

Multiclass (multiple
qualitative labels)

Examples of training data

Cytotoxicity Specific target binding
activity

Enthalpy of atomization Blood–brain barrier
penetration

PubChem

Is antibacterial
Is not antibacterial

Minimal inhibitory
concentration: 0.5 µM

Potency

Antibacterial
Noncytotoxic
Nonsoluble

Nonantibacterial
Cytotoxic
Soluble

b c

ICSD

Bacterial
penetration

Chemical
stability

Fig. 2 | Examples of training data. a, Examples of training data sources. This 
protocol outlines steps needed to perform a high-throughput screen of ~2,500 
compounds for antibacterial activity against S. aureus and cytotoxicity against 
three human cell types. However, training data can be compiled from a diverse 
variety of sources and do not necessarily need to be experimentally acquired. 

b, Examples of training data types. This protocol leverages classification-based 
Chemprop models trained on data corresponding to binarized antibacterial activity 
and cytotoxicity values. Regression-based models and multiclass models can 
similarly be developed using Chemprop. c, Examples of training data. Chemprop 
accommodates any property related to the chemical structure of a molecule.
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Stage 4, prediction testing (Steps 45 and 46)
Hits should be validated using the same experimental protocol as in Stage 1. However, if rationales 
were generated or filtering steps were applied in Stage 3, then these hits can be down sampled. This 
allows for fewer—but typically more structurally interesting—compounds to be curated and tested, 
enabling more efficient exploration of large chemical spaces. It is also important to point out 
that, in many cases, hits with validated activity in Stage 4 require additional study to support their 
promise for further development. For antibiotics and other therapeutic areas, these additional 
studies might include mechanistic characterization and further in vitro and in vivo testing.

To guide readers, we illustrate the process of modeling and the expected inputs and outputs 
at each stage in Fig. 3, as well as example outputs of the protocol in Fig. 4.
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Fig. 3 | The process of modeling and expected inputs and outputs at each 
modeling step. a, Overview of model building using Chemprop. b–g, Steps 
involving hyperparameter optimization (b), model training and benchmarking 

(c), model evaluation (d), hit filtering (e), rationale analysis (f ) and identification 
of structural classes (g), as described in Stages 2 and 3, are shown. PT files are 
model checkpoint files that end in ‘.pt’.
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Users may adapt this protocol in various ways, including applying the protocol to the 
discovery of molecules with other properties, forgoing the experimental generation of training 
data in favor of assembling training data based on published literature or deploying trained 
Chemprop models without making them explainable or without any additional filtering steps. 
In the ‘Procedure’ section, we provide practical guidelines that are helpful to consider when 
adapting this protocol.

Applications of the method
Making DL models, including Chemprop models, explainable enables researchers to focus on 
salient chemical scaffolds and directly predict structural classes of compounds with activity. 
Automating the identification of structural motifs can be valuable, especially when applied to 
large databases, such as the ZINC22 (ref. 47). This protocol provides a source of chemical novelty 
that can suggest specific chemical spaces to explore and augment discovery pipelines. As 
mentioned above, model explainability is also pragmatic in that it allows large chemical spaces 
to be efficiently down sampled. This capability is helpful because many available compound 
libraries are redundant: compounds often sample the same or similar scaffolds, and the 
chemical diversity in these libraries is limited48,49. By focusing only on key scaffolds of interest 
and testing small numbers of unique compounds representing these scaffolds, researchers can 
sample this chemical diversity while keeping costs low.

Notable applications of Chemprop include the discovery of halicin17 and the discovery of 
small-molecule senolytics23 and antiviral drug combinations24. Chemprop has also been used 
to predict absorption, distribution, metabolism, excretion and toxicity properties50, chemical 
spectra51 and chemical reaction properties43. As used in this protocol, Chemprop and its 
explainability features have enabled the discovery of a structural class of antibiotics7. This protocol 
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Fig. 4 | Example results. a–d, Rank-ordered antibiotic activity (a), HepG2 
cytotoxicity (b), HSkM cell cytotoxicity (c) and IMR-90 cytotoxicity (d) 
prediction scores of a test set of 100,000 compounds, as determined following 
this protocol. PS, prediction score. e, A t-SNE plot of compounds with high 
antibiotic prediction scores, in addition to compounds in the training set, as 
determined following this protocol. f, A t-SNE plot of compounds with high and 
low antibiotic prediction scores, in addition to compounds in the training set and 
empirically tested compounds, for the larger training and test sets used in ref. 7. 

g, A rationale (red) determined using a MCTS for amoxicillin, an example hit 
compound, using the Chemprop models created in this protocol. The rationale 
overlaps with the β-lactam ring, a substructure known to confer antibacterial 
activity. h, Rationales (red) determined using a MCTS for cefmenoxime (top) 
and two compounds, compounds 1 and 2 (bottom), using the Chemprop models 
created in ref. 7. For cefmenoxime, the rationale overlaps with the cephalosporin 
core, a substructure known to confer antibacterial activity. Panels f and h were 
reproduced from ref. 7, Springer Nature Ltd.
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builds on ref. 7, but uses more minimal data files and examples to illustrate specific concepts. 
We anticipate that this protocol can be readily adapted for use in different applications, such as 
the discovery of bioactive compounds—including other anti-infective, anticancer and antiaging 
compounds—and the discovery of inorganic compounds with desired material properties42,45.

For biological applications, prior studies7,17–19,23 have focused on using phenotypic screening 
data to train Chemprop and similar models. In contrast to modeling based on target-specific 
activity, modeling based on phenotypic activity allows for chemical structure information across 
more active chemotypes to be integrated52–54. Nevertheless, developing models that are trained to 
predict target-specific activity is possible, and further work is needed to determine how predictive 
such approaches can be given the potentially more limited space of active chemotypes.

Comparison with other methods
Several points of comparison can be made with respect to other methods:

Protocol aims
As Chemprop and other chemotype-based approaches learn and generalize based on the 
patterns of molecular atoms and bonds in chemical structures, these methods cannot be 
replaced by traditional quantitative structure–activity relationship analyses. Quantitative 
structure–activity relationship analyses build on known scaffolds and do not identify novel 
chemotypes55. In general, Chemprop and other chemotype-based approaches are also target 
independent and different from target-specific approaches, such as molecular docking56,57.

This protocol focuses on the problem of inference. As such, this protocol does not generate 
new molecules (but could be leveraged to score molecules generated by other models). This 
protocol also focuses on explainability, which contrasts with black box or interpretable models. 
Black box models have been thought to be more predictive than explainable models58, but in 
our approach, Chemprop can be used with or without explainability features. Explainability is 
different from interpretability, which aims to identify the model’s decision-making steps (Box 2).

Protocol performance and other ML architectures
As mentioned above, GNNs have been benchmarked and shown to be state of the art for 
numerous prediction tasks, and additional benchmarking details and statistics can be found in 
these references16,45. Additional ML architectures that have been used to predict activity from 
chemical structure include support vector machines, random forest models and vector-based 
convolutional neural networks11–14. Although these models typically underperform relative 
to Chemprop, most of the stages of this protocol (including training data generation, model 
explainability and hit filtering) can be generalized to different ML models.

‘Full-stack’ versus computational pipelines
Different from fully computational protocols, this protocol guides users through the ‘full-stack’ 
process of experimental data generation, model implementation, model explainability and 
evaluation and experimental validation. The experimental sections of this protocol are important 
because they determine the quality of the training data. Model predictions should always be 
experimentally tested because false positive rates can be expected to be high (typically, >50% in 
the case of antibiotic discovery7,17–19). High false positive rates reflect the difficulty of molecular 
discovery, and this protocol should only be expected to increase working true discovery rates 
(and not perfectly predict activity). The experimental parts of this protocol include standard 
high-throughput screening of a sizeable (>1,000) number of compounds for antibiotic activity, 
and we do not expect minor methodological variations of this screen—for instance, those 
conforming to Clinical and Laboratory Standards Institute guidelines59—to produce substantively 
different results. As this protocol includes both computation and experimentation, we anticipate 
that it will be useful to both dry-laboratory and wet-laboratory researchers.

Required expertise
This protocol requires basic knowledge of how to run command line commands using Linux/
Unix syntax. Although familiarity with Python and RDKit is helpful, this is not needed for most of 
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the protocol, and parts of the protocol that require this (for example, for filtering or visualizing 
model prediction results) are optional. Access to computational resources (for example, Google 
Cloud, Oracle Research credits or supercomputing services housed at several universities and 
institutions) may be helpful for advanced analyses and provide the best experience, but this 
is not required. For the experimental sections of this protocol, familiarity with performing 
general wet-laboratory experiments is recommended. Experience with or knowledge of high-
throughput screening procedures, including familiarity with liquid-handling robots, may be 
helpful but is not required.

Limitations
As with ML approaches in general, the quality of the results generated by this protocol depends 
on the quality of the datasets used for training. This protocol, therefore, includes experimental 
procedures relevant to antibiotic discovery, and any wet-laboratory procedures for different 
applications should generate similarly consistent and standardized data. Here, we focus on 
bacterial growth inhibition and human cell cytotoxicity for antibiotic discovery. These two 
types of activity constitute starting points for identifying antibiotic candidates, but compounds 
validated to have selective antibacterial activity should be further characterized, for instance, 
by considering protein binding in serum, chemical stability, absorption, distribution, 
metabolism and excretion properties and efficacy in treating bacterial infections in vivo.

Chemprop is currently only able to handle the inference of scalar quantities. This entails 
that higher-dimensional data describing molecular properties—for instance, imaging data, 
high-throughput ‘omics datasets or 3D geometric structures—should be mapped to scalar 
quantities. Functionality wise, Chemprop’s focus on inference means that it cannot generate 
new molecules; rather, it scores user-provided chemical structures. This protocol is, therefore, 
best applied to mine preexisting virtual chemical libraries, but these libraries can differ in terms 
of the chemical diversity represented.

Finally, although model explainability provides generalizable and human-understandable 
reasoning for predictions, it has limitations. Explainability is often considered post hoc to 
rationalize model predictions34–37,44. Interpretability is needed to understand how models arrive 
at specific predictions38. Explainable and interpretable ML are developing subfields of AI, and 
how both concepts may apply to other application areas of AI and ML remain to be further 
studied.

Experimental design
Suitable types of activity
Although this protocol can be used to predict any type of activity that can be inferred from 
chemical structure, we recommend focusing on well-defined activity that can be measured 
using high-throughput screens. This ensures that standardized and well-controlled training 
datasets can be generated and that multiple (>100) hits can be experimentally tested. There 
are various types of high-throughput screens and, for scale and cost efficiency, we typically 
recommend simple screens that provide numerical scalar quantities as a measure of activity. 
Examples of such screens include antibacterial growth inhibition screens for different bacterial 
species measuring optical density, cytotoxicity screens for different cell types measuring 
cell viability, viral replication screens for different viral species measuring viral titer, protein 
inhibition screens for different proteins measuring catalytic activity and aqueous solubility 
screens for different compounds measuring compound concentration in solution. High-
content imaging-based screens can in principle be used, but imaging data should be mapped 
to scalar quantities, as Chemprop does not handle two-dimensional data.

Choice of screening library
Initial screening libraries should contain at least ~1,000 compounds. In our experience, this 
ballpark number of compounds is typically needed to ensure that there are enough active and 
inactive compounds from which to learn. While models can be trained on as few as 45 active 
compounds23, having a larger number (at least hundreds) of inactive compounds is important 
for models to sufficiently learn from negative examples. For screening drug-like compounds, 
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commercial vendors, including MicroSource Discovery Systems, MedChemExpress, ChemDiv, 
Cayman Chemical, Selleck Chemicals and others, sell ready-to-use libraries that can be 
customized depending on the application (for example, contain compounds known for 
having kinase-inhibiting activity). There are fewer available libraries for screening inorganic 
compounds, but several databases contain large datasets that might be acceptable to use as 
training data (Table 1). Where applicable, compounds that are known to have activity should 
be included in experimental screen as controls, and these compounds may also be used to 
augment the training data.

Table 1 | Overview of organic and inorganic compound libraries available for in silico screening

Database Number of molecules Description Reference

Organic drug-like databases

Readily purchasable chemical spaces

ZINC22 750 million purchasable Database of commercially accessible small molecules 
derived from multibillion-scale make-on-demand 
libraries. Includes catalogs from Enamine (REAL), WuXi 
(GalaXi) and Mcule (Ultimate)1

https://doi.org/10.1021/acs.jcim.2c01253
https://cartblanche22.docking.org

PubChem 117 million (117,473,493) Chemical structures extracted from PubChem 
Substance records (313,651,772 total chemical entities)

https://pubchem.ncbi.nlm.nih.gov/docs/
statistics

Mcule 41 million (41,766,991) Mcule is a drug discovery platform integrating 
purchasable compound databases

https://mcule.com/database/

MedChemExpress 20 million (20,211,464) MedChemExpress (MCE) provides curated compound 
libraries2 containing structurally diverse compounds

https://www.medchemexpress.com/screening-
libraries.html

MolPort 7.6 million (7,602,279) MolPort is an online compound sourcing platform 
to purchase in-stock small molecules from over 25 
chemical vendors3

https://www.molport.com/shop/
screening-compounds

ChEMBL 2 million (2,399,743) ChEMBL (version 33) is a manually curated database of 
bioactive molecules with drug-like properties

https://www.ebi.ac.uk/chembl/

ChemDiv >1.6 million Collection of low molecular weight organic compounds 
including screening libraries centered around chemical 
diversity, solubility, permeability and other criteria

https://www.chemdiv.com/catalog/
screening-libraries/

ChemBridge >1.3 million ChemBridge provides small molecule, lead-like and 
drug-like screening compounds that are readily 
available in-stock

https://chembridge.com/screening-compounds/
lead-like-drug-like-compounds/

Broad Institute 800,000 In-house compounds curated and maintained by the 
Center for the Development of Therapeutics at the 
Broad Institute

https://www.broadinstitute.org/
center-development-therapeutics/
compound-management-and-repurposing-hub

Chemical Entities of 
Biological Interest (ChEBI)

61,189 fully annotated A freely available dictionary of molecular entities 
focused on ‘small’ chemical compounds

https://www.ebi.ac.uk/chebi/

DrugBank 16,581 A biomedical knowledgebase comprising relevant 
information on drugs and drug targets. DrugBank 
Online (version 5.1.11) includes 2,769 approved small 
molecule drugs

https://go.drugbank.com

Drug Repurposing Hub 7,934 Curated and annotated collection of US Food and Drug 
Administration (FDA)-approved drugs, clinical trial drugs, 
and pre-clinical compounds from the Broad Institute

https://repo-hub.broadinstitute.org/repurposing

Pharmakon and Natural 
Product libraries

2,560 Pharmakon-1760 combines the 1360 drugs in 
Microsource Discovery System’s US Drug Collection 
(FDA approved) with the 400 drugs from the 
International Drug Collection. The NatProd Collection 
contains 800 natural products and their derivatives

http://www.msdiscovery.com/pharmakon.html
http://www.msdiscovery.com/natprod.html

Prestwick 1,520 Collection of diverse small molecules, 95% of which 
are drugs approved by FDA, European Medicines 
Agency (EMA) and other agencies

https://www.prestwickchemical.com/
screening-libraries/prestwick-chemical-library/

On-demand ultralarge chemical spaces

eMolecules eXplore 5 trillion Large virtual chemical space containing over >4.9 
trillion compounds, built using 45 chemical reactions

https://www.emolecules.com/explore

Ambinter AMBrosia 110 billion 
(110,496,278,572)

AMBrosia is an ultralarge chemical space gathering 
virtual and accessible molecules based on 53,694 
in-house building blocks and 32 chemical reactions

https://ambinter.com/ambrosia
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Database Number of molecules Description Reference

Organic drug-like databases

Readily purchasable chemical spaces

Enamine REAL Space 48 billion 
(48,078,672,450)

The REAL Space is assembled via more than 167 
parallel synthesis protocols with ~143,000 qualified 
reagents and building blocks

https://enamine.net/compound-collections/
real-compounds/real-space-navigator

WuXi GalaXi 16 billion GalaXi leverages WuXi LabNetwork’s building blocks 
and >30 different reaction types

https://wuxibiology.com/drug-discovery-
services/hit-finding-and-screening-services/
virtual-screening/

OTAVAchemicals 
CHEMriya

11.8 billion The first release of the CHEMriya Space contains ~12 
billion accessible on-demand molecules, based on 
30,000 building blocks and 44 in-house reactions

https://www.otavachemicals.com/products/
chemriya

Chemspace Freedom 
Space

5 billion (4,999,512,444) Collection of ~5 billion molecules, a chemical space 
created using ML-based models, trained on reaction 
success data from Enamine

https://chem-space.com/compounds/
freedom-space

ChemBridge VAST 700 million The VAST structural database is a virtual database 
of synthetically accessible small molecules for hit 
generation and library expansion

Inorganic compound-containing databases

CAS Registry 219 million The CAS registry has a curated list of organic 
substances, alloys, coordination compounds, 
minerals, mixtures, polymers and salts disclosed in 
publications since the early 1800s

https://www.cas.org/cas-data/cas-registry

ChemSpider 129 million ChemSpider is a free chemical structure database 
providing access to over 58 million chemical 
structures, properties, and associated information

https://www.chemspider.com

Gmelin 1,500,000 A database of inorganic and organometallic 
compounds that is closed access

https://www.library.illinois.edu/chx/reaxys/

Atom Work Adv 379,736 Database that contains data on crystal structure, X-ray 
diffraction, properties and state diagrams of inorganic 
materials extracted from scientific literature

https://atomwork-adv.nims.go.jp/en/service.html

Inorganic Crystal 
Structure Database

>291,000 structures A list of known inorganic crystal structures published 
since 1913, including their atomic coordinates. Includes 
experimental inorganic structures, experimental metal-
organic structures and theoretical inorganic structures

https://icsd.products.fiz-karlsruhe.de/en

Materials Project 154,718 materials Comprehensive database of computed information 
about inorganic, crystalline materials and molecules. 
Includes 4,351 intercalation electrodes and 172,874 
inorganic small molecules

https://next-gen.materialsproject.org

The Electrolyte Genome 26,000 A database of liquid organic electrolytes used for 
calculating key properties for beyond lithium-ion 
batteries

https://www.jcesr.org/scientific-tools/
materials-project-and-electrolyte-genome/

Fragment libraries

GDB-17 166 billion 
(166,443,860,262)

Enumerated molecules of up to 17 atoms of C, N, O, S 
and halogens, covering a size range containing many 
drugs and typical for lead compounds

https://doi.org/10.1021/ci300415d

GDB-13 970 million (977,468,314) All enumerated small organic molecules containing 
up to 13 atoms of C, N, O, S and Cl following simple 
chemical stability and synthetic feasibility rules

https://doi.org/10.1021/ja902302h

GDB-11 26.4 million (26,434,571) All possible molecules of up to 11 atoms of C, N, O 
and F following simple valency, chemical stability and 
synthetic feasibility rules

https://doi.org/10.1021/ci600423u

Enamine REAL Fragments 259,380 Fragment collection based on over 300,000 building 
blocks. Contains fragments bearing covalent warheads 
and photolabels, to be grown into lead compounds

https://enamine.net/compound-collections/
fragment-collection

Life Chemicals 60,000 Fragment collection available in stock and including a 
selection of fragment subsets with unique properties

https://lifechemicals.com/screening-libraries/
fragment-libraries

MayBridge Fragments 30,000 The fragment collection contains small molecules 
with molecular weight (≤350 Da) and is selected for 
maximum diversity and drug-like properties

https://www.thermofisher.com/us/en/home/
industrial/pharma-biopharma/drug-discovery-
development/screening-compounds-libraries-hit-
identification/maybridge-fragment-libraries.html

Table 1 (continued) | Overview of organic and inorganic compound libraries available for in silico screening
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Design of experimental screen
As training data for sizeable numbers (>1,000) of compounds is needed for the best results, 
experimental screens should be designed to ensure high reproducibility and consistency. One 
way to assess reproducibility and consistency is to perform experimental replicates of the same 
screen using the same compounds and calculate the Pearson correlation coefficient (R) between 
the values from each replicate. We have previously done so for a screen of 39,312 compounds for 
antibacterial activity against Staphylococcus aureus7, finding R = 0.8. In general, screens for which 
R > 0.7 can be regarded as reproducible and consistent. Other ways of assessing screening results 
and effect sizes, for instance using the Z factor60, are possible. Experimental considerations for 
increasing reproducibility and consistency include standardization of all reagents, use of robotic 
or liquid-handling systems and proper maintenance of compound libraries.

It may be difficult to perform screens in replicate, particularly if resources are limited. As 
Chemprop models learn from chemotypes in the training data, we generally prefer screening 
more compounds without replicates to screening fewer compounds with replicates, as 
this provides a greater number of chemotypes from which to learn. If the screening will be 
performed without replicates, we recommend repeating the screen for a small and randomly 
chosen subset of all compounds and validating the subset of active compounds. There are 
typically few active compounds compared with inactive compounds and, for this reason, false 
positives can be expected to have a stronger effect on model accuracy than false negatives.

Design of Chemprop models
Properly defining the models—ranging from the type of model to additional optional inputs to 
Chemprop—will depend on the quality of the training data and the type of activity predicted. If 
the training data are sufficient but not large (for example, thousands of compounds screened and 
dozens to hundreds of active compounds), we recommend classification models, which coarse 
grain the data and can be expected to perform better than regression models when information is 
limited. We recommend ensembling with a small number (<20) of models to average out prediction 
score noise arising from the stochasticity in model training. We also generally recommend 
performing the optional step of Bayesian hyperparameter optimization as a principled way to 
determine initial sets of model hyperparameters. For initial tests, other Chemprop parameters may 
best be set to default given that similar settings have been applied in previous work7,16–19,23,24,45.

Suitable libraries for mining
This protocol can be broadly applied to diverse chemical spaces, and the choice of which libraries 
to mine in silico should be informed by chemical diversity and the feasibility of experimentally 
testing predicted hits. For the discovery of drug-like molecules, public databases, including 
PubChem61, ChEMBL62, ChEBI63, DrugBank64, EPA CompTox65 and ZINC22 (ref. 47), along with 
commercial databases, offer possible starting points (Table 1). For the discovery of inorganic 
compounds, databases including the Inorganic Crystal Structure Database66,67 and newer text-

Database Number of molecules Description Reference

Organic drug-like databases

Readily purchasable chemical spaces

MCE Fragment Library 22,419 ‘Rule-of-three’ fragment library comprising over 
20,000 fragments

https://www.medchemexpress.com/screening/
Fragment_Library.html

FBDD (WuXi) 3,100 Diverse set of fragments for fast and cost-efficient hit 
identification using fragment-based screening

https://wuxibiology.com/drug-discovery-
services/hit-finding-and-screening-services/
fragment-screening-fbdd/

Prestwick Fragments 1,456 Collection of small fragments (molecular weight <300 
Da) arising from the fragmentation of approved drugs 
(1500 drugs approved up to the year 2016)

https://www.prestwickchemical.com/screening- 
libraries/prestwick-drug-fragment-library/

1ZINC-22 currently uses five source catalogs: Enamine REAL Database (5 billion), Enamine REAL Space (29 billion), WuXi (2.5 billion), Mcule (128 million) and ZINC20 in stock (4 million). 
The database contains over 37 billion enumerated, searchable, commercially available compounds in two dimensions (2D). 2MedChemExpress comprises over 15 highly-curated compound 
libraries (see Table 2 for a full list). 3MolPort enables compound sourcing from over 30 different chemical suppliers including ChemDiv, ChemBridge, VitasM, WuXi LabNetwork, MayBridge and 
MedChemExpress (see Table 3 for a full list).

Table 1 (continued) | Overview of organic and inorganic compound libraries available for in silico screening

http://www.nature.com/NatProtocol
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mined datasets68 may be relevant. Additionally, databases containing organic compounds, 
including PubChem, ZINC22, CAS and ChemSpider also contain many inorganic compounds 
(Table 1). For both drug-like and inorganic compounds, chemical fragment libraries also offer 
a large source of chemical structures to mine (Table 1). Exploring large virtual libraries (such as 
the ZINC22) provides attractive opportunities to mine highly chemically diverse spaces, but a 
limitation is that most compounds in these libraries are not commercially available. For instance, 
the MolPort and MedChemExpress databases of commercially available, mostly organic 
compounds contains between ~8 and ~20 million compounds, which need to be combined from 
multiple suppliers (Tables 2 and 3). It may be possible to synthesize commercially unavailable 
compounds, and several commercial databases (such as the Enamine REAL space69) contain 
compounds that are expected to be synthetically feasible. Nevertheless, accurately predicting 
which compounds can be synthesized remains a challenge70 and, in our experience, most 
chemically possible drug-like compounds and fragments—such as those found in the generated 
databases (GDBs)71–74—have low synthetic accessibility.

The need for counterscreening and filtering
This protocol includes counterscreening for cytotoxicity against human cells and training 
Chemprop models that predict cytotoxicity, as we require discovered antibacterial compounds 

Table 2 | List of chemical libraries and purchasable numbers of molecules through MedChemExpress

Library Name Number of molecules 
(as of March 2024)

Description

HY-L001V MCE Bioactive Compound Library 22,275 A collection of bioactive and structurally diverse compounds. The bioactivity and 
safety was confirmed by preclinical research and clinical trials. Some have been 
approved by the FDA

HY-L0091V Chemspace Lead-Like Compound 
Library

981,244 The Chemspace Lead-Like Compound Library contains in-stock lead-like 
compounds with favorable physicochemical profiles and high quantitative 
estimation of drug-likeness

HY-L0093V Chemspace Scaffold derived set 10,119 Includes 3,373 scaffolds, with three compounds sampling each

HY-L0094V Chinese National Compound Library 1,398,968 ~1.4 million compounds possessing diverse structures

HY-L0101V FCH Group Screening Library 2,244,487 The FCH Group Screening Library is a library containing diverse screening 
compounds

HY-L0105V InterBioScreen Synthetic Compounds 
Library

485,000 The InterBioScreen Synthetic Compounds is another library containing diverse 
screening compounds

HY-L0088V Life Chemicals 50K Diversity Library 50,240 The Life Chemicals 50K Diversity Library is another library containing diverse 
screening compounds

HY-L0087V Life Chemicals HTS Compound 
Collection

494,471 The Life Chemicals HTS library is another library containing diverse screening 
compounds

HY-L0107V Life Chemicals Natural Product-like 
Compound Library

13,236 This library contains in-stock natural product-like compounds. Designed by  
two-dimensional fingerprint similarity filtering and chemical descriptor-based 
and natural-likeness-based scoring

HY-L912V MegaUni 10M Virtual Diversity Library 10,000,000 This library contains synthetically accessible screening compounds for lead 
identification. The compounds are easy to synthesize via standard one- to  
two-step procedures

HY-L910V MegaUni 50K Virtual Diversity Library 50,000 A collection of synthetically accessible, lead-like compounds with structural 
diversity. The compounds are easy to synthesize via standard one- to two-step 
procedures

HY-L0095V OTAVAchemicals Screening Collection 270,000 The OTAVAchemicals Screening Collection is another library containing diverse 
screening compounds

HY-L0106V Protein-Protein Interaction Modulators 
Library

2,906 Designed for the discovery of protein–protein interaction modulators

HY-L0086V Specs HTS Compounds Library 208,518 The Specs HTS library is another library containing diverse screening compounds

HY-L0104V UORSY New Generation Screening 
Library

1,900,000 The UORSY New Generation Screening is another library containing diverse 
screening compounds

HY-L0103V UORSY Screening Library 680,000 The UORSY Screening Library contains compounds designed on the basis of a 
polymerization synthesis method

HY-L0096V Vitas-M Screening Compounds Library 1,400,000 The Vitas-M Screening Compounds Library is another library containing diverse 
screening compounds

http://www.nature.com/NatProtocol
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to be selective. Where applicable, we recommend performing appropriate counterscreens that 
inform compound selectivity for the main activity of interest. These counterscreens should be 
performed when experimentally validating active compounds or model-predicted hits, and they 
may also be performed for training data generation. Examples of such counterscreens may include 
screens measuring cytotoxicity against different cell types and species, screens measuring off-
target binding and screens measuring compound color. When the counterscreening dataset is 
large enough to train additional Chemprop models that predict unspecific or undesired activity 
(according to the experimental design considerations discussed above), doing so facilitates the 
filtering of model-predicted hits, as detailed in the ‘Procedure’ section.

Materials

Biological materials
• Staphylococcus aureus RN4220 (BEI Resources cat. no. NR-45946) 

▲ CAUTION S. aureus is a biosafety level 2 organism. Ensure appropriate use and handling of 
pathogenic microorganisms, including wearing gloves and appropriate personal protective 
equipment.

Table 3 | List of chemical vendors and purchasable numbers of molecules through MolPort

Supplier Number of molecules (as of February 2024)

ChemDiv 1,670,550

ChemBridge Corporation 1,654,084

Vitas M Chemical Limited 1,413,838

TimTec, LLC (4 weeks) 590,948

INTERBIOSCREEN DOO BAR 554,762

Life Chemicals 548,824

Otava 201,449

Specs 200,729

TimTec 141,606

WuXi LabNetwork 121,838

BIONET—Key Organics 104,760

Otava (2 weeks) 101,656

Eximed 57,951

Maybridge 53,336

AnalytiCon Discovery, GmbH 43,758

HTS Biochemie Innovationen 36,702

MedChemExpress Europe 28,772

TargetMol Chemicals 14,147

Cayman Europe 13,976

Molnova 10,350

ChemFaces 7,285

Selleck Chemicals 6,490

Menai Organics Limited 5,007

Apexbio Technology 4,858

BioTechne Ireland Limited 3,938

ChemNorm 3,289

Axon Medchem 2,382

Chengdu Biopurify Phytochemicals 2,306

Fulfilled by MolPort 1,687

Excenen Pharmatech Co 1001

http://www.nature.com/NatProtocol
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• HepG2 cells (American Type Culture Collection (ATCC), cat. no. HB-8065, RRID:CVCL_0027, 
https://scicrunch.org/resolver/RRID:CVCL_0027)

• Human primary skeletal muscle cells (HSkM cells; ATCC, cat. no. PCS-950-010)
• IMR-90 cells (ATCC cat. no. CCL-186, RRID:CVCL_0347, https://scicrunch.org/resolver/

RRID:CVCL_0347) 
▲ CAUTION The cell lines used should be regularly checked to ensure they are authentic 
and are not infected with mycoplasma.

Reagents
Bacterial culture

• Liquid LB medium (Becton Dickinson, cat. no. 244620)
• LB media containing 1.5% (wt/vol) Difco agar (Becton Dickinson, cat. no. 244520)

Mammalian cell culture
• Dulbecco’s modified Eagle medium (DMEM; Corning, cat. no. 10-013-CV)
• Fetal bovine serum (FBS; ThermoFisher, cat. no. 16140071)
• Penicillin–streptomycin (PS; ThermoFisher, cat. no. 15070063)
• Mesenchymal stem cell basal medium for adipose, umbilical and bone marrow-derived 

mesenchymal stem cells (ATCC, cat. no. PCS-500-030)
• Primary skeletal muscle growth kit (ATCC, cat. no. PCS-950-040)
• Eagle’s minimum essential medium (EMEM; ATCC cat. no. 30-2003)
• Trypsin–EDTA, 0.05% (wt/vol) (Corning cat. no. 25-052-CI)
• Resazurin (Millipore Sigma, cat. no. R7017)

Screening
• Pharmakon Collection (MicroSource Discovery Systems cat. no. Pharmakon-1760)
• Natural Products Collection (MicroSource Discovery Systems cat. no. NatProd Collection)
• Optional: dimethylsulfoxide (DMSO; Millipore Sigma, cat. no. D5879)

Equipment
Equipment for wet laboratory experiments

• Sterile pipette tips (Rainin cat. no. 17005872 and 17005874)
• Optional: liquid-handling robot (for example, Agilent Bravo cat. no. G5498B#041 or similar)
• Sterile microbiological inoculation loops (Beckton Dickinson cat. no. 220215)
• Sterile 14 mL culture tubes (Corning cat. no. 352059)
• Sterile 15 mL centrifuge tubes (Corning cat. no. 352096)
• Sterile untreated clear flat-bottom 96-well plates (Corning cat. no. 3370)
• Sterile tissue-treated black flat-bottom 96-well plates (Corning cat. no. 3904)
• Sterile untreated petri dishes, 100 mm × 15 mm (Corning cat. no. 351029)
• Sterile tissue culture flasks, T-175 (Corning cat. no. 353028)
• Sterile reagent reservoirs (Corning cat. no. 4870)
• Sterile filter, 0.45 μm (Corning cat. no. 431225)
• Microbiological humidity-controlled incubator set to 37 °C and 0% CO2 (vol/vol),  

with shaking option (Thermo Fisher cat. no. SHKE6000)
• Tissue culture humidity-controlled incubator set to 37 °C and 5% CO2 (vol/vol)  

(Thermo Fisher cat. no. 50162969)
• Inverted tissue culture microscope with a low-magnification (for example, 4×) objective 

(Leica cat. no. 11526208)
• Plate reader capable of reading absorbance and fluorescence (for example, Molecular 

Devices SpectraMax plate reader cat. no. M3 or similar)
• Centrifuge with rotors for tubes and plates (for example, Eppendorf cat. no. 5920R 

or similar)
• Optional: liquid dispenser with sterile cassette (for example, Agilent BioTeK MultiFlo 

dispenser cat. no. MFP or similar)

http://www.nature.com/NatProtocol
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Hardware requirements
• Internet connection is required to download the software in the ‘Equipment setup’ section
• A personal computer will suffice for typical workflows, and for the best experience, 

we recommend using a computer with at least 16 GB of memory and 10 GB of disk space

Software requirements
• A command line or terminal shell is needed to execute Chemprop commands. If using RDKit 

(optional), we recommend running RDKit commands in a Python notebook (for example, 
Jupyter) in a modern web browser (for example, Google Chrome) for the best experience.

Reagent setup
For the LB medium and LB agar, dissolve LB medium powder and LB agar powder in Milli-Q 
water and autoclave to sterilize. LB liquid medium is stable for >1 year when stored at room 
temperature (20 °C) and kept sterile. LB agar should be poured onto sterile untreated Petri 
dishes (20 mL per dish). LB agar plates are stable for >1 year when stored at 4 °C under high 
humidity to slow evaporation and kept sterile.

For the complete human cell culture media, add FBS and PS to DMEM and EMEM to make 
complete growth media, each containing final concentrations of 10% (vol/vol) FBS and 1%  
(vol/vol) PS for HepG2 and IMR-90 cells, respectively. Add all components of the primary 
skeletal muscle growth kit to the mesenchymal stem cell basal medium for adipose, umbilical 
and bone marrow-derived mesenchymal stem cells together with PS (1% (vol/vol) final 
concentration) to make complete growth media for HSkM cells. Complete growth media is 
stable for at least 1 month when stored at 4 °C and kept away from light.

For the chemical libraries, if needed to facilitate accurate pipetting, chemical libraries 
can be diluted in DMSO to an appropriate stock concentration. We recommend choosing the 
stock concentration such that the final concentration of DMSO in samples is ≤0.5% (vol/vol), 
as higher DMSO concentrations of ~1% (vol/vol) will noticeably affect human cell viability and 
higher DMSO concentrations of ~4–8% (vol/vol) will affect bacterial growth. Chemical libraries 
should be stored at −20 °C or lower when not in use and thawed completely before use. We also 
recommend centrifuging the chemical libraries before use to consolidate the available amounts 
of solution.

Equipment setup
Download Miniconda. Miniconda (which contains Python) can be downloaded and installed 
from https://conda.io/miniconda.html.
Download Chemprop (v1). Chemprop can be downloaded and installed from https://github.
com/chemprop/chemprop. Run the following commands to install Chemprop from source:

git clone https://github.com/chemprop/chemprop.git
cd chemprop 
conda env create -f environment.yml 
conda activate chemprop 
pip install -e .

Additionally, Chemprop can be installed using the Python Package Index (PyPi) by running the 
following commands:

conda create -n chemprop python=3.8 
conda activate chemprop 
pip install chemprop

▲ CRITICAL It is important to note that Chemprop is in the middle of a major update (from v1 
to v2). As key functionality (for example, producing rationales) is only available in Chemprop v1, 
this protocol focuses on using this version.

http://www.nature.com/NatProtocol
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(Optional) Download example datasets. Example datasets can be downloaded from 
https://github.com/felixjwong/antibioticsai. Smaller example datasets corresponding to the 
Pharmakon Collection and Natural Products Collection libraries described in this protocol 
are available as Supplementary Datasets 1–4. These smaller examples are subsets of the 
39,312 compound datasets described in previous work from our laboratory7.

(Optional) Download RDKit. RDKit can be downloaded and installed from https://www.
rdkit.org/docs/Install.html. Additionally, RDKit can be installed using PyPi by running the 
following command:

pip install rdkit

Procedure

Stage 1, data generation
● TIMING 1 d to 1 week
▲ CRITICAL This stage can be customized (or skipped) if one is adapting the protocol or 
applying the protocol to cases in which the process of generating training data is different 
(or difficult; Fig. 2). In such cases, consult the ‘Experimental design’ section for training data 
guidelines.

Bacterial growth inhibition screening
1. Streak 1 μL of a stock culture of S. aureus RN4220 on one LB agar plate using a sterile 

inoculation loop. Incubate at 37 °C overnight (16–24 h) in a stationary incubator.
2. Using a new sterile inoculation loop, pick a single colony of S. aureus RN4220 from the plate 

and inoculate 2 mL of liquid LB in a 14 mL Falcon tube. Incubate at 37 °C overnight (16–24 h) 
with shaking at 300 rpm.

3. Calculate the required total working volume needed for the screen. Here, we use a 100 μL 
working volume per well and a total of 64 96-well plates for the screen (performed in biological 
duplicate) because the source library, the combination of the Pharmakon Collection and the 
Natural Products Collection from MicroSource Discovery Systems, can be supplied as a total of 
32 96-well plates (for example, 96 wells per plate × 64 plates = 6,144 wells. 6,144 wells × 100 μL 
per well = 614,400 μL total working volume = 614.4 mL total working volume).

 ▲ CRITICAL STEP We have previously used 384-well plates for initial screens, and using 
plates with any number of wells is possible. However, this protocol will focus on using  
96-well plates to make pipetting easier. We recommend at least 80 μL working volume  
per well for 96-well plates.

 ▲ CRITICAL STEP Note that it is common for plated libraries to not use outer wells in to 
avoid evaporation and edge effects, and in these cases, fewer than 96 compounds can be 
screened per plate.

4. Dilute the overnight culture 1:10,000 in liquid LB to make a working bacterial culture 
volume greater than that needed for the screen. The final concentration of bacteria should 
be ~105 colony forming units per milliliter.

 ▲ CRITICAL STEP We recommend making at least 1.1× the needed volume to accommodate 
pipetting and measurement errors.

 ▲ CRITICAL STEP After being diluted with fresh LB, bacteria should be used as soon as 
possible to avoid the confounding effects of initial bacterial growth on the experiment. We 
recommend adding all compounds (Step 6) and starting incubation (Step 7) within 15 min of 
dilution. If it is not possible to add all compounds in this timeframe, smaller volumes of the 
working bacterial culture can be made in batches.

5. Plate the working bacterial culture into 64 sterile untreated clear flat-bottom 96-well 
plates. This can be done by adding bacterial culture to a sterile reagent reservoir and using 
a manual or electronic multichannel pipette, but for the best experience and to improve 
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reproducibility, we recommend using a liquid dispenser or liquid-handling robot. In all 
cases, bacteria should be added aseptically.

6. Add 0.5 μL of each 10 mM stock compound from the Pharmakon Collection and Natural 
Products Collection libraries (or a library of your choice) to each well of the 96-well plates. 
Pipetted amounts can vary depending on the working volumes and stock compound 
concentrations, and here, our screen is at a final compound concentration of 50 μM. If the 
library needs to be diluted in DMSO to facilitate pipetting, we recommend keeping final 
DMSO concentrations below or equal to 2% (vol/vol) for bacteria.

 ▲ CRITICAL STEP For the best experience and to improve reproducibility, we recommend 
using a liquid-handling robot.

7. Incubate all plates at 37 °C overnight (16–24 h) in a stationary incubator.
8. Remove plates from incubation and read the absorbance at 600 nm using a plate reader. 

One reading should be taken for each of the 64 plates, which contain biological duplicates.
 ■ PAUSE POINT This concludes the initial screening for S. aureus RN4220 growth inhibitory 

activity. Ensure that the data generated are of reasonable quality before proceeding. 
For instance, the Pearson correlation coefficient between the two biological duplicate 
absorbance readings across all compounds may be expected to be at least 0.5–0.7 to ensure 
high reproducibility.

Human cell cytotoxicity screening
9. Upon receiving the vials from ATCC, thaw and seed HepG2 cells, IMR-90 cells and HSkM 

cells in T-75 flasks containing complete growth media. HepG2 cells should be cultured in 
complete DMEM, IMR-90 cells should be cultured in complete EMEM and HSkM cells should 
be cultured in complete mesenchymal stem cell medium. Incubate at 37 °C in 5% (vol/vol) 
CO2 overnight before changing media the following day to remove residual cryoprotectant. 
Expand the cells in T-175 flasks incubated at 37 °C in 5% (vol/vol) CO2 until there are 
~60 million cells of each cell type. If possible, ensure that passage numbers are low (<10) 
and that cells are not overconfluent (that is, cells are at most 80–90% confluent).

10. As described in Step 3, calculate the required total working volume needed for the screen. 
Here, we again use a 100 μL working volume per well and a total of 64 96-well plates for the 
screen (performed in biological duplicate) for each cell type.

11. Detach cells using trypsin by aspirating the growth media and adding 10 mL of 0.05% 
trypsin–EDTA solution to each T-175 flask. Flasks can be incubated for 5–30 min at 37 °C in 
5% (vol/vol) CO2 to facilitate detachment. Confirm that cells are detached by examining cells 
under a tissue culture microscope. Transfer the detached cells into a 15 mL centrifuge tube, 
and centrifuge gently at room temperature at 120g for 5 min to pellet cells. Aspirate and 
discard the trypsin, being careful not to disturb the cell pellets.

12. Resuspend cells in total working volume of each complete media for each screen.
13. Plate cells at a final concentration of ~10,000 cells per well. We again recommend using a 

liquid dispenser or liquid-handling robot. If these are used, it is important to check that 
the machine’s shearing forces are small enough to ensure human cell viability. In all cases, 
human cells should be added aseptically.

14. Allow cells to attach by incubating all plates at 37 °C and in 5% (vol/vol) CO2 overnight (16–24 h).
15. Add 0.5 μL of each 2 mM stock compound, for final concentrations of 10 μM. If the library 

needs to be diluted in DMSO to facilitate pipetting, we recommend keeping final DMSO 
concentrations below or equal to 0.5% for human cells. We again recommend using a  
liquid-handling robot.

16. Incubate all plates at 37 °C and in 5% (vol/vol) CO2 for 2–3 d.
17. To prepare a working solution of resazurin, a cell viability indicator, first make a stock 

solution of 100 mM resazurin in Milli-Q water and sterile-filter the solution. Make the 
working solution by diluting the stock solution 1:110 in complete media.

18. Add 20 μL of working resazurin solution to each well of each plate. The final concentration 
of resazurin is ~0.15 mM.

19. Incubate all plates at 37 °C and in 5% (vol/vol) CO2 for an additional 4–24 h.
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20. Remove plates from incubation and read the fluorescence intensity at 550/590 nm 
(excitation/emission) using a plate reader. One reading should be taken for each of the 64 
plates, which contain biological duplicates.

 ■ PAUSE POINT This concludes the initial screening for human cell cytotoxicity. As before, 
ensure that the data generated are of reasonable quality before proceeding. For instance, 
for any cell type of interest, the Pearson correlation coefficient between the two biological 
duplicate fluorescence intensity readings across all compounds may be expected to be at 
least 0.5–0.7 to ensure high reproducibility.

  ◆ TROUBLESHOOTING

Stage 2, model training and benchmarking
● TIMING 1 h to 1 week
Data processing
21. Normalize the experimental data. We recommend normalizing absorbance or fluorescence 

intensity values by the interquartile mean of each plate to account for variation across 
plates. The resulting values will measure relative bacterial growth or relative human cell 
viability, respectively.

22. Bin the data. As ~2,500 compounds are screened in biological duplicate in this protocol, we 
will use binary classification. Accordingly, using a typical growth inhibition cutoff of 0.2, 
assign compounds resulting in relative mean bacterial growth <0.2 the active or positive 
label (‘1’), and compounds resulting in relative mean bacterial growth ≥0.2 the inactive 
or negative label (‘0’). Similarly, assign compounds resulting in relative mean human cell 
viability <0.9 the cytotoxic or positive label (‘1’), and compounds resulting in relative mean 
human cell viability ≥0.9 the noncytotoxic or negative label (‘0’).

23. Prepare the training dataset. The SMILES string for each compound, provided by 
MicroSource Discovery Systems to accompany the Pharmakon Collection and the Natural 
Products Collection, should correspond to one value for each type of activity measured. 
Tabularize this information in .csv format. It may also be useful, although not strictly 
needed, to deduplicate compounds that are replicated in the screen according to their 
SMILES strings. For this protocol, there are four .csv files that will be needed, one each for 
S. aureus antibacterial activity, HepG2 cytotoxicity, IMR-90 cytotoxicity and HSkM cell 
cytotoxicity. Sample deduplicated output datasets from Stage 1 for each of these activities 
are provided as part of this protocol as Supplementary Datasets 1–4. Each of the four .csv 
files will be used to train separate Chemprop models and should resemble the following, 
with one SMILES string and its corresponding binarized activity value per line:

SMILES,ACTIVITY 
Oc1ccnc(S)n1,0 
O=[N+]([O-])c1ccc(O)c([N+](=O)[O-])c1,1 
…

24. In a command line or terminal shell, navigate to the directory of interest and activate 
Chemprop by running the following command:

conda activate chemprop

◆ TROUBLESHOOTING
25. Define Chemprop model parameters. Chemprop provides many customizable parameters, 

several of which are summarized in Table 4. For this protocol, we will use ten iterations of 
Bayesian hyperparameter optimization to determine suitable GNN architecture parameters 
for the dataset named ‘train.csv’. To do so, run the following command:

c he mp ro p_ hy peropt --data_path train.csv --dataset_type classification 
--num_iters 10 --config_save_path hyperparameters.json
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Table 4 | Commonly used Chemprop model p ar am et er s

Parameter Description Options and recommended usage

Directory parameters

data_path A directory path to the .csv file containing the 
training dataset

Specify a .csv file that is of the proper format, containing SMILES strings and activity values 
(Box 5)

dataset_type A specification of type of Chemprop model 
to train

Options include ‘classification’, ‘regression’, ‘multiclass’ and ‘spectra’; this protocol 
recommends ‘classification’

save_dir A directory path to the folder that will contain 
saved Chemprop models

Specify an accessible folder. If the folder does not exist, Chemprop will create the folder

Hyperparameter optimization parameters1

num_iters Number of hyperparameter trial 
configurations to try for Bayesian 
hyperparameter optimization

Can be any positive integer. This protocol recommends ‘10’

config_save_path Directory path to the .json that will contain 
saved hyperparameters

Specify a suitable filename for the .json file in an accessible directory

Training parameters2

config_path A directory path to a .json file specifying 
model hyperparameters

Specify a .json file that is of the proper format, such as that resulting from 
chemprop_hyperopt

split_type A type of dataset split to be used during 
model training

Options include unspecified, ‘scaffold_balanced’, ‘cv’, ‘cv-no-test’, and ‘random_with_
repeated_smiles’. This protocol recommends unspecified, which will result in the data 
being randomly split into train, validation and test sets

num_folds Number of cross-fold validation folds 
(specified only when split_type is ‘cv’)

Can be any positive integer or unspecified. This protocol recommends unspecified

loss_function A loss function to use for training Options include unspecified; ‘binary_cross_entropy’, ‘mcc’ and ‘dirichlet’ for classification; 
‘mse’, ‘bounded_mse’, ‘mve’, ‘evidential’ and ‘quantile_interval’ for regression; ‘cross_
entropy’ and ‘mcc’ for multiclass; and ‘sid’ and ‘wasserstein’ for spectra. This protocol 
recommends unspecified, which for classification defaults to ‘binary_cross_entropy’

dropout A dropout fraction Can be any float between 0 and 1 or unspecified. This protocol recommends unspecified

metric A metric used to assess model against test 
and validation sets

Options include unspecified; ‘auc’, ‘prc-auc’, ‘accuracy’, ‘binary_cross_entropy’, ‘f1’, ‘mcc’, 
‘recall’, ‘precision’ and ‘balanced_accuracy’ for classification; ‘rmse’, ‘mae’, ‘mse’, ‘r2’, 
‘bounded_rmse’, ‘bounded_mae’, ‘bounded_mse’ and ‘quantile’ for regression; ‘cross_
entropy’, ‘accuracy’, ‘f1’ and ‘mcc’ for multiclass; and ‘sid’ and ‘wasserstein’ for spectra. 
This protocol recommends unspecified, which for classification defaults to ‘auc’

ensemble_size Number of models in the ensemble Can be any positive integer or unspecified. This protocol recommends ‘1’. Specifying a 
value greater than 1 will result in multiple models being trained, validated and tested on 
the same splits of the data

features_generator Additional features to use in the model Options include ‘rdkit_2d_normalized –no_features_scaling’, ‘rdkit_2d_normalized’, 
‘morgan’, ‘morgan_count’ and ‘rdkit_2d’. This protocol recommends unspecified or 
‘rdkit_2d_normalized –no_features_scaling’

Predicting parameters3

test_path A directory path to the .csv file containing the 
test dataset

Specify a .csv file that is of the proper format, containing SMILES strings (Box 5)

checkpoint_dir A directory path to the folder that contains all 
saved Chemprop models, or to any specific 
Chemprop model (single .pt file)

Specify the same directory that was used for ‘save_dir’ above or for a subset of models, any 
folder containing a subset of .pt files

preds_path A directory path to the .csv file containing the 
model predictions for the test dataset

Specify a suitable filename for the .csv file in an accessible directory

Explainability parameters4

property_id Which property to generate model 
explanations for

Can be ‘1’ for binary classification models or any positive integer less than or equal to the 
number of properties learned for multiclass models. This protocol recommends ‘1’

min_atoms Minimum number of atoms in a rationale Can be any positive integer or unspecified. This protocol recommends unspecified

max_atoms Maximum number of atoms in a rationale Can be any positive integer greater than ‘min_atoms’ or unspecified. This protocol 
recommends unspecified

1Typical usage: chemprop_hyperopt --data_path <data_path> --dataset_type <type> --num_iters <int> --config_save_path <config_path>. 2Typical usage: chemprop_
train --data_path <path> --dataset_type <type> --config_path <path> --ensemble_size <n> --save_dir <dir> --split_type <type> --num_folds <k> --loss_

function <function> --dropout <float> --metric <metric>. 3Typical usage: chemprop_predict --test_path <test_path> --checkpoint_dir <dir> --preds_path 
<preds_path> 4Typical usage: chemprop_interpret --data_path <path> --checkpoint_dir <dir> --property_id <int>.
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When completed, the output is saved to the ‘hyperparameters.json’ file, which contains text 
in the following format:

{
 "depth": 5,
 "dropout": 0.15,
 "ffn_hidden_size": 1600,
 "ffn_num_layers": 1,
 "hidden_size": 1600

}

■ PAUSE POINT Depending on the size of the training data, hyperparameter 
optimization can take days. For the ~2,500 compound dataset generated in this protocol, 
hyperparameter optimization should take ~1 h to 1 d on a standard personal computer.
▲ CRITICAL STEP Note that, to run this and other commands from a Jupyter notebook instead 
of a command line, append ‘!’ in front of the command and specify exact paths to files.
◆ TROUBLESHOOTING

26. Train an ensemble of Chemprop models to predict activity. Here, we use the 
hyperparameters generated in the previous step and train ten models that are saved to the 
‘checkpoints’ folder. To do so, run the following command:

for i in $(seq 0 9); do chemprop_train --data_path train.csv 
--dataset_type classification --config_path hyperparameters.json 
--save_dir checkpoints/${i} --ensemble_size 1 --seed ${i} & done

To supplement training, we may optionally use prenormalized RDKit features. This can be 
done by appending the following flags to the ‘chemprop_train’ command above:

--features_generator rdkit_2d_normalized --no_features_scaling

In the above step, each model is trained, validated and tested on a random 80–10–10% 
split of the training data, according to Chemprop’s default parameters. Each model will 
be trained on the basis of a different data split due to the different random seed being 
provided.
■ PAUSE POINT Depending on the size of the training data and training parameters, model 
training can take days. For the ~2,500 compound dataset generated in this protocol, model 
training should take ~1 h to 1 d on a standard personal computer.
▲ CRITICAL STEP Training ten models by setting the ‘–ensemble_size’ flag to 10, instead 
of running the command above, will result in splits of the training data being handled 
differently. If –ensemble_size is 10, then each trained model within the ensemble will share 
data splits. In contrast, the trained models from the chemprop_train command above do 
not share data splits.
◆ TROUBLESHOOTING

27. Check model training results. Check that each directory in ‘checkpoints’ contains multiple 
folders each containing a ‘.pt’ file; these .pt files are the model checkpoints that store the 
trained models. Additionally, each directory in ‘checkpoints’ should include four other files: 
‘quiet.log’, ‘verbose.log’, ‘test_scores.csv’ and ‘args.json’. Detailed descriptions of each of 
these files are provided in Box 5.

28. Benchmark the model by repeating Steps 26 and 27, but for training, use a subset of 
all available training data. This differs from benchmarking using the training metrics 
provided in the ‘quiet.log’ files in Step 27; these metrics indicate the performance of 
specific models when they are trained, validated and tested on random splits of ‘train.
csv’, but altogether, the ten models have seen all the data in ‘train.csv’ above. Here, we aim 
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BOX 5

Data files used for Chemprop
Detailed descriptions and sample file formats of the data files used for Chemprop are as follows:
train.csv
User-provided comma-separated values (CSV) file containing training data.
Example:

SMILES,ACTIVITY 
C=CC(C1=CC(=O)C(OC)=CC1=O)c1ccc(O)cc1,0 
C=C1CCC=C(C)CCC2C1CC2(C)C.O,0 
O=[N+]([O-])c1ccc(O)c([N+](=O)[O-])c1,1 
…

hyperparameters.json
User-provided or Chemprop-generated JavaScript object notation (JSON) file containing hyperparameter 
specifications.
Example:

{
 "depth": 5,
 "dropout": 0.15,
 "ffn_hidden_size": 1600,
 "ffn_num_layers": 1,
 "hidden_size": 1600

}

checkpoints/0/quiet.csv
Chemprop-generated LOG file containing training statistics.
Example:

Fold 0 
Model 0 best validation auc = 0.778898 on epoch 7 
Model 0 test auc = 0.694481 
…

checkpoints/0/verbose.log
Chemprop-generated LOG file containing training statistics.
Example:

Command line 
python /Users/felix/anaconda3/envs/chemprop/bin/chemprop_train --data_path 
train.csv --dataset_type classification --config_path hyperparameters.json 
--save_dir checkpoints/0 --ensemble_size 1 --seed 0 
Args 
{'activation': 'ReLU',…

checkpoints/0/test_scores.csv and checkpoints/0/fold_0/test_scores.json
Chemprop-generated CSV and JSON files containing test scores of the final trained models.
Example:

Task,Mean auc,Standard deviation auc,Fold 0 auc 
ACTIVITY,0.6944805194805194,0.0,0.6944805194805194
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checkpoints/0/args.json
Chemprop-generated JSON file containing all parameters of the final trained models.
Example:

{
 "activation": "ReLU",
 "adding_bond_types": true,
 "adding_h": false,
 "aggregation": "mean",

…

checkpoints/0/fold_0/model_0/model.pt
Chemprop-generated binary file containing all parameters needed to specify one Chemprop model  
(a model checkpoint).
Example:

504b 0304 0000 0808 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0e00 1400 6d6f 
…

test.csv (or withheld.csv)
User-provided CSV file containing SMILES strings of test compounds.
Example:

SMILES 
Cc1ccn(n1)CN1CCN(Cn2ccc(n2)C)C1=S 
C1OC(OC[C@H]2O[C@@H](O[C@@H]12)c1ccccc1)c1ccccc1 
…

test_results.csv (or withheld_results.csv)
Chemprop-generated CSV file containing SMILES strings and model prediction values of test 
compounds.
Example:

SMILES,ACTIVITY 
Cc1ccn(n1)CN1CCN(Cn2ccc(n2)C)C1=S,0.04471180747987091 
C1OC(OC[C@H]2O[C@@H](O[C@@H]12)c1ccccc1)c1ccccc1,0.044345813874315354 
…

hits.csv
User-provided CSV file containing SMILES strings of hit compounds.
Example:

SMILES 
CC3(C)S[C@@H]2[C@H](NC(=O)[C@H](N)C1=CC=C(C=C1)O)C(=O)N2[C@H]3C(=O)O

hits_rationales.csv
Chemprop-generated CSV file containing SMILES strings and model prediction values of test 
compounds.
Example:

smiles,score,rationale,rationale_score 
['CC3(C)S[C@@H]2[C@H](NC(=O)[C@H](N)C1=CC=C(C=C1)O)C(=O)N2[C@H]3C(=O)O'], 
0.863,C[CH:1]1S[C@@H]2[C@H]([NH2:1])[CH2:1]N2[CH2:1]1,0.748 
Elapsed time = 0:24:15

(continued from previous page)
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to benchmark a similar set of ten models by manually withholding part of ‘train.csv’ and 
repeating the training process. We recommend withholding ~20% of the training data, 
which should contain representative numbers of active and inactive compounds and 
using the remaining ~80% of the training data to train Chemprop models as above. The 
withheld ~20% of the training data can be used for model benchmarking by comparing 
the model predictions against the known ground-truth values. Both subsets of the 
training data can be manually saved to two different .csv files, one for training and one 
for testing.

29. Using the Chemprop models trained on ~80% of the training data, as stored in ‘checkpoints’, 
run predictions on the withheld ~20% of the training data using the following command:

chemprop_predict --test_path withheld.csv --checkpoint_dir checkpoints 
--preds_path withheld_results.csv

Here, ‘withheld.csv’ is a user-generated file containing a column of SMILES strings, with 
each SMILES string corresponding to a compound in the withheld set. If RDKit features were 
used to supplement training, remember to add the same flags during predictions to the 
command above:

--features_generator rdkit_2d_normalized --no_features_scaling

For a withheld ~500-compound dataset, the prediction step should take less than or ~1 h on a 
standard personal computer.
◆ TROUBLESHOOTING

30. View the prediction results in ‘withheld_results.csv’. As we have used binary classification 
models, each prediction score is a scalar value between 0 and 1 that represents the 
probability of the corresponding compound being active (antibacterial or cytotoxic), given 
as an average value across the trained models.

31. Calculate model performance metrics for the withheld set. There are several standard 
methods to assess performance. Two common metrics are the AUPRC and the AUROC, and 
these can be readily computed using scikit-learn. For instance, the AUPRC can be calculated 
as follows:

import csv 
from sklearn.metrics import precision_recall_curve, auc 
y_scores = [] 
myReader = csv.reader(open("./sa_models_benchmarking/withheld_results.
csv", 'r'),delimiter=',') 
for row in myReader:
    try:
        y_scores.append(float(row[1]))
    except:
        pass
y_true = [] 
myReader = csv.reader(open("./sa_models_benchmarking/withheld.csv", 
'r'),delimiter=',') 
for row in myReader:
    try:
        y_true.append(float(row[1]))
    except:
        pass

precision, recall, _ = precision_recall_curve(y_true, y_scores) 
print(auc(recall, precision))
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Here, the second columns of ‘withheld.csv’ and ‘withheld_results.csv’ are expected to be 
the ground-truth activity values (‘0’ or ‘1’) and prediction scores for the compounds in the 
withheld test set, respectively. The SMILES strings of these compounds are expected in the 
first column, and each row should correspond to the same compound in both .csv files.
If a numerical prediction score threshold is specified for declaring compounds as predicted 
to be active and inactive, then metrics that depend on this prediction score threshold can 
be calculated. These metrics are based on the confusion matrix and include accuracy, 
sensitivity and positive predictive value.

32. The metrics calculated in Step 31 represent an estimate of the performance that can be 
expected for the model trained on the full training dataset. If this performance is favorable, 
then proceed to Step 33; otherwise, repeat Steps 25–31 with different Chemprop model 
parameters to determine if performance can be improved. Generally, an AUPRC value 
greater than the baseline fraction of active compounds in the training data and an AUROC 
value greater than 0.5 indicate that the models perform better than random.

33. Using the Chemprop models trained on all the training data, run predictions on a larger test 
database using the following command:

chemprop_predict --test_path test.csv --checkpoint_dir checkpoints 
--preds_path test_results.csv

As above in Step 29, ‘test.csv’ contains a user-provided column of SMILES strings, with each 
SMILES string corresponding to a compound in the test set. If RDKit features were used to 
supplement training, remember to add the same flags during predictions to the command 
above:

--features_generator rdkit_2d_normalized --no_features_scaling

■ PAUSE POINT Depending on the size of the test database, making predictions can take 
days. For the 100,000-compound test database provided as Supplementary Dataset 5 in 
this protocol, predictions should take ~1 h to 1 d on a standard personal computer. The 
prediction results are saved in the file ‘test_results.csv’.
■ PAUSE POINT This step concludes the training and testing of one ensemble of Chemprop 
models. Subsequent models can be developed independently at your own pace.
◆ TROUBLESHOOTING

34. Repeat Steps 23–33 for each of the remaining .csv training dataset files to generate a total of 
four ensembles of Chemprop models, where each ensemble predicts S. aureus antibacterial 
activity, HepG2 cytotoxicity, IMR-90 cytotoxicity or HSkM cell cytotoxicity.

35. Define predicted hits as compounds with prediction scores above (or below) a user-
specified numerical threshold. The choice of threshold depends on the models, and we 
recommend choosing a threshold resulting in ≲1% of all test database compounds being 
predicted as hits. For a quantitatively informed choice, the prediction score threshold 
may also be selected to correspond to specific points on the precision–recall or receiver 
operating characteristic curves generated in Step 31.
For this protocol, antibiotic activity prediction scores >0.5 are suitable to define active 
antibacterial compounds, and cytotoxicity prediction scores <0.2, <0.05 and <0.2 are 
suitable to define noncytotoxicity compounds across all three human cell types (Fig. 4a–d). 
Note that the models more strongly predict compounds with higher prediction scores to be 
active, and the prediction scores can be used to quantitatively rank predicted hits.

Stage 3, rationale analysis and filtering
● TIMING 1 h to 1 week
▲ CRITICAL This stage is optional and can be skipped if filtering or model explainability is not 
required. If model explainability is not required, the model predictions made in Stage 2 should 
be viewed as black box predictions that can be experimentally validated in Stage 4.
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36. Filter the predicted hits. For the discovery of drug candidates, various rule-based guidelines 
have been proposed to help researchers narrow down compounds that are drug-like. This 
may include filtering out compounds with pan-assay interference substructures (PAINS) 
or Brenk substructures, which refer to chemical substructures that may be promiscuous 
or toxic75,76. To do so, pass a .csv file of SMILES strings corresponding to shortlisted hits 
(‘hits.csv’) into an RDKit filter using Python as follows:

import csv 
from rdkit import Chem 
from rdkit.Chem.FilterCatalog import FilterCatalog, 
FilterCatalogParams 
hits = [] 
myReader = csv.reader(open("./hits.csv", 'r'),delimiter=',') 
for row in myReader:
     mol = Chem.MolFromSmiles(row[0])
     if mol is not None:
          hits.append(mol)

params = FilterCatalogParams() 
params.AddCatalog(FilterCatalogParams.FilterCatalogs.PAINS) 
params.AddCatalog(FilterCatalogParams.FilterCatalogs.BRENK) 
catalog = FilterCatalog(params) 
filtered_hits = [] 
for i in hits:
     entry = catalog.GetFirstMatch(i)
     if entry is None:
            # Collect hits without PAINS or Brenk substructures
            filtered_hits.append(i)

Calculations for additional properties, such as conformity to Lipinski’s rule of five77, can be 
similarly implemented using Python and RDKit.

37. (Optional) Prioritize compounds that are structurally dissimilar from the training set. This 
enables researchers to discover new chemotypes instead of known chemotypes that are 
readily inferred on the basis of the training data, and users may find this step useful if the 
number of filtered hits remaining from Step 36 is large. To filter out compounds that are 
structurally similar to compounds in the training set, one may generate Morgan fingerprints 
for all compounds and calculate the maximum Tanimoto similarity score between each hit 
and all compounds in the training set. If the training set consists of the SMILES strings in 
the first column of ‘train.csv’, then this is performing by running the following Python and 
RDKit code:

from rdkit import DataStructs 
from rdkit.Chem import AllChem 
train = [] 
myReader = csv.reader(open("./train.csv", 'r'),delimiter=',') 
for row in myReader:
      mol = Chem.MolFromSmiles(row[0])
      if mol is not None:
            fingerprint = AllChem.GetMorganFingerprintAsBitVect(mol,2,nBi
ts=2048)
      train.append(fingerprint)

tanimoto = [] 
for mol in filtered_hits:
      fingerprint = AllChem.GetMorganFingerprintAsBitVect(mol,2,nBits=2048)
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      max_similarity = 0
      for train_fingerprint in train:
           tanimoto_similarity = DataStructs.FingerprintSimilarity(fingerprint, 
train_fingerprint)
           if tanimoto_similarity > max_similarity:
                max_similarity = tanimoto_similarity
       tanimoto.append(max_similarity)

filtered_hits_tanimoto=[filtered_hits[i] for i in range(len(tanimoto)) 
if tanimoto[i] < 0.5]

Here, the ‘tanimoto’ array is a list of maximum similarity scores corresponding to the list of 
compounds in ‘filtered_hits’. To begin, we recommend removing compounds with similarity 
scores ≥0.5 as shown.

38. (Optional) Visualize chemical space. Chemical space visualization can be performed 
using various methods—including t-stochastic neighborhood embedding (t-SNE), 
principal components analysis (PCA) or uniform manifold approximation and projection 
on molecular fingerprints—and may help users identify structurally novel compounds if 
desired. Here, we use t-SNE on a Morgan fingerprint representation of the compounds as 
one possible approach, by running the following command:

import numpy as np 
import pandas as pd 
from sklearn.manifold import TSNE 
import seaborn as sns 
import matplotlib.pyplot as plt

# Read and classify molecules 
def read_molecules(file_path):
    train_pos, train_neg = [], []
    with open(file_path, 'r') as f:
        reader = csv.reader(f, delimiter=',')
        for row in reader:
            mol = Chem.MolFromSmiles(row[0])
            if mol:
                if float(row[1]) == 1:
                    train_pos.append(mol)
                else:
                    train_neg.append(mol)
    return train_pos, train_neg

# Calculate fingerprint array 
def calc_fp_arr(mols):
    fplist = []
    for mol in mols:
         arr = np.zeros((1,))
         fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
         DataStructs.ConvertToNumpyArray(fp, arr)
         fplist.append(arr)
    return np.asarray(fplist)

# Load data 
train_pos, train_neg = read_molecules("./sa_models/train.csv") 

http://www.nature.com/NatProtocol


Nature Protocols | Volume 20 | April 2025 | 1020–1056 1049

Protocol

# Combine all data 
alldata = [train_neg, train_pos, hits, filtered_hits_tanimoto] 
flatalldata = [item for sublist in alldata for item in sublist] 
alllengths = [len(data) for data in alldata]

# Calculate fingerprints and apply TSNE 
res = calc_fp_arr(flatalldata) 
model = TSNE(n_components=2, init="pca", perplexity=30, 
metric='jaccard') 
x = model.fit_transform(res) 
df1 = pd.DataFrame(x, columns=['x1', 'y1'])

# Split data 
lengths = np.cumsum(alllengths) 
lengths = np.insert(lengths, 0, 0) 
dfs = [df1[lengths[i]:lengths[i+1]] for i in range(len(lengths)-1)]

# Plot data 
colors = ['blue', 'red', 'yellowgreen', 'darkgreen'] 
sizes = [20, 80, 40, 20]

plt.figure(figsize=(10, 10)) 
for df, color, size in zip(dfs, colors, sizes):

    plt.scatter(df['x1'], df['y1'], Color=color, s=size)
plt.show()

Key parameters—such as the fingerprint radius (2), fingerprint number of bits (2,048), 
t-SNE perplexity (30) and choice of initialization (PCA)—will affect the visualization, but the 
default values for these parameters shown are recommended. For further details regarding 
these parameters, consult the accompanying sklearn documentation.
As an example of this generated output, Fig. 4e,f shows visualizations of the chemical space 
covered by different training sets, which includes the chemical library screened as part of 
Stage 1 and compounds having high model prediction scores from Stage 2.

39. Run the ‘interpret’ function, which uses the MCTS algorithm to identify rationales, as 
follows:

chemprop_interpret --data_path hits.csv --checkpoint_dir sa_models/
checkpoints --property_id 1 --prop_delta 0.5 > hits_rationales.csv

The ‘–prop_delta 0.5’ flag is optional but provides the syntax for adjusting the ‘prop_delta’ 
parameter, which specifies the minimum Chemprop score that any rationale must have. 
Here, ‘hits.csv’ contains a column of SMILES strings, with each SMILES string corresponding 
to a compound in the (filtered) set of hits resulting from Step 36 or 37. As we are calculating 
model rationales for high antibacterial activity prediction scores, ‘checkpoints’ should 
point to the models predicting antibacterial activity. If RDKit features were used to 
supplement training, remember to add the same flags to the command above:

--features_generator rdkit_2d_normalized --no_features_scaling

In the above command, ‘–property_id 1’ tells Chemprop to explain the first property (which, 
for the models developed in this protocol, is antibacterial activity). This flag should be 
specified because Chemprop also can perform multi-task training, which is not covered in 
this protocol. The implementation of ‘chemprop_interpret’ outputs results directly to the 
command line, and we specify these results to be saved in ‘hits_rationales.csv’.
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▲ CRITICAL STEP Due to the MCTS algorithm (Box 4), ‘chemprop_interpret’ runs can be 
slow to converge and require substantial (>20 GB) computer memory. The command also 
processes molecules sequentially, which can be problematic if the MCTS is not converging. 
In these cases, we recommend splitting up the filtered hits to as few as one SMILES string 
per file and running the above command individually for each of the files. Doing so will 
typically require vastly more computational resources than that supported by a common 
personal computer. For the best experience, we recommend running these large batch runs 
on supercomputing platforms such as Google Cloud or those offered by universities and 
institutions. Runs that do not converge within several days of computation might indicate 
that it is difficult to find a suitable rationale, and these runs can be manually killed.
■ PAUSE POINT For each molecule, running ‘chemprop_interpret’ might take over 10 h on 
a typical laptop computer and use over 10 GB of memory. Thus, for users with larger sets of 
molecules or more limited computational resources, we recommend running the command 
on a supercomputing platform such as Google Cloud.
◆ TROUBLESHOOTING

40. (Optional) Advanced users may adjust additional parameters of Chemprop’s ‘interpret’ 
function, which requires Chemprop to be rebuilt (‘Troubleshooting’ section). This optional 
step is helpful if Step 39 consistently fails to produce outputs. Chemprop does not currently 
allow all parameters to be modified via command line, so open the file ‘chemprop/args.py’ 
in a text editor and scroll to the following section:

class InterpretArgs(CommonArgs):
    """:class:`InterpretArgs` includes :class:`CommonArgs` along with 
additional arguments used for interpreting a trained Chemprop model."""

    data_path: str
    """Path to data CSV file."""
    batch_size: int = 500
    """Batch size."""
    property_id: int = 1
    """Index of the property of interest in the trained model."""
    rollout: int = 20
    """Number of rollout steps."""
    c_puct: float = 10.0
    """Constant factor in MCTS."""
    max_atoms: int = 20
    """Maximum number of atoms in rationale."""
    min_atoms: int = 8
    """Minimum number of atoms in rationale."""
    prop_delta: float = 0.5
    """Minimum score to count as positive."""

The most important variable to consider for this protocol is ‘prop_delta’, which can also be 
changed from the command line as in Step 39 above. As the default setting of 0.5 (also used 
above in Step 39) indicates that any rationale must result in a Chemprop score of at least 0.5, 
prop_delta may be too large if our prediction score threshold is 0.2, and users may change 
the 0.5 to 0.1 (or another suitably low number) instead. Additionally, the number of rollout 
steps can optionally be decreased from 20 to 10 to decrease runtime and the exhaustiveness 
of the MCTS. For different test sets and applications, verify that the values for ‘min_atoms’ 
and ‘max_atoms’, which may also be specified as inputs on the command line (Table 4), are 
suitable. These values provide the range for the number of atoms that any rationale must 
have. We do not recommend altering the other parameters to begin.
▲ CRITICAL STEP Despite the name, Chemprop’s ‘interpret’ function does not make models 
interpretable in the sense described above and in Box 2. Instead, it aids in making models 
explainable by identifying chemical substructure rationales of interest.

http://www.nature.com/NatProtocol
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41. Visualize results of chemprop_interpret. The MCTS algorithm allows for the rationales of 
structurally similar hits to vary, often slightly. Finding the scaffolds that are common to 
rationales allows us to define key conserved substructures of interest. To do so, one can 
visually inspect the rationales as follows, assuming that the rationale SMILES outputs are 
now in the first column of the file ‘rationales.csv’:

from rdkit.Chem import Draw
rationales = [] 
myReader = csv.reader(open("./rationales.csv", 'r'),delimiter=',') 
for row in myReader:
      rationale = Chem.MolFromSmiles(row[0])
      if rationale is not None:
           rationales.append(rationale)
Draw.MolsToGridImage(rationales)

Example rationales are visualized in Fig. 4g,h.
42. (Optional) Systematically identify common scaffolds to delineate ‘rationale groups’, 

which may be helpful when the rationales exhibit minor variations due to the stochasticity 
of the MCTS search process. One way to identify common scaffolds is with RDKit’s 
rdFMCS function, which is a flexible maximal common substructure (MCS) algorithm. 
Running the following command on two rationales, ‘rationale_1’ and ‘rationale_2’, will 
output the maximal common substructure where bonds are equivalent if and only if they 
have the same bond type and complete rings only are compared (if an atom is part of 
the MCS and the atom is in a ring of the entire molecule, then that atom is also in a ring 
of the MCS):

from rdkit.Chem import rdFMCS 
this_MCS = Chem.MolFromSmarts(rdFMCS.FindMCS([rationale_1,rationale_2], 
bondCompare=rdFMCS.BondCompare.CompareOrderExact,completeRingsOnly=True).
smartsString)

If desired, this code can be replicated across all pairs of rationales.
43. (Optional) Assign compounds to the rationale groups. This can be done visually as above or 

computationally using the HasSubstructMatch function in RDKit as follows:

associated_mols = [] 
for mol in filtered_hits: 
if mol.HasSubstructMatch(test_MCS):
     associated_mols.append(mol)

Here, test_MCS can be any MCS from Step 42, and filtered hits are contained as RDKit 
molecules in the ‘filtered_hits’ array.

44. Compile the list of hits and associated rationale groups, if applicable. If the same rationale 
group contains multiple hits, then these groups define predicted structural classes of active 
compounds.

 ■ PAUSE POINT This concludes the computational component of this protocol. Subsequent 
experimental testing in Stage 4 can be done at your own pace.

Stage 4, prediction testing
● TIMING 1 d to 1 week
45. Procure or synthesize shortlisted compounds. We recommend searching for previously-

deposited organic compounds using their SMILES strings on PubChem (https://pubchem.
ncbi.nlm.nih.gov/), ChemSpider (https://www.chemspider.com/) or CAS’s SciFindern 
(https://scifinder-n.cas.org/), as each database provides commercial vendor information 
(if available).
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46. Repeat Steps 1–20 to experimentally test the compounds for the desired activity. For 
organic compounds that are supplied in powder form, we recommend dissolving the 
compound in DMSO to make stock solutions of at least 10 mM.

Troubleshooting

Troubleshooting advice can be found in Table 5. To guide troubleshooting, a working example of 
the files provided as inputs and created as outputs of this protocol is available at https://github.
com/felixjwong/protocol. This repository also contains a Python notebook that walks users 
through all analyses downstream of Chemprop, as described in Stages 2–4 of this protocol.

Installation and execution of Chemprop:
As mentioned above, we have focused on using Chemprop v1 in this protocol. Chemprop can be 
downloaded and installed from GitHub or using the PyPi, and reports of installation problems 
are few. Should issues during installation or execution of Chemprop arise, refer to Table 5.

Table 5 | Troubleshooting table

Step Problem Possible reason Possible solution

20 Inadequate or biased spread of 
resazurin fluorescence values

Incubation time is too short, 
results in uneven heating across 
the wells of a plate

Incubate longer with resazurin for up to 2–3 d. Avoid stacking plates in the 
incubator and ensure 100% humidity in the incubator to mitigate evaporation

24 Cannot activate Chemprop Chemprop is not installed Install Chemprop according to the requirements of this protocol

24 Error in installing Chemprop Python and Miniconda 
dependencies are not available. 
Unsuitable hardware setup or  
no access to the Internet

Verify that the operating system supports Python. Download and install 
Miniconda as instructed in the ‘Equipment setup’ section. Check for proper 
hardware (as detailed in the ‘Hardware requirements’ section) and ensure that 
the computer is connected to the Internet

25, 26, 29, 
33, 39

Error in Chemprop runs The input files are not in the 
correct format; invalid flags 
specified

Check that all SMILES strings as well as the input file are correct. Consider 
using Supplementary Datasets 1–5 to start

25, 26, 29, 
33, 39

Chemprop producing different 
results on different computers, even 
with the same models and datasets

The versions of Chemprop are 
different

Check the version and Github commit number of the Chemprop software 
being used. Ensure that the Chemprop setups are consistent by downloading 
and installing a specific commit number of Chemprop, if needed

29, 33, 39 ‘ValueError: If scaling of the 
additional features was done during 
training, the same must be done 
during prediction.’ Message

The model was trained using the 
‘–features_generator rdkit_2d_
normalized –no_features_
scaling’ flags, which were not 
specified during prediction, or 
vice-versa

Include the ‘–features_generator rdkit_2d_normalized –no_features_scaling’ 
flags as needed

39 The chemprop_interpret command 
hangs

An unsuitable choice of MCTS 
parameters or nonconvergence 
of the MCTS

Ensure that the parameters in chemprop/args.py are suitable and that the 
edited file is being used in the Chemprop installation. Continue running the 
command or skip the problematic compound

39 The computer crashes or 
unexpectedly shuts down while 
executing chemprop_interpret

Insufficient memory resources If the error is caused by insufficient memory resources, run the command on 
a server with more computational resources, such as Google Cloud

39 ‘Can’t keukulize mol.’ Message Ambiguity in aromaticity of 
compounds as part of the MCTS

These messages can be ignored

39 ‘OSError: [Errno 24] Too many open 
files’ error

Too many files are being 
generated by chemprop_
interpret than can be handled by 
the operating system

Run ‘ulimit -n 2048’ on the command line, then rerun the chemprop_interpret 
command

39 The values specified for MCTS are 
not being reflected in chemprop_
interpret runs

Chemprop is not updated with 
the latest values in args.py

Rerun the chemprop_interpret command from the Chemprop directory but 
replace ‘chemprop_interpret’ with ‘python interpret.py’. Alternatively, install 
Chemprop from source and rebuild the Chemprop environment by running 
‘conda env remove -n chemprop’ on the command line, followed by ‘conda 
env create -f environment.yml’ from the Chemprop directory, then ‘conda 
activate chemprop’, then ‘pip install -e .’
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Timing

Stage 1, data generation (Steps 1–20): 1 d to 1 week
Stage 2, model training and benchmarking (Steps 21–35): 1 h to 1 week
Stage 3, rationale analysis and filtering (Steps 36–44): 1 h to 1 week
Stage 4, prediction testing (Steps 45 and 46): 1 day to 1 week
These times reflect estimates for a drug discovery program centering on the identification 
of antibacterial compounds, assuming typical computational resources, training libraries 
on the order of 102–105 compounds, test libraries on the order of 104–108 compounds, and 
that compounds of interest are experimentally tested. For larger libraries and the discovery 
of compounds that require different experimental procedures, the required time may be 
longer.

Anticipated results

Expected inputs and outputs at each stage of the protocol are summarized in Fig. 3, example 
outputs of the protocol are illustrated in Fig. 4, and an illustration of the MCTS is provided in 
Fig. 5. The data files used for Chemprop are detailed in Box 5. Specifically, this protocol results 
in the generation of the following files at each stage:

Stage 1, data generation.
A list of chemical structures and associated activity values (for example, in a .csv file).

Stage 2, model training and benchmarking.
Model checkpoints (.pt files) and benchmarking results (for example, numerical AUPRC or 
AUROC values). Additional files generated as part of Chemprop model training may include 
directories, .log files (quiet.log and verbose.log), .json files (opt.json and args.json) and a 
.csv file (test_scores.csv).
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Fig. 5 | Illustration of the MCTS. a, Illustration of the MCTS forward pass, using 
compound 1 as shown in Fig. 4h. The figure shows three possible search paths 
from compound 1 by deleting correspondingly labeled peripheral bonds or rings 
(highlighted in orange). Due to space limitations, only three steps from the root 
are shown. b, Illustration of a complete MCTS search path from compound 1 

to a rationale. Chemprop is used to predict the activity of each molecular 
substructure, and these predictions are used to make updates to the statistics of 
each intermediate state in the backward pass. The figure was reproduced from 
ref. 7, Springer Nature Ltd.

http://www.nature.com/NatProtocol


Nature Protocols | Volume 20 | April 2025 | 1020–1056 1054

Protocol

Stage 3, rationale analysis and filtering.
Prediction rationales and shortlisted compounds (that is, lists of SMILES strings tabulated in a 
.csv file).

Stage 4, prediction testing.
Experimental activity values for compounds of interest (for example, in a .csv file).

At the end of Stage 4, users will ideally have validated novel compounds with the activity 
of interest (here, selective antibacterial activity), which may represent structural classes of 
compounds according to the rationales generated from Stage 3. These compounds represent 
starting points for further development and should be validated using secondary assays and 
additional tests. If users are unable to validate novel compounds with the activity of interest, 
we recommend testing additional predicted hits and retraining the models using additional 
data, which can be done by repeating Stages 1–4 as needed.

Data availability
Example datasets are available as Supplementary Information. The main datasets used in this 
protocol are subsets of data from a previously published study (ref. 7) identifying a structural 
class of antibiotics using explainable DL.

Code availability
Chemprop is available at https://github.com/chemprop/chemprop. A working example of the 
files provided as inputs and created as outputs of this protocol is available at https://github.
com/felixjwong/protocol. Additional code from a previously published study, which includes 
Chemprop checkpoints for models trained on larger datasets, are available at https://github.
com/felixjwong/antibioticsai and https://zenodo.org/records/10095879 (ref. 78). The code in 
this protocol has been peer reviewed.
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