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Abstract Integration of binding information by macromolecular entities is fundamental to

cellular functionality. Recent work has shown that such integration cannot be explained by pairwise

cooperativities, in which binding is modulated by binding at another site. Higher-order

cooperativities (HOCs), in which binding is collectively modulated by multiple other binding events,

appear to be necessary but an appropriate mechanism has been lacking. We show here that HOCs

arise through allostery, in which effective cooperativity emerges indirectly from an ensemble of

dynamically interchanging conformations. Conformational ensembles play important roles in many

cellular processes but their integrative capabilities remain poorly understood. We show that

sufficiently complex ensembles can implement any form of information integration achievable

without energy expenditure, including all patterns of HOCs. Our results provide a rigorous

biophysical foundation for analysing the integration of binding information through allostery. We

discuss the implications for eukaryotic gene regulation, where complex conformational dynamics

accompanies widespread information integration.

Introduction
Cells receive information in different ways, of which molecular binding is the most diverse and wide-

spread. Binding events influence downstream biological functions. In the biophysical treatment that

we present here, biological functions, such as the output of a gene or the oxygen-carrying capacity

of haemoglobin, are quantified as averages over the probabilities of microscopic states. We will be

concerned with how binding events collectively determine these probability distributions and will

refer to this process as the integration of binding information.

The most proximal form of such integration is pairwise cooperativity, in which binding at one site

modulates binding at another site. This can arise through direct interaction, where one binding event

creates a molecular surface, which either stabilises or destabilises the other binding event. This situa-

tion is illustrated in Figure 1A, which shows the binding of ligand to sites on a target molecule. (In

considering the target of binding, we use ‘molecule’ for simplicity to denote any molecular entity,

from a single polypeptide to a macromolecular aggregate such as an oligomer or complex with mul-

tiple components.) We use the notation Ki;S for the association constant—on-rate divided by off-

rate, with dimensions of (concentration)�1—where i denotes the binding site and S denotes the set

of sites which are already bound. This notation was introduced in previous work (Estrada et al.,

2016) and is explained further in the Materials and methods. It allows binding to be analysed while

keeping track of the context in which binding occurs, which is essential for making sense of how

binding information is integrated.
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Oxygen binding to haemoglobin is a classical example of integration of binding information, for

which Linus Pauling gave the first biophysical definition of cooperativity (Pauling, 1935). At a time

when the mechanistic details of haemoglobin were largely unknown, Pauling assumed that coopera-

tivity arose from direct interactions between the four haem groups. He defined the pairwise cooper-

ativity for binding to site i, given that site j is already bound, as the fold change in the association

constant compared to when site j is not bound. In other words, the pairwise cooperativity is given by

Ki;fjg=Ki;;, where ; denotes the empty set. (Pauling considered non-pairwise effects but deemed

them unnecessary to account for the available data.) It is conventional to say that the cooperativity is

‘positive’ if this ratio is greater than 1 and ‘negative’ if this ratio is less than 1; the sites are said to

be ‘independent’ if the cooperativity is exactly 1, in which case binding to site j has no influence on

binding to site i. This terminology reflects the underlying free energy (Equation 1). Association con-

stants and cooperativities may be thought of as an alternative way of describing the free-energy

landscape, as we will explain in more detail in the Results. Figure 1A depicts the situation in which

there is negative cooperativity for binding to site 1 and positive cooperativity for binding to site 3,

given that site 2 is bound.

Studies of feedback inhibition in metabolic pathways revealed that information to modulate bind-

ing could also be conveyed over long distances on a target molecule, beyond the reach of direct

interactions (Changeux, 1961; Gerhart, 2014; Figure 1B). Monod and Jacob coined the term ‘allo-

stery’ for this form of indirect cooperativity (Monod and Jacob, 1961). Monod, Wyman and

Changeux (MWC) and, independently, Koshland, Némethy and Filmer (KNF) put forward equilibrium

thermodynamic models, which showed how effective cooperativity could arise from the interplay

between ligand binding and conformational change (Koshland et al., 1966; Monod et al., 1965). In

Figure 1. Binding cooperativity. (A) Pairwise cooperativity by direct interaction on a target molecule (grey). As

discussed in the text, the target could be any molecular entity. Left: target molecule with no ligands bound;

numbers 1; � � � ; 6 denote the binding sites. Right: target molecule after binding of blue ligand to site 2. (B) Indirect

long-distance pairwise cooperativity, which can arise ‘effectively’ through allostery. (C) Higher-order cooperativity,

in which multiple bound sites, 2, 4 and 6, affect binding at site 5.
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the two-conformation MWC model (Figure 2B), there is no ‘intrinsic’ cooperativity—the binding sites

are independent in each conformation—and ‘effective’ cooperativity arises as an emergent property

of the dynamically interchanging ensemble of conformations.

In these studies, the effective cooperativity between sites was not quantitatively determined.

Instead, the presence of cooperativity was inferred from the shape of the binding function, which is

the average fraction of bound sites, or fractional saturation, as a function of ligand concentration

(Figure 2A). The famous MWC formula is an expression for this binding function (Monod et al.,

1965). If the sites are effectively independent, the binding function has a hyperbolic shape, similar

to that of a Michaelis–Menten curve. A sigmoidal curve, which flattens first and then rises more

steeply, indicates positive cooperativity, while a curve which rises steeply first and then flattens indi-

cates negative cooperativity. Surprisingly, despite decades of study, the effective cooperativity of

allostery is still largely assessed in this way, through the shape of the binding function, which is

sometimes quantified in terms of a sensitivity or Hill coefficient. However, the shape of the binding

function, and any associated Hill coefficient, are measures which aggregate over conformations and
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Figure 2. Cooperativity and allostery from three perspectives. (A) Plots of the binding function, whose shape reflects the interactions between binding

sites, as described in the text. (B) The Monod, Wyman and Changeux (MWC) model with a population of dimers in two quaternary conformations, with

each monomer having one binding site and ligand binding shown by a solid black disc. The two monomers are considered to be distinguishable,

leading to four microstates. Directed arrows show transitions between microstates. This picture anticipates the graph-theoretic representation used

later in this paper. (C) Schematic of the end points of the allosteric pathway between the tense, fully deoxygenated and the relaxed, fully oxygenated

conformations of a single haemoglobin tetramer, a1a2b1b2, showing the tertiary and quaternary changes, based on Figure 4 of Perutz, 1970. Haem

group (red); oxygen (cyan disc); salt bridge (positive, magenta disc; negative, blue bar); DPG is 2–3-diphosphoglycerate.
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binding states, and they give little insight into how binding information is being integrated. To put it

another way, the underlying free-energy landscape cannot be inferred from the shape of the binding

function: as we will see below, different free-energy landscapes can give rise to indistinguishable

binding functions. One of the contributions of this paper is to show how effective cooperativities can

be quantified, providing thereby a set of parameters which collectively describe the allosteric free-

energy landscape and placing allosteric information integration on a similar biophysical foundation

to that provided by Pauling for direct interactions between two sites.

The MWC and KNF models are phenomenological: effective cooperativity arises as an emergent

property of a conformational ensemble. This leaves open the question of how information is propa-

gated between distant binding sites across a single molecule. This question was particularly relevant

to haemoglobin, for which it had become clear that the haem groups were sufficiently far apart that

direct interactions were implausible. Perutz’s X-ray crystallography studies of haemoglobin revealed

a pathway of structural transitions during cooperative oxygen binding which linked one conformation

to another (Figure 2C), thereby relating the single-molecule viewpoint to the ensemble viewpoint

(Perutz, 1970). These pioneering studies provided important justification for key aspects of the

MWC model, which has endured as one of the most successful mathematical models in biology

(Changeux, 2013; Marzen et al., 2013).

Allostery was initially thought to be limited to certain symmetric protein oligomers like haemoglo-

bin and to involve only a few, usually two, conformations. But Cooper and Dryden’s theoretical dem-

onstration that information could be conveyed by fluctuations around a dominant conformation

anticipated the emergence of a more dynamical perspective (Cooper and Dryden, 1984; Henzler-

Wildman and Kern, 2007). At the single-molecule level, it has been found that binding information

can be conveyed over long distances by complex atomic networks, of which Perutz’s linear pathway

(Figure 2C) is only a simple example (Schueler-Furman and Wodak, 2016; Kornev and Taylor,

2015; Knoverek et al., 2019; Wodak et al., 2019). These atomic networks may in turn underpin

complex ensembles of conformations in many kinds of target molecules and allosteric regulation is

now seen to be common to most cellular processes (Nussinov et al., 2013; Changeux and Christo-

poulos, 2016; Motlagh et al., 2014; Lorimer et al., 2018; Wodak et al., 2019; Ganser et al.,

2019). The unexpected finding of widespread intrinsic disorder in proteins has been particularly

influential in prompting a reassessment of the classical structure-function relationship, with confor-

mations which may only be fleetingly present providing plasticity of binding to many partners

(Wrabl et al., 2011; Wright and Dyson, 2015; Berlow et al., 2018).

However, while ensembles have grown greatly in complexity from MWC’s two conformations and

new theoretical frameworks for studying them have been introduced (Wodak et al., 2019), the

quantitative analysis of information integration has barely changed beyond pairwise cooperativity. In

the present paper, we will be particularly concerned with higher-order cooperativities (HOCs) in

which multiple binding events collectively modulate another binding site (Figure 1C). Such higher-

order effects can be quantified by association constants, Ki;S, where the set S has more than one

bound site. The size of S, denoted by #ðSÞ, is the order of cooperativity, so that pairwise cooperativ-

ity may be considered as HOC of order 1. For the example in Figure 1C, the ratio, K5;f2;4;6g=K5;;,

defines the non-dimensional HOC of order 3 for binding to site 5, given that sites 2, 4 and 6 are

already bound. The notation used here is essential to express such higher-order concepts.

Higher-order effects have been discussed in previous studies (Dodd et al., 2004; Peeters et al.,

2013; Martini, 2017; Gruber and Horovitz, 2018) and treated systematically in the mutant-cycle

strategy developed in Horovitz and Fersht, 1990 and recently reviewed (Carter, 2017). The latter

approach relies on perturbing residues or modules to unravel networks of energetic couplings within

a macromolecule. It focusses on the single-molecule scale in contrast to the ensemble scale of the

present paper (Figure 2). Mutant-cycle studies have confirmed the presence of substantial higher-

order interactions underlying information propagation in proteins (Jain and Ranganathan, 2004;

Sadovsky and Yifrach, 2007; Carter et al., 2017). The two approaches may be seen as different

ways of analysing the free-energy landscape, as we explain in the Results.

HOCs were introduced in Estrada et al., 2016, where it was shown that experimental data on

the sharpness of gene expression could not be accounted for purely in terms of pairwise cooperativ-

ities (Park et al., 2019a). In this context, the target molecule is the chromatin structure containing

the relevant transcription factor (TF) binding sites and the analogue of the binding function is the

steady-state probability of RNA polymerase being recruited, considered as a function of TF
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concentration (Estrada et al., 2016; Park et al., 2019a). The Hunchback gene considered in

Estrada et al., 2016, Park et al., 2019a, which is thought to have six binding sites for the TF Bicoid,

requires HOCs up to order 5 to account for the data, under the assumption that the regulatory

machinery is operating without energy expenditure at thermodynamic equilibrium. An important

problem emerging from this previous work, and one of the starting points for the present paper, is

to identify a molecular mechanism capable of implementing such HOCs.

In the present paper, we show that allosteric conformational ensembles can implement any pat-

tern of effective HOCs. Accordingly, they can implement any form of information integration that is

achievable at thermodynamic equilibrium. We work at the ensemble level (Figure 2B) using a graph-

based representation of Markov processes developed previously (below). We introduce a systematic

method of ‘coarse graining’, which is likely to be broadly useful for other studies. This allows us to

define the effective HOCs arising from any allosteric ensemble, no matter how complex. These effec-

tive HOCs provide a quantitative language in which the integrative capabilities of any ensemble can

be specified. We show, in particular, that allosteric ensembles can account for the experimental data

on Hunchback mentioned above, which was the problem that prompted the present study. It is

straightforward to determine the binding function from the effective HOCs, and we derive a general-

ised MWC formula for an arbitrary ensemble, which recovers the functional perspective. Our results

subsume and generalise previous findings and clarify issues which have been present since the con-

cept of allostery was introduced. Our graph-based approach further enables general theorems to be

rigorously proved for any ensemble (below), in contrast to calculation of specific models which has

been the norm up to now.

Our analysis raises questions about how effective HOCs are implemented at the level of single

molecules, similar to those answered by Perutz for haemoglobin and the MWC model (Figure 2C).

This important problem lies outside the scope of the present paper and requires different methods

(Wodak et al., 2019), such as the mutant-cycle approach mentioned above (Carter, 2017). Our

analysis is also restricted to ensembles which are at thermodynamic equilibrium without expenditure

of energy, as is generally assumed in studies of allostery. Energy expenditure may be present in

maintaining a conformational ensemble, for example, through post-translational modification, but

the significance of this has not been widely appreciated in the literature. Thermodynamic equilibrium

sets fundamental physical limits on information processing in the form of ‘Hopfield barriers’

(Estrada et al., 2016; Biddle et al., 2019; Wong and Gunawardena, 2020). Energy expenditure

can bypass these barriers and substantially enhance equilibrium capabilities. However, the study of

non-equilibrium systems is more challenging and we must defer analysis of this interesting problem

to subsequent work (Discussion).

The integration of binding information through cooperativities leads to the integration of biologi-

cal functions. Haemoglobin offers a vivid example of how allostery implements this relationship. This

one target molecule integrates two distinct functions, of taking up oxygen in the lungs and deliver-

ing oxygen to the tissues, by having two distinct conformations, each adapted to one of the func-

tions, and dynamically interchanging between them. In the lungs, with a higher oxygen partial

pressure, binding cooperativity causes the relaxed conformation to be dominant in the molecular

population, which thereby takes up oxygen; in the tissues, with a lower oxygen pressure, binding

cooperativity causes the tense conformation to be dominant in the population, which thereby gives

up oxygen. Evolution may have used this integrative strategy more widely than just to transport oxy-

gen, and we review in the Discussion some of the evidence for an analogy between functional inte-

gration by haemoglobin and by gene regulation.

Results

Construction of the allostery graph
Our approach uses the linear framework for timescale separation (Gunawardena, 2012), details of

which are provided in the ’Materials and methods’ along with further references. We briefly outline

the approach here.

In the linear framework, a suitable biochemical system is described by a finite directed graph with

labelled edges. In our context, graph vertices represent microstates of the target molecule and

graph edges represent transitions between microstates, for which the edge labels are the
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instantaneous transition rates. A linear framework graph specifies a finite-state, continuous-time

Markov process, and any reasonable such Markov process can be described by such a graph. We

will be concerned with the probabilities of microstates at steady state. These probabilities can be

interpreted in two ways, which reflect the ensemble and single-molecule viewpoints of Figure 2.

From the ensemble perspective, the probability is the proportion of target molecules which are in

the specified microstate, once the molecular population has reached steady state, considered in the

limit of an infinite population. From the single-molecule perspective, the probability is the propor-

tion of time spent in the specified microstate, in the limit of infinite time. The equivalence of these

definitions comes from the ergodic theorem for Markov processes (Stroock, 2014). These different

interpretations may be helpful when dealing with different biological contexts: a population of hae-

moglobin molecules may be considered from the ensemble viewpoint, while an individual gene may

be considered from the single-molecule viewpoint. As far as the determination of probabilities is

concerned, the two viewpoints are equivalent.

The graph representation may also be seen as a discrete approximation of a continuous energy

landscape, as in Figure 3, in which the target molecule is moving deterministically on a high-dimen-

sional landscape in response to a potential, while being buffeted stochastically through interactions

with the surrounding thermal bath (Frauenfelder et al., 1991). In mathematics, this approximation

goes back to the work of Wentzell and Freidlin on large deviation theory for stochastic differential

equations in the low noise limit (Ventsel’ and Freidlin, 1970; Freidlin and Wentzell, 2012). It has

been exploited more recently to sample energy landscapes in chemical physics (Wales, 2006) and in

the form of Markov State Models arising from molecular dynamics simulations (Noé and Fischer,

2008; Sengupta and Strodel, 2018). In this approximation, the vertices correspond to the minima

of the free energy up to some energy cut-off, the edges correspond to appropriate limiting barrier

crossings and the labels correspond to transition rates over the barrier.

The linear framework graph, or the accompanying Markov process, describes the time-dependent

behaviour of the system. Our concern in the present paper is with systems which have reached a

steady state of thermodynamic equilibrium, so that detailed balance, or microscopic reversibility, is

satisfied. The assumption of thermodynamic equilibrium has been standard since allostery was intro-

duced (Koshland et al., 1966; Monod et al., 1965) but has significant implications, as pointed out

in the Introduction, and we will return to this issue in the Discussion. At thermodynamic equilibrium,

we can dispense with dynamical information and work with what we call ‘equilibrium graphs’ (Fig-

ure 3). These are also directed graphs with labelled edges but the edge labels no longer contain

dynamical information in the form of rates but rather ratios of forward to reverse rates. These ratios

are determined by the minima of the free-energy landscape, with the equilibrium label on the edge

from vertex i to vertex j being given by the formula in Figure 3 . Free energy is often expressed rela-

tive to a reference level, as we will do below, so it will be convenient to write the equilibrium label

from i to j as

exp �
DFj�DFi

kBT

� �

; (1)

where DFu is the relative free-energy of vertex u, kB is Boltzmann’s constant and T is the absolute

temperature (Figure 3). Note that if the edge in question involves components from outside the

graph itself, such as a ligand which binds to i to yield j, then the chemical potential of the ligand will

contribute to the free energy. This contribution will manifest itself in the presence of a ligand con-

centration term in the edge label, as seen in Figure 4. The equilibrium edge labels are the only

parameters needed at thermodynamic equilibrium and the free energies of the vertices can be

recovered from them, up to an additive constant. From now on, in the main text, when we say

‘graph’, we will mean ‘equilibrium graph’.

We explain such graphs using our main example. Figure 4 shows the graph, A, for an allosteric

ensemble, with multiple conformations c1; � � � ; cN and multiple sites, 1; � � � ; n, for binding of a single

ligand (n ¼ 3 in the example). The graph vertices represent abstract conformations with patterns of

ligand binding, denoted ðck; SÞ, where the index k designates the conformation with 1 � k � N, and

S � f1; � � � ; ng is the subset of bound sites. Directed edges represent transitions arising either from

binding without change of conformation (‘vertical’ edges), ðck; SÞ ! ðck; S [ figÞ where i 62 S, which

occur for all conformations ck, or from conformational change without binding (‘horizontal’ edges),
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ðck; SÞ ! ðcj; SÞ where k 6¼ j, which occur for all

binding subsets S. Edges are shown in only one

direction for clarity—when binding or unbinding

is present, we use the direction of binding—but

edges are always reversible, in accordance with

thermodynamic equilibrium. Ignoring labels and

thinking only in terms of vertices and edges, or

‘structure’, A has a product form: the vertical sub-

graphs, Ack , consisting of those vertices with con-

formation ck and all edges between them, all

have the same structure and the horizontal sub-

graphs, AS, consisting of those vertices with bind-

ing subset S and all edges between them, also all

have the same structure (Figure 4). Structurally

speaking, we can think of A as the graph product

(Ahsendorf et al., 2014) of the vertical subgraph

Ac1 and the horizontal subgraph A; (Figure 4).

In an allostery graph, ‘conformation’ is meant

abstractly as any state for which binding associa-

tion constants can be defined. It does not imply

any particular atomic configuration of a target

molecule nor make any commitments as to how

the pattern of binding changes.

The product-form structure of the allostery

graph reflects the ‘conformational selection’

viewpoint of MWC, in which conformations exist

prior to ligand binding, rather than the ‘induced

fit’ viewpoint of KNF, in which binding can induce new conformations. Considerable evidence now

exists for conformational selection, in the form of transient, rarely populated conformations which

exist prior to binding (Tzeng and Kalodimos, 2011). Induced fit may be incorporated within our

graph-based approach by treating new conformations as always present but at extremely low proba-

bility. One of the original justifications for induced fit was that it enabled negative cooperativities, in

contrast to conformational selection (Koshland and Hamadani, 2002), but we will show below that

induced fit is not necessary for this and that negative HOCs arise naturally in our approach. Accord-

ingly, the product-form structure of our allostery graphs is both convenient and powerful.

The edge labels are the non-dimensional ratios of the forward transition rate to the reverse transi-

tion rate; accordingly, the label for the reverse edge is the reciprocal of the label for the forward

edge (Materials and methods). Labels may include the influence of components outside the graph,

such as a binding ligand. For instance, the label for the binding edge ðck; SÞ ! ðck; S [ figÞ is xKck ;i;S,

where x is the ligand concentration and Kck ;i;S is the association constant (Figure 1A), with dimen-

sions of (concentration)�1, as described in the Introduction. Horizontal edge labels are not individu-

ally annotated and need only be specified for the horizontal subgraph of empty conformations, A;,

since all other labels are determined by detailed balance (Materials and methods).

The graph structure allows HOCs between binding events to be calculated, as suggested in the

Introduction. We will define this first for the ‘intrinsic’ HOCs which arise in a given conformation and

explain in the next section how ‘effective’ HOCs are defined for the ensemble. In conformation ck,

the intrinsic HOC for binding to site i, given that the sites in S are already bound, denoted !ck ;i;S, is

defined by normalising the corresponding association constant to that for binding to site i when

nothing else is bound (Estrada et al., 2016),

!ck ;i;S ¼
Kck ;i;S

Kck ;i;;
: (2)

HOCs are non-dimensional quantities. If S has only a single site, say S¼ fjg, then the intrinsic HOC of

order 1, !ck ;i;fjg, is the classical pairwise cooperativity between sites i and j. There is positive or nega-

tive intrinsic HOC if !ck ;i;S>1 or !ck ;i;S<1, respectively, and independence if !ck ;i;S ¼ 1 (Figure 1A).

FREE-ENERGY 

LANDSCAPE

LINEAR FRAMEWORK 

GRAPH

EQUILIBRIUM 

GRAPH

Figure 3. The free-energy landscape and

corresponding graphs. From the top, a hypothetical

one-dimensional free-energy landscape, showing two

graph vertices, i and j, as local minima of the free

energy; the corresponding linear framework graph

showing the edges between i and j with respective

transition rates; the corresponding equilibrium graph

whose edge label is the ratio of the transition rates,

which is determined by the free-energy difference

between the vertices (Equation 1).
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For any graph G, the steady-state probabilities of the vertices can be calculated from the edge

labels. For each vertex, v, in G, the probability, PrvðGÞ, is proportional to the quantity, �vðGÞ,

obtained by multiplying the edge labels along any directed path of edges from a fixed reference

vertex to v. It is a consequence of detailed balance that �vðGÞ does not depend on the choice of

path in G. This implies algebraic relationships among the edge labels. These can be fully determined

from G and independent sets of parameters can be chosen (Materials and methods). For the allo-

stery graph, a convenient choice vertically is those association constants Kck ;i;S with i less than all the

sites in S, denoted i<S; horizontal choices are discussed in the Materials and methods but are not

needed for the main text.

Since probabilities must add up to 1, it follows that

PrvðGÞ ¼
�vðGÞ

P

u2G�uðGÞ
: (3)

��
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� ��
��
�

�����

�����
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� ��
��
�

�����

ALLOSTERY GRAPH

1 2

3

1 2 3

1 2
3

conformations

b
in

d
in

g

COARSE-GRAINED 
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H

Figure 4. The allostery graph and coarse graining. A hypothetical allostery graph A (top) with three binding sites for a single ligand (blue discs) and

conformations, c1; � � � ; cN , shown as distinct grey shapes. Binding edges (‘vertical’ in the text) are black and edges for conformational transitions

(‘horizontal’) are grey. Similar binding and conformational edges occur at each vertex but are suppressed for clarity. Note that edges are shown in only

one direction but are always reversible. All vertical subgraphs, Ack , have the same structure, as seen for the vertical subgraphs, Ac1 (left) and AcN (right),

and all horizontal subgraphs, AS, also have the same structure, shown schematically for the horizontal subgraph of empty conformation, A;, at the base.

Example notation is given for vertices (blue font) and edge labels (red font), with x denoting ligand concentration and sites numbered as shown for

vertices ðc1; ;Þ and ðcN ; ;Þ. The coarse-graining procedure coalesces each horizontal subgraph, AS, into a new vertex and yields the coarse-grained

graph, Af (bottom right), which has the same structure as Ack for any k. Further details in the text and the Materials and methods.
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Equation 3 yields the same result as equilibrium statistical mechanics, with the denominator being

the partition function for the thermodynamic grand canonical ensemble. Equilibrium statistical

mechanics typically focusses only on vertices and uses their free energies as the fundamental param-

eters. Directed graphs of the form considered here were previously used in Hill, 1966 and Schna-

kenberg, 1976 to study systems away from thermodynamic equilibrium, where the graph edges

become essential to represent entropy production (Wong and Gunawardena, 2020). We find that

the graph remains just as useful at thermodynamic equilibrium because binding and unbinding are

the fundamental mechanisms through which information is integrated and these mechanisms must

be represented by graph edges. Indeed, as the next section shows, graphs are invaluable for

formulating higher-order concepts.

Our specification of an allostery graph allows for arbitrary conformational complexity and arbi-

trary interacting ligands (we consider only one ligand here for simplicity), with the independent asso-

ciation constants in each conformation being arbitrary and with arbitrary changes in these

parameters between conformations. Moreover, the abstract nature of ‘conformation’, as described

above, permits substantial generality. Allostery graphs can be formulated to encompass the two

conformations of MWC (Marzen et al., 2013), nested models (Robert et al., 1987), the fluctuations

of Cooper and Dryden, 1984 and more recent views of dynamical allostery (Tzeng and Kalodimos,

2011), the multiple domains of the Ensemble Allosteric Model developed by Hilser and colleagues

(Hilser et al., 2012) and applied also to intrinsically disordered proteins (Motlagh et al., 2012),

other ensemble models (LeVine and Weinstein, 2015; Tsai and Nussinov, 2014) and Markov State

Models arising from molecular dynamics simulations (Noé and Fischer, 2008).

Relationships between higher-order measures
As mentioned in the Introduction, a systematic approach to higher-order effects using mutant-cycle

analysis was developed in Horovitz and Fersht, 1990 and Horovitz and Fersht, 1992 and widely

used subsequently (Carter, 2017). The HOCs presented above were introduced in our previous

work (Estrada et al., 2016), and the present paper is concerned not with HOCs per se, but with

effective HOCs that arise from an allosteric ensemble, as will be described below. Nevertheless, it

may still be helpful to explain the relationship between our HOCs and the higher-order couplings

arising from mutant-cycle analysis. We are grateful to an anonymous reviewer for making this point

to us. The material which follows may be of particular interest to those familiar with the relevant liter-

ature but is not required for the main results of the paper.

Both HOCs and higher-order couplings can be seen as different ways of analysing the underlying

free-energy landscape. Both approaches make essential use of directed graphs to organise this land-

scape. Figure 5A shows the labelled equilibrium graph for ligand binding to three sites in a single

conformation, while Figure 5B shows a directed graph of the kind used in Horovitz and Fersht,

1990 for defining higher-order couplings for perturbations to three sites. The latter graphs are

sometimes called ‘boxes’ (Horovitz and Fersht, 1990). We use ‘sites’ here for either individual resi-

dues or the modules described in Carter, 2017. Perturbations are typically mutations, such as

replacement of an asparagine residue by alanine. The choice of replacement can make a difference

to the results, but this is not usually depicted in graph representations like Figure 5B. The directed

edges have rather different interpretations in the two examples in Figure 5: for the equilibrium

graph in Figure 5A, a directed edge represents the biochemical process of ligand binding; for the

coupling graph in Figure 5B, a directed edge represents an experimental perturbation. In both

cases, the vertices have an associated free energy, denoted DFS, where S � f1; � � � ; ng is either the

subset of bound sites in the equilibrium graph (Figure 5A) or the subset of perturbed sites in the

coupling graph (Figure 5B). The D notation is conventionally used in the literature to signify a free-

energy difference (Equation 1) or free energy relative to a chosen zero level. A frequent choice of

zero is the free energy of empty binding or of the unperturbed state, in which case DF; ¼ 0, but we

have not assumed this here. Note that the free energies of the equilibrium graph have a contribution

from the ligand, which manifests itself in the dependence of the edge labels on the ligand concen-

tration, x, while the free energies of the coupling graph do not. Despite this difference, the free

energies provide in both cases the fundamental independent thermodynamic parameters, of which

there are 2
n � 1 for n sites, in terms of which both HOCs and higher-order couplings can be rigor-

ously defined.

The definition is easiest for HOCs. Equation 1 tells us that the edge label, xKi;S, is given by
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xKi;S ¼ exp �
DFS[fig �DFS

kBT

� �

: (4)

We omit the single conformation from subscripts for clarity. It follows from Equation 2 that HOCs

can be written in terms of free energies as follows:

!i;S ¼ exp �
ðDFS[fig �DFSÞ� ðDFfig �DF;Þ

kBT

� �

: (5)

HOCs are non-dimensional quantities associated to graph edges. As noted above, there are alge-

braic relationships among them arising from detailed balance at thermodynamic equilibrium. An

independent set of parameters is formed by restricting to those for which i<S, of which there are

2
n � n� 1. Taken together with the n ‘bare’ association constants for initial ligand binding, Ki;;, they

form a complete set of 2n� 1 independent parameters for the free-energy landscape. It follows from

Equations 4 and 5 that these parameters can be used to recover the fundamental free energies, so

that the two sets of parameters are mathematically equivalent.

Mutant-cycle studies often refer to both Horovitz and Fersht, 1990 and Horovitz and Fersht,

1992, which present apparently different measures of higher-order coupling. The second of these

papers introduces what we will refer to as the ‘residual free energy’ of a vertex and denote DfS. This

is the free energy remaining at vertex S after accounting for the contributions from all proper subsets

of S. The residual free energy may be concisely defined recursively, starting from Df; ¼ DF;, by

DfS ¼ DFS �
X

X�S

DfX

 !

: (6)

We see from Equation 6 that Dffig ¼ DFfig �DF; and that Dffi;jg ¼ DFfi;jg �ðDFfig þDFfjgÞþDF;.

DfS may be calculated directly from DFX but, as the previous example suggests, overlapping contri-

butions of the actual free energies must be cancelled out (Horovitz and Fersht, 1992, Equation 4),

1 2 3
1 2 3

A B

Figure 5. Graphs for defining higher-order measures. (A) Equilibrium graph, similar to those in Figure 4, for binding of a ligand to three sites on a

single conformation, ordered as shown at the base, and annotated with edge labels. The single conformation has been omitted from subscripts for

clarity. (B) Directed graph used to define higher-order couplings, for a macromolecule with three sites or modules (solid squares), ordered as shown at

the base, with perturbations indicated by blue colour in place of black. Vertices are annotated with the corresponding free energy.
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DfS ¼
X

0�k�#ðSÞ

ð�1Þ#ðSÞ�k
X

Y�S ;#ðYÞ¼k

DFY

0

@

1

A : (7)

To see why Equation 7 is a consequence of Equation 6, note first that Equation 7 gives the correct

result for S¼ ;. It may then be recursively checked by assuming it holds for X � S and substituting

into Equation 6 to check that it holds for S. Each subset Y � S contributes a term �DFY arising from

DfX for each X that satisfies Y � X � S. The sign of DFY coming from Equation 7 is ð�1Þ#ðXÞ�#ðYÞ.

These terms almost completely cancel each other out because, letting p¼#ðSÞ�#ðYÞ,

X

Y�X�S

ð�1Þ#ðXÞ�#ðYÞ ¼
X

V�SnY

ð�1Þ#ðVÞ ¼
X

0�j<p

p

j

� �

ð�1Þj ¼ ð�1Þpþ1 :

Taking into account the additional sign coming from Equation 6, we recover Equation 7 for S. This

proves recursively that Equation 7 is the solution of Equation 6 in terms of free energies.

We can go further to show how DfS is expressed in terms of HOCs. For this, we must assume that

q ¼ #ðSÞ>1. When q ¼ 1, ligand binding contributes to DfS, but when q>1 that is no longer the case,

as we will see. Choose any site i 2 S. The summation in Equation 7 involves 2
q terms DFY . It can be

reorganised into a sum of 2q�1 terms of the form �ðDFZ[fig � DFZÞ, where Z � Snfig. The sign of

these terms is given by the sign of DFZ[fig coming from Equation 7 and is therefore ð�1Þ#ðSÞ�#ðZÞ�1.

It is easy to see that, because q>1, there must be equal numbers of +1 and �1 signs. It follows from

Equation 4 that

exp �
DfS

kBT

� �

¼
Y

Z�Snfig

ðxKi;ZÞ
ð�1Þ#ðSÞ�#ðZÞ�1

;

where the double exponent just means that the right-hand side is a ratio in which those terms for

which #ðSÞ�#ðZÞ is odd go in the numerator and those terms for which #ðSÞ�#ðZÞ is even go in

the denominator. Using Equation 2, we can rewrite Ki;Z as Ki;;!i;Z . Since there are equal numbers of

each sign, we can cancel each occurrence of xKi;; between numerator and denominator to yield a

formula for residual free energies in terms of HOCs when #ðSÞ>1:

exp �
DfS

kBT

� �

¼
Y

Z�Snfig

ð!i;ZÞ
ð�1Þ#ðSÞ�#ðZÞ�1

: (8)

The choice of i 2 S in Equation 8 is arbitrary. As an illustration of Equation 8, recalling from Equa-

tion 5 that !i;; ¼ 1, we see that

exp �
Dffi1;i2g

kBT

� �

¼ !i1;fi2g ; exp �
Dffi1 ;i2;i3g

kBT

� �

¼
!i1;fi2 ;i3g

!i1 ;fi2g!i1 ;fi3g
: (9)

Equations 8 and 9 show how the residual free energy is built up from binding at any given site to

the hierarchy of subsets of the remaining sites.

Residual free energies can be thought of as a measure of collective synergy between sites

(Horovitz and Fersht, 1992). They are associated to graph vertices and constitute 2
n � 1 indepen-

dent parameters, with no algebraic relationships between them. It follows from Equations 6 and 7

that they are mathematically equivalent to the fundamental free energies. Residual free energies

have also been independently described for other purposes in Equation 4 of Martini, 2017.

The higher-order couplings introduced in Horovitz and Fersht, 1990 appear at first sight to be

quite different from the residual free energies introduced in Horovitz and Fersht, 1992. The cou-

plings are described by examples for low orders, as are typically encountered in practice

(Horovitz and Fersht, 1990). We provide a general definition here by introducing a slightly more

complex version. A coupling is associated to a pair, consisting of, first, a vertex, Z � f1; � � � ; ng, and,

second, an ordered sequence of distinct sites, ði1; � � � ; ikÞ, none of which are in Z, so that

Z \ fi1; � � � ; ikg ¼ ;. The vertex Z should be thought of as an ‘offset’ within the coupling graph and

the sites, i1; � � � ; ik as specifying an ordered sequence of perturbations undertaken around Z. Higher-
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order couplings are conventionally used in the literature only for Z ¼ ;, but this more complex ver-

sion is needed for the definition in Equation 11 below. Associated to such a pair Z; ði1; � � � ; ikÞ is a

kth order coupling, which we will denote by DkgZ;ði1;���;ikÞ. We start by defining the first-order coupling,

D1gZ;ði1Þ, for any Z satisfying the restriction above, in terms of the free energy,

D1gZ;ði1Þ ¼ DFZ[fi1g�DFZ : (10)

With that in hand, we can define for k� 2, again for any Z satisfying the restriction

DkgZ;ði1;���;ikÞ ¼ Dk�1gZ[fikg;ði1;���;ik�1Þ�Dk�1gZ;ði1;���;ik�1Þ ; (11)

where it is clear that Z [fikg must be disjoint from fi1; � � � ; ik�1g, so that the right-hand side of Equa-

tion 11 is recursively well defined. Unravelling Equations 11 and 10, we see that

D2gZ;ði1;i2Þ ¼ D1gZ[fi2g;ði1Þ�D1gZ;ði1Þ ¼ DFZ[fi1 ;i2g �DFZ[fi2g�ðDFZ[fi1g �DFZÞ ; (12)

which corresponds when Z ¼ ; to Equation 1 of Horovitz and Fersht, 1990. With some more work,

it can be seen that Equation 11 reproduces the k¼ 3 and k¼ 4 examples in Horovitz and Fersht,

1990. Equation 12 expresses the intuition behind higher-order coupling, that it measures the effect

of a perturbation relative to the unperturbed state, hierarchically for a sequence of perturbations.

It can be seen quite easily from Equations 5 and 12 that

exp �
D2gZ;ði1;i2Þ

kBT

 !

¼
!i1;Z[fi2g

!i1;Z
: (13)

We note from Equation 13 that ‘order’ is counted differently between HOCs and conventional

higher-order couplings: when Z ¼ ;, Equation 13 relates a higher-order coupling with k¼ 2 to a

HOC of order 1. Substituting Equation 13 into Equation 11 and continuing the recursion, we find

that

exp �
D3gZ;ði1;i2;i3Þ

kBT

 !

¼
!i1;Z[fi2;i3g

!i1;Z[fi2g!i1;Z[fi3g
;

at which point the similarity with Equation 9 becomes evident and the pattern emerges. It can be

shown by direct substitution in Equation 11 that the following general formula holds, which

expresses higher-order couplings in terms of HOCs for any k� 2:

exp �
DkgZ;ði1;���;ikÞ

kBT

 !

¼
Y

X�fi2;���;ikg

ð!i1 ;Z[XÞ
ð�1Þk�1�#ðXÞ

: (14)

Comparing Equation 14 with Equation 8 we see that, despite their very different definitions in

Equations 11 and 6, conventional higher-order couplings are the same as residual free energies.

Indeed, for k� 1,

Dkg;;ði1 ;���;ikÞ ¼ Dffi1;���;ikg : (15)

Equation 15 may seem strange because a higher-order coupling is defined in terms of an ordered

sequence of perturbations, ði1; � � � ; ikÞ, while a residual free energy depends only on the subset of

sites, fi1; � � � ; ikg, without respect to the order of sites. It is a consequence of detailed balance at ther-

modynamic equilibrium that the order in which the perturbations are undertaken does not matter.

For example, it is clear from Equation 12 that D2g;;ði1;i2Þ ¼ D2g;;ði2;i1Þ. More generally, if r is any per-

mutation of the perturbed sites, so that r is a bijective function, � : fi1; � � � ; ikg! fi1; � � � ; ikg, then it can

be shown that

DkgZ;ði1;���;ikÞ ¼ DkgZ;ð�ði1Þ;���;�ðikÞÞ : (16)

Note that Equation 16 follows from Equation 15 when Z ¼ ;. This property of invariance under
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permutation is referred to as ‘symmetry’ in Horovitz and Fersht, 1990 and is similar to the algebraic

relations which give rise to the independent HOCs, !i;S with i<S, as described previously.

The equality between the higher-order couplings introduced in Horovitz and Fersht, 1990 and

the residual free energies introduced in Horovitz and Fersht, 1992, as described in Equation 15, is

presumably well known to those in the field. It seems to be implicitly assumed in Horovitz and

Fersht, 1992, but we have not found a clear statement of it in the literature. It would be difficult to

formulate one in the absence of a general definition of higher-order coupling, as we have given in

Equation 11. The formulas above may therefore be of some value in offering a rigorous treatment.

Each of the measures we have discussed, HOCs, residual free energies and higher-order cou-

plings, offers a different way of analysing the free-energy landscape using the graphs in Figure 5.

HOCs are associated to graph edges; residual free energies are associated to graph vertices; and

higher-order couplings are associated to sequences of sites, at least when symmetries are ignored.

As we have seen above, the three measures are mathematically equivalent. However, they are useful

for different purposes. HOCs tell us about the integration of binding information; residual free ener-

gies capture the collective synergy between sets of sites; and higher-order couplings show how

these same synergies can be extracted from a sequence of experimental perturbations. One advan-

tage of HOCs is that they are non-dimensional quantities in terms of which it is straightforward to

calculate the other measures. By doing so, we were able to show rigorously that higher-order cou-

plings are also residual free energies (Equation 15).

Having explained how various higher-order measures are related to each other, we return to the

question of how effective cooperativity arises from allosteric ensembles with multiple conformations.

For this problem, HOCs are much easier to use than either residual free energies or higher-order

couplings. With Equations 8 and 14 now available, effective residual free energies or effective

higher-order couplings may be calculated from the effective HOCs that we construct below, but we

will not exploit this capability in the present paper.

Coarse graining yields effective HOCs
As MWC showed, even if there is no intrinsic cooperativity in any conformation, an effective cooper-

ativity can arise from the ensemble. This is usually detected in the shape of the binding function

(Figure 2A). Here, we introduce a method of coarse graining through which effective cooperativities

can be rigorously defined. We illustrate this for the allostery graph, A, and explain the general

coarse-graining method in the Materials and methods. For allostery, the idea is to treat the horizon-

tal subgraphs, AS, as the vertices of a new coarse-grained graph, Af, (Figure 4, bottom right). There

is an edge between two vertices in Af, if, and only if, there is an edge in A between the correspond-

ing horizontal subgraphs. It is not hard to see that Af is identical in structure to any of the vertical

subgraphs Ack . We can think of Af as if it represents a single effective conformation to which ligand

is binding, and we can index each vertex of Af by the corresponding subset of bound sites, S. The

key point, as explained in detail in the Materials and methods, is that it is possible to assign labels to

the edges in Af so that

PrSðA
fÞ ¼

X

N

k¼1

Prðck ;SÞðAÞ ; (17)

with Af being at thermodynamic equilibrium under these label assignments. According to Equa-

tion 17, the probability of being in a coarse-grained vertex of Af is identical to the overall probabil-

ity of being in any of the corresponding vertices of A. This is exactly the property a coarse graining

should satisfy at steady state. It is not difficult to see why a procedure like this should work. The

coarse-graining formula in Equation 17 tells us the expected probability distribution on the coarse-

grained graph, Af. Equation 3 can then be used to back out the equilibrium labels on the edges of

Af which give rise to this probability distribution. We provide a more direct way of achieving the

same result in Equation 40. This assignment of labels to Af is the only way to ensure Equation 17 at

equilibrium, so that the coarse graining is both systematic and unique. The Materials and methods

gives a more careful treatment for coarse graining any linear framework graph, which may not itself

be at thermodynamic equilibrium.
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Our coarse-graining procedure offers a general method for calculating how effective behaviour

emerges, at thermodynamic equilibrium, from a more detailed underlying mechanism. This proce-

dure is likely to be broadly useful for other studies. We note that it applies only to the steady state.

It does not provide a coarse graining of the underlying dynamics, which is a much harder problem.

Because Af resembles the graph for ligand binding at a single conformation, we can calculate

HOCs for Af—equivalently, effective HOCs for A—just as we did above, by normalising the effective

association constants. Once the dust of calculation has settled (Materials and methods), we find that

A has effective association constants and effective HOCs:

K
f
i;S ¼

hKck ;i;S :�SðA
ck Þi

h�SðAck Þi
and !f

i;S ¼
hKck ;i;S :�SðA

ck Þi

hKck ;i;;ih�SðAck Þi
: (18)

The quantity �SðA
ck Þ is calculated by multiplying labels over paths, as above, within the vertical sub-

graph Ack . The terms within angle brackets, of the form hXðckÞi, where XðckÞ is some function over

conformations ck, denote averages over the steady-state probability distribution of the horizontal

subgraph: hXðckÞi ¼
P

1�k�N XðckÞPrck ðA;Þ. The right-hand formula in Equation 18 for the effective

HOCs has a suggestive structure: it is an average of a product divided by the product of the aver-

ages. The effective parameters in Equation 18 provide a biophysical language in which the integra-

tive capabilities of any ensemble can be rigorously specified.

Effective HOCs for MWC-like ensembles
The functional viewpoint is readily recovered from the ensemble. A generalised MWC formula can

be given in terms of effective HOCs, from which the classical two-conformation MWC formula is eas-

ily derived (Materials and methods). Some expected properties of effective HOCs are also easily

checked (Materials and methods). First, !f
i;S is independent of ligand concentration, x. Second, there

is no effective HOC for binding to an empty conformation, so that !f

i;; ¼ 1. Third, if there is only one

conformation c1, then the effective HOC reduces to the intrinsic HOC, so that !f
i;S ¼ !c1;i;S.

More illuminating are the effective HOCs for the MWC model. We consider any conformational

ensemble which is MWC-like: there is no intrinsic HOC in any conformation, so that !ck ;i;S ¼ 1 and

Kck ;i;S ¼ Kck ;i;;; and the bare association constants are identical at all sites, so that we can set

Kck ;i;; ¼ Kck . There may, however, be any number of conformations, not just the two conformations

of the classical MWC model. It then follows that !f
i;S depends only on the size of S, so that we can

write !f
i;S as !f

s , where s ¼ #ðSÞ is the order of cooperativity. Equation 18 then simplifies to (Materi-

als and methods)

!f
s ¼

hðKck Þ
sþ1i

hKck ihðKck Þ
si
: (19)

We see that, although there is no intrinsic HOC in any conformation, effective HOC of each order

arises from the moments of Kck over the probability distribution on A;. In particular, Equation 19

shows that the effective pairwise cooperativity is !f
1
¼ hðKck Þ

2i=hKck i
2.

In studies of G-protein coupled receptor (GPCR) allostery, Ehlert relates ‘empirical’ to ‘ultimate’

levels of explanation by a procedure similar to our coarse graining, but with only two conformations,

and calculates a ‘cooperativity constant’ which is the same as !f
1
(Ehlert, 2016). Gruber and Horovitz

calculate ‘successive ligand binding constants’ for the two-conformation MWC model which are the

same as effective association constants, Kf
s , (Gruber and Horovitz, 2018) (Materials and methods).

To our knowledge, these are the only other calculations of effective allosteric quantities. We note

that Equation 19 applies to all HOCs, not just pairwise, and to any MWC-like ensemble, not just

those with two conformations.

The classical MWC model yields only positive cooperativity (Koshland and Hamadani, 2002;

Monod et al., 1965), as measured in the functional perspective (Figure 2A). We find that MWC-like

ensembles yield positive effective HOCs of all orders. Strikingly, these effective HOCs increase with

increasing order of cooperativity: provided Kck is not constant over conformations (Materials and

methods),
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1<!f
1
<!f

2
< � � �<!f

n�1
: (20)

This shows that ensembles with independent and identical sites, including the two-conformation

MWC model, can effectively implement high orders and high levels of positive cooperativity. Equa-

tion 20 is very informative, and we return to it in the Discussion.

It is often suggested that negative cooperativity requires a different kind of ensemble to those

considered here, such as one allowing KNF-style induced fit (Koshland and Hamadani, 2002). How-

ever, if two sites are independent but not identical, so that Kck ;1;; 6¼ Kck ;2;;, then, with just two confor-

mations, the effective pairwise cooperativity can become negative. Indeed, !f

1;f2g<1, if, and only if,

the values of the association constants are not in the same relative order in the two conformations

(Materials and methods). Negative effective cooperativity can arise from non-identical sites and does

not need a special kind of ensemble.

Integrative flexibility of ensembles
Equation 18 shows that effective HOCs of any order can arise for a conformational ensemble but

does not reveal what values they can attain. Can they vary arbitrarily? The question can be rigorously

posed as follows. Suppose that we are considering n binding sites and that numbers bi>0, for

1 � i � n, and ai;S>0, for i<S, are chosen at will. Does there exist a conformational ensemble such

that the bare effective association constants satisfy K
f

i;; ¼ bi, and the independent effective HOCs

satisfy !f
i;S ¼ ai;S?

To address this question, we assume that there is no intrinsic HOC, so as not to introduce crypti-

cally what we want to generate. It follows that the sites cannot be identical, for otherwise Equa-

tion 20 shows that integrative flexibility is impossible. Accordingly, the bare association constants,

Kck ;i;; for 1 � i � n, can be treated as n free parameters in each conformation ck. If there are N con-

formations in the ensemble, then there are N � 1 free parameters coming from the horizontal edges

(Materials and methods). Dimensional considerations imply that the effective HOCs cannot take arbi-

trary values if nðN � 1Þ<2n � 1. Conversely, we prove the following flexibility theorem: any pattern of

values can be realised by an allosteric ensemble with no intrinsic cooperativity, to any required

degree of accuracy, provided there are enough conformations with the right probability distribution

and the right patterns of bare association constants.

To see why this is possible, we outline the argument here and give rigorous details in Theorem 1

in the Materials and methods. Other arguments may of course be possible and the details presented

here should not be thought of as the only way for the results to hold. We will use an allostery graph

A whose conformations are indexed by subsets T � f1; � � � ; ng and denoted cT . Both binding subsets

and conformations will then be indexed by subsets of f1; � � � ; ng. To avoid confusion, we will use S to

label binding subsets and T to label conformations, so that a vertex of A will be ðcT ; SÞ. The allostery

graph for the case n ¼ 2 is shown in Figure 6. We will focus on the horizontal subgraph of empty

conformations, A;, because that is what is needed for calculating effective HOCs using Equation 18.

We will take the reference vertex of A; to be c;. Recall from what was explained previously that the

product of the equilibrium labels along any path in A; from the reference vertex to the vertex cT is

the quantity �cT ðA;Þ, in terms of which the steady-state probabilities of A; are given by Equation 3.

Let lT ¼ �cT ðA;Þ. These quantities are 2
n � 1 free parameters whose values we are going to assign.

They are more convenient for our purposes than an independent set of equilibrium labels for A;. By

Equation 3,

PrcT ðA;Þ ¼
lT

P

X�f1;���;ng lX
: (21)

The other free parameters that we need are n quantities, k1; � � � ;kn>0, to which we will subse-

quently assign values, in terms of which we will define the intrinsic association constants. We will

assume that the sites are independent in each conformation, so that all intrinsic HOCs of A are 1. It

follows that KcT ;i;S ¼KcT ;i;;. We then set KcT ;i;; ¼ ki if i2 T, and KcT ;i;; ¼ "ki if i 62 T . Here, e is a small

positive quantity which can be chosen to determine the degree of accuracy to which the bi and ai;S

are approximated. In the calculations which follow, we will only be interested in terms which do not
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involve e as a factor. Because the sites are independent in each conformation, it follows that, in the

vertical subgraph, AcT , at any conformation cT , �SðA
cT Þ ¼ ð

Q

i2S kiÞx
#ðSÞ, whenever S� T . However, if

S 6� T , then �SðA
cT Þ acquires factors of e and so �SðA

cT Þ»0, where » means simply that the related

quantities become equal as e becomes very small. In this case, for our purposes, �SðA
cT Þ is negligible

whenever S 6� T . Figure 6 illustrates how this plays out in the allostery graph for n¼ 2.

To calculate the effective association constants, the left-hand formula in Equation 18 shows that

we must evaluate the averages hKcT ;i;S : �SðA
cT Þi and h�SðA

cT Þi. Using Equation 21,

h�SðA
cT Þi ¼

X

T

�SðA
cT Þ

lT
P

X lX

� �

:

The only terms in the sum which do not involve e as a factor are those T for which S� T . Further-

more, the definition of �SðA
cT Þ given above shows that these terms do not depend on T . Similarly,

using Equation 21 again,

hKcT ;i;S :�SðA
cT Þi ¼

X

T

KcT ;i;S :�SðA
cT Þ

lT
P

X lX

� �

and the only terms in the sum which do not involve e as a factor are those for which S[fig� T.

These terms also do not depend on T . It follows from Equation 18 that

K
f
i;S ¼

hKcT ;i;S :�SðA
cT Þi

h�SðAcT Þi
»ki

P

S[fig�T lT
P

S�T lT

 !

; (22)

where we have ignored all terms involving e as a factor.

Equation 22 tells us two things. First, that the effective association constants are approximately

proportional to the corresponding k’s. Hence, if the proportionality constants, which depend only

on the lT , are determined, we can choose the ki so as to make the bare effective association con-

stants K
f

i;; approximately equal to bi. Second, Equation 22 tells us that the effective HOCs, !f
i;S, are

independent of the ki and depend only on the lT ,

!f
i;S ¼

K
f
i;S

K
f

i;;

»

P

;�T lT
� �

P

S[fig�T lT

� �

P

fig�T lT

� �

P

S�T lT
� �

: (23)

It remains for us to assign values to the lT so that the effective HOCs become approximately equal

to the a’s.

To do this, assume that, for the conformation cT , the subset T is written as T ¼ fi1; � � � ikg, where

the indices are in increasing order, i1<i2< � � �<ik. Because of this ordering, the quantities aij;fijþ1;���;ikg

are given to us by hypothesis. Hence, we can define

lT ¼ ai1;fi2 ;���;ikgai2;fi3;���;ikg � � �aik�1;fikgd
k : (24)

Here, d is another small positive quantity, similar to e, which can be chosen to set the degree of

accuracy to which the b’s and a’s are approximated. As with e, we will treat as negligible terms in

which d is a factor. Figure 6 illustrates Equation 24 for the case n¼ 2.

It can be seen from Equation 24 that
P

X�T lT ¼ lXð1þ UÞ, where U has a factor of d and is

therefore negligible as d becomes very small, U » 0. It then follows from Equation 23 that

!f
i;S ¼

ð1þUÞlS[figð1þUÞ

dð1þUÞlSð1þUÞ
; (25)

where we have used U as a generic symbol for quantities which are negligible as d becomes very

small. By Equation 24, lS[fig ¼ ai;SdlS, so that

!f
i;S »ai;S : (26)

This establishes part of what is required. For the other part, we can return to Equation 22 and set
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ki ¼ bi

P

fig�T lT
P

;�T lT

 !

;

from which it follows from Equation 22 that

K
f

i;; »bi : (27)

HORIZONTAL SUBGRAPH OF EMPTY 
CONFORMATIONS  (      )

ALLOSTERY GRAPH (     )

Figure 6. Example allostery graph for the flexibility theorem. There are n ¼ 2 sites and 2
2 ¼ 4 conformations,

giving a 16-vertex allostery graph (top). Vertices indicate a bound site with a solid black dot and an unbound site

with a black dash. Sites are indexed in increasing order, 1; 2, from left to right. The red vertical binding edges carry

a factor of e in their equilibrium labels; the blue vertical binding edges do not, as specified in the text and

Equation 60. The vertices of the allostery graph are annotated with the values of �SðA
cT Þ, as specified in the text

and Equation 61. The horizontal subgraph of empty conformations is shown at the bottom, with conformations

indexed below each vertex by subsets of f1; 2g and annotated above each vertex with the corresponding value of

lT , as specified by Equation 24.
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Equations 26 and 27 show that the effective association constants and effective HOCs can take

arbitrary positive values to any desired degree of accuracy, as determined by e and d. This estab-

lishes the flexibility theorem. The Materials and methods provides a more careful treatment in Theo-

rem 1, which rigorously establishes the approximation as e and d become very small.

Figures 7 and 8 together illustrate the flexibility theorem. Figure 7A shows three arbitrarily cho-

sen patterns of effective parameters for a target molecule with four ligand binding sites. Figure 7B

shows the corresponding overall binding functions (black curves) together with the individual site-

specific binding functions (coloured curves). As a matter of thermodynamics, the overall binding

function is always an increasing function of ligand concentration. In contrast, the site-specific binding

functions may increase or decrease depending on the combinations of positive and negative effec-

tive HOCs in Figure 7A, and thereby show more clearly the complexity arising from those different

combinations. The implementation of the effective parameters by an allosteric ensemble, as speci-

fied by the flexibility theorem, is illustrated in Figure 8. Figure 8A shows the allosteric ensemble for

n ¼ 4 sites as a product graph with 16 binding patterns and 16 conformations. Figure 8B shows the

intrinsic association constants in each conformation coming from the proof of the flexibility theorem,

to an accuracy of 0.01. Figure 8C confirms that this allosteric ensemble exactly reproduces the over-

all binding functions in Figure 7B.

In respect of the dimensional argument made previously, the allostery graph used in the proof

above has 2
n � 1 free parameters for A; and the k1; � � � ; kn are a further n free parameters, giving

Figure 7. Integrative flexibility of allostery I. (A) Three choices of effective bare association constants, Kf

i;;, in

arbitrary units of (concentration)�1, and independent effective higher-order cooperativities , !f
i;S, for i<S, in non-

dimensional units, for ligand binding to four sites. Each example is coded by a colour (maroon, orange, red) and

exhibits a different pattern of positive and negative effective HOCs. (B) Corresponding plots of average bound

proportion at each site (colour coded as in middle inset) and the overall binding function, or fractional saturation,

(black), calculated directly from the effective parameters. Note that the latter is always increasing; see the text for

more details.
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Figure 8. Integrative flexibility of allostery II. (A) The allostery graph, A, which implements the choices of effective higher-order cooperativities (HOCs) in

Figure 7, shown as the product of the vertical subgraph of binding patterns at conformation c;, A
c; , and the horizontal subgraph of empty

conformations, A;. As required in the proof of the flexibility theorem, both conformations and binding subsets are indexed by subsets of f1; � � � ; ng,

where n is the number of binding sites. Since n ¼ 4 for the effective HOCs in Figure 7, there are 16 binding subsets and 16 conformations,

Figure 8 continued on next page
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2
n � 1þ n free parameters in total. This is more than the minimal required number of 2n � 1 but not

by much. It remains an interesting open question whether a conformational ensemble can be con-

structed, perhaps with more free parameters, which gives the effective HOCs exactly, rather than

only approximately. One consequence of the definitions of KcT ;i;; and of lT in Equation 24 is that

the parameters of the allosteric ensemble become exponentially small, as is evident for the examples

in Figure 8B. Another interesting question is whether alternative constructions can be found which

do not exhibit such a broad range of parameter values. Irrespective of these questions, the proof

given above confirms that there is no fundamental biophysical limitation to achieving any pattern of

values to any desired degree of accuracy. Accordingly, a central result of the present paper is that

sufficiently complex allosteric ensembles can implement any form of information integration that is

achievable without energy expenditure.

Allosteric ensembles for Hill functions
As mentioned in the Introduction, the starting point for the present paper was to account for experi-

mental data on gene expression. Studies in Drosophila have shown that the Hunchback gene, in

response to the maternal TF Bicoid, is sharply expressed in a way that is well fitted, after appropriate

normalisation, to a Hill function, HhðxÞ ¼ xh=ð1þ xhÞ. This sharp expression underlies the initial pat-

terning of anterior-posterior stripes in the early Drosophila embryo. Estimated values for the Hill

coefficient, h, vary depending on the experimental construct and time of measurement but are typi-

cally in the range 4 � h � 8 during early nuclear cycle 14 (Tran et al., 2018). The relevant promoter

is believed to have n ¼ 6 Bicoid binding sites, and the mechanistic basis for the sharpness is the sub-

ject of considerable interest. We showed in previous work that, if the promoter was assumed to

have six Bicoid binding sites and to be operating at thermodynamic equilibrium, then the highest

Hill coefficient that could be achieved of h ¼ 6, at the so-called Hopfield barrier, required HOCs for

Bicoid binding of order up to 5 (Estrada et al., 2016). In particular, pairwise cooperativities, which

had previously been invoked to account for the sharpness (Gregor et al., 2007), are not sufficient to

explain the data. Left open by this previous work was a molecular mechanism which could create the

high-order HOCs required for Hill functions. We have seen above that allosteric ensembles can cre-

ate any pattern of HOCs, so it is natural to ask if there are allosteric ensembles which yield good

approximations to Hill functions.

We implemented a numerical optimisation algorithm to find binding functions which approxi-

mated Hill functions (Materials and methods). Hill functions are naturally normalised so that

Hhð1Þ ¼ 0:5, so we followed the procedure introduced previously (Estrada et al., 2016) of normalis-

ing concentration to its value at half-maximum: if the normalised binding function is denoted f ðxÞ,

then f ð1Þ ¼ 0:5. Figure 9 shows results for an allosteric ensemble with four conformations for ligand

binding to six sites. The ensemble has no intrinsic cooperativity in any conformation, so that

Kck ;i;S ¼ Kck ;i;; for any binding subset S � f1; � � � ; 6g, while the bare association constants, Kck ;i;;, differ

between the conformations (Figure 9B). This gives 4� 6 ¼ 24 free parameters together with an addi-

tional three free parameters for the independent equilibrium labels on the horizontal subgraph A;

(Figure 9A). We limited the parameter ranges so that the Kck ;i;; were in the range ½10�4; 104� and the

equilibrium labels of A; were in the range ½10�6; 106�. With these settings, it was not difficult to find

normalised binding functions which are very well fitted by the Hill function, HhðxÞ, for Hill coefficients

h ¼ 4, 5 and 6 (Figure 9D).

We were able to find multiple sets of parameters which yielded excellent fits; Figure 9 shows two

representative examples for each Hill coefficient. It is evident that very different numerical ensembles

(Figure 9B) can give almost identical binding functions (Figure 9D). This reinforces the point made

Figure 8 continued

c;; � � � ; cf1;2;3;4g. (B) Intrinsic bare association constants, KcT ;i;;, in each conformation, in arbitrary units of (concentration)�1, and the probability

distribution on the subgraph of empty conformations, A;, for the allostery graph in (A), giving the three choices of effective parameters in Figure 7A to

an accuracy of 0.01 (Materials and methods), colour coded on a log scale as shown in the respective legends below. (C) Overall binding functions for

the three parameterised ensembles in (B) (black curves), overlaid on the overall binding functions from Figure 7B (red curves), which were calculated

from the effective parameters. The match is too close for the red curves to be visible. Numerical values are given in the Materials and methods.

Calculations were undertaken in a Mathematica notebook, available on request.
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Figure 9. Allosteric ensembles for Hill functions. (A) Allostery graph, A, for representing Hill functions with six binding sites and four conformations,

shown as the product of the vertical subgraph Ac1 of binding subsets and the horizontal subgraph A; of empty conformations. Some vertices are

annotated and some edges are labelled; the edge labels, l2; l3 and l4, on the horizontal subgraph are the independent labels coming from a spanning

tree used in the algorithm described in the text. (B) Intrinsic bare association constants in each conformation, in arbitrary units of (concentration)�1

Figure 9 continued on next page
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in the Introduction that the binding function, or some associated measure of its shape, such as a Hill

coefficient, are aggregate measures which give little insight into how binding information is being

integrated. For this, the patterns of effective parameters provide more detailed information. As can

be seen from Figure 9C, effective HOCs of all orders up to 5 are needed for each Hill function, as

suggested previously (Estrada et al., 2016), with predominantly positive effective HOCs, !f
i;S>1, and

varying amounts of independence, !f
i;S ¼ 1.

It is interesting to ask what role the size of the ensemble plays in approximating Hill functions.

We cannot give a definitive answer but can make some observations. We were able to approximate

H6 with a two-conformation ensemble with six sites but only with much wider parametric ranges. It

was also more difficult in terms of optimisation time to find a good fit, and we did not find multiple

fits. This suggests that the larger the ensemble the easier it is to approximate Hill functions with lim-

ited parameter ranges. It is also conceivable that the size of the ensemble may have to increase with

the number of binding sites to retain control over the parametric ranges. We must leave such issues

to subsequent work. While our results are numerical, and therefore limited to the ensemble we have

analysed, it seems clear that allosteric ensembles provide a molecular mechanism that can closely

approximate Hill functions with the required high orders of effective cooperativity, thereby providing

a solution to our original question. Since Hill functions are widely used to fit data, the potential for

an underlying allosteric mechanism may be broadly useful.

Discussion
Jacques Monod famously described allostery as ‘the second secret of life’ (Ullmann, 2011). It is only

relatively recently, however, that the prescience of his remark has been appreciated and the wealth

of conformational ensembles present in most cellular processes has been revealed (Changeux and

Christopoulos, 2016; Motlagh et al., 2014; Nussinov et al., 2013).

The present paper seeks to expand the existing allosteric perspective by providing a biophysical

foundation for information integration by conformational ensembles. Equation 48 and Equation 49

in the Materials and methods (Equation 18 above) provide for the first time a rigorous definition of

effective, higher-order quantities—the association constants, Kf
i;S, and cooperativities, !f

i;S,—arising

from any ensemble. Since our methods are equivalent to those of equilibrium statistical mechanics

(Material and methods), these definitions correctly aggregate the free-energy contributions which

emerge in the ensemble from ligand binding to a conformation, intrinsic cooperativity within a con-

formation and conformational change. As noted above, our results encompass recent work on effec-

tive properties of the classical, two-conformation MWC ensemble—for pairwise cooperativity

(Ehlert, 2016) and higher-order association constants (Gruber and Horovitz, 2018)—but they hold

more generally for ensembles of arbitrary complexity with any number of conformations, including

those with intrinsic cooperativities.

The effective quantities introduced here provide a language in which the integrative capabilities

of an ensemble can be rigorously expressed. To begin with, the overall binding function can be

determined in terms of the effective quantities through a generalised MWC formula (Materials and

methods), thereby recovering the functional viewpoint (Figure 2A) from the ensemble viewpoint

(Figure 2B). This generalised MWC formula reduces to the usual MWC formula for the classical two-

conformation MWC model (Equation 55). We also clarify issues which had been difficult to under-

stand in the absence of a quantitative definition of effective quantities. We find that the classical

MWC model exhibits effective HOCs of any order and that these are always positive. In other words,

binding always encourages further binding. Moreover, these effective HOCs increase strictly with

increasing order (Equation 20), so that the more sites which are bound, the greater the

Figure 9 continued

colour coded in the vertical bar on the right, and the probability distribution on the subgraph of empty conformations, colour coded in the horizontal

bar at the bottom. (C) Corresponding effective association constants in arbitrary units of (concentration)�1 and the non-dimensional independent

effective higher-order cooperativities arising from the ensemble. (D) Corresponding binding functions (blue curves) overlaid on the Hill function HhðxÞ

(black dashes) with the indicated Hill coefficient, h. Two sets of parameter values are shown, with the same shade of blue, for each Hill coefficient h ¼ 4,

5 and 6.
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encouragement to further binding. We see that HOC has always been present, even for oxygen

binding to haemoglobin, albeit unrecognised for lack of an appropriate quantitative definition.

Equation 20 confirms in a more precise way the long-standing realisation from the functional per-

spective that the MWC model exhibits only positive cooperativity; at the same time it succinctly

expresses the rigidity and limitations of this model.

It is often stated in the allostery literature that negative cooperativity requires induced fit, in

which binding induces conformations which are not present prior to binding. This view goes back to

Koshland, who pointed to the emergence of negative cooperativity in the KNF model of allostery,

which allows induced fit, and contrasted that to the positive cooperativity of the MWC model, which

assumes conformational selection (Koshland and Hamadani, 2002). Our language of effective quan-

tities permits a more discriminating analysis. It confirms, as just pointed out, that the classical MWC

model exhibits only positive effective HOCs but also shows that induced fit is not required for nega-

tive effective HOC, which can arise just as readily from conformational selection (Materials and meth-

ods). What is required is not a different kind of ensemble but, rather, binding sites that are not

identical.

Our main result, on the flexibility of conformational ensembles, shows that positive and negative

HOCs of any value can occur in any pattern whatsoever, provided that the conformational ensemble

is sufficiently complex, with enough conformations (Figure 8). Since the effective quantities provide

a complete parameterisation of an ensemble at thermodynamic equilibrium, we see that conforma-

tional ensembles can implement any form of information integration that is achievable without exter-

nal sources of energy. In particular, allosteric ensembles can be found whose binding functions

closely approximate Hill functions (Figure 9), thereby answering the question which prompted this

study, as to how such functions might arise in gene regulation.

Eukaryotic gene regulation is one of the most complex forms of cellular information processing

(Wong and Gunawardena, 2020). Information from the binding of multiple TFs at many sites, often

widely distributed across the genome in distal enhancer sequences, must be integrated to determine

whether, and in what manner, a gene is expressed. The results of the present paper offer a way to

think further about how such integration takes place (Tsai and Nussinov, 2011). We focus on gene

regulation, but our results may also be useful for analysing other mechanisms of information integra-

tion, such as GPCRs (Thal et al., 2018).

As pointed out in the Introduction, haemoglobin solves the problem of integrating two quite dif-

ferent physiological functions—picking up oxygen in the lungs and delivering oxygen to the tis-

sues—by having two conformations, each adapted to one of these functions, and dynamically inter-

converting between them (Figure 10A). The effective cooperativity of oxygen binding ensures that

the appropriate conformation dominates the ensemble in the distinct contexts of the lungs, where

oxygen is abundant, and the tissues, where oxygen is scarce, so that oxygen is transferred from the

former to the latter.

Genes have to be regulated to achieve yet more elaborate forms of integration, with the same

gene being expressed differently in different contexts. Such pleiotropy is particularly evident in

developmental genes (Bolt and Duboule, 2020) but usually occurs in distinct cells within the devel-

oping organism. The same gene is present in these cells, but it may be difficult to know whether the

corresponding regulatory machineries are also the same. More directly suitable examples for the

present discussion arise in individual cells exposed to distinct stimuli (Molina et al., 2013;

Kalo et al., 2015; Lin et al., 2015), which may be particularly the case for neurons or cells of the

immune system (Marco et al., 2020; Smale et al., 2013).

Depending on the input pattern of TFs present in a given cellular context (Figure 10B, left), a

gene may be expressed in a certain way, as a distribution of splice isoforms, each with an overall

level of mRNA expression and a pattern of stochastic bursting (Lammers et al., 2020; Figure 10B,

right). A different input pattern of TFs may elicit a different mRNA output. Our results suggest that

one way in which these different input-output relationships could be integrated in the workings of a

single gene is through allostery of the overall regulatory machinery. An allosteric analogy in gene

regulation was previously made by Mirny, 2010, building upon observations of indirect cooperativity

between TFs that were mediated by nucleosomes (Miller and Widom, 2003). In the allosteric anal-

ogy, TF binding to DNA takes place in one of two conformations—nucleosome present or absent—

which dynamically interchange, leading to the classical MWC model. Here, we build upon Mirny’s

idea to suggest that not only indirect cooperativity but also, more broadly, information integration
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may be accounted for by the conformational dynamics of the gene regulatory machinery. The latter

comprises not just individual nucleosomes but whatever other molecular entities are implicated in

conveying information from TF binding sites to RNA polymerase and the transcriptional machinery

(Figure 10B, centre), as discussed below. If this hypothesis is correct, then the flexibility result tells

us that the overall regulatory conformational ensemble must exhibit sufficient complexity to imple-

ment the integration of binding information.

Studies of individual regulatory components have revealed many levels of conformational com-

plexity. DNA itself exhibits conformational changes in respect of TF binding (Kim et al., 2013).

Nucleosomes are moved or evicted to alter chromatin conformation and DNA accessibility

(Mirny, 2010; Voss and Hager, 2014). TFs, in particular, show high levels of intrinsic disorder com-

pared to other classes of proteins (Liu et al., 2006), especially in their activation domains, and these

disordered regions exhibit dynamic multivalent interactions characteristic of higher-order effects

(Chong et al., 2018; Clark et al., 2018). Hub TFs like p53 exhibit high levels of conformational flexi-

bility in the context of specific DNA binding (Demir et al., 2017). Transcriptional co-regulators,

which do not directly bind DNA but are recruited there by TFs, exhibit substantial conformational

complexity: CBP/p300 has multiple intrinsically disordered regions which facilitate higher-order

cooperative interactions (Dyson and Wright, 2016), while the Mediator complex exhibits quite

remarkable conformational changes upon binding to TFs (Allen and Taatjes, 2015). Transcription

initiation sub-complexes such as TFIID, which help assemble the transcriptional machinery, show con-

formational plasticity (Nogales et al., 2017), while the C-terminal domain of RNA Pol II, which is

repetitive and intrinsically disordered, shows surprising local structural heterogeneity (Portz et al.,
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Figure 10. The haemoglobin analogy in gene regulation. (A) The two conformations of haemoglobin are each adapted to one of the two input-output

functions which haemoglobin integrates to solve the oxygen transport problem. These conformations dynamically interchange in the ensemble (grey

dashed arrows). (B) The gene regulatory machinery couples input patterns of transcription factors (TFs) (left) to output patterns of stochastic expression

of mRNA splice isoforms (right, showing bursting patterns of one isoform). Our results suggest that a sufficiently complex conformational ensemble,

built out of chromatin, TFs, co-regulators and phase-separated condensates (centre, grey shapes in three distinct conformations), could integrate these

functions at a single gene in an analogous way to haemoglobin. Chromatin is represented by the thick black curve, whose looped arrangement around

the promoter is shown schematically (top).
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2017). The significance of RNA conformational dynamics during transcription is becoming clearer

(Ganser et al., 2019). Finally, transcription may also be regulated within larger-scale entities, such as

transcription factories (Edelman and Fraser, 2012), phase-separated condensates (Sabari et al.,

2018) and topological domains (Benabdallah and Bickmore, 2015). The role of such entities

remains a matter of debate (Mir et al., 2019), but they may play a significant role in conveying infor-

mation over long genomic distances between distal enhancers and target promoters (Furlong and

Levine, 2018). From the perspective taken here, in view of their size and extent, they may exhibit

conformational dynamics on longer timescales.

These various findings have emerged largely independently of each other. They indicate the pres-

ence of many conformations of components of the gene regulatory machinery, with these compo-

nents dynamically interchanging on varying timescales. The collective effect of these coupled

dynamics is difficult to predict but we can hazard some guesses. It has been suggested, for example,

that multi-protein complexes like Mediator couple the conformational repertoires of their compo-

nent proteins into complex allosteric networks for processing information (Lewis, 2010). From an

ensemble viewpoint, if component X has m conformations and component Y has n conformations,

we might naively expect that the coupling of X and Y in a complex yields roughly mn conformations.

Following this multiplicative logic for the many components involved in eukaryotic gene regulation,

from DNA itself to condensates and domains, suggests that the gene regulatory machinery has enor-

mous conformational capacity with a deep hierarchy of timescales.

In making the analogy to haemoglobin, it is the conformational dynamics which implements the

transfer of information from upstream TF inputs to downstream gene output. In any given cellular

context, as determined by the input pattern of TFs, we may expect one, or perhaps a few, overall

regulatory conformations which are well-adapted to generate the required mRNA output and these

conformations will be the most frequently observed. The ensemble may exhibit complex patterns of

positive and negative effective HOCs among the input TFs which will characterise the required out-

put. In the light of our flexibility theorem, the occurrence of such HOCs, which appear to be neces-

sary to account for data on gene regulation (Park et al., 2019a), may be seen as evidence for

conformational complexity. When the cellular context changes, different conformations, adapted to

produce the output required in the new context, may be present most often—although careful

inspection may show them to have been more fleetingly present previously, as would be expected

under conformational selection. More broadly, the complexity of the regulatory conformational

ensemble and its dynamics reflects the complexity of functional integration which the gene has to

undertake.

Furlong and Levine have suggested a ‘hub and condensate’ model for the overall gene regulatory

machinery, which brings together aspects of earlier models to account for how remote enhancers

communicate with target promoters (Furlong and Levine, 2018). The allosteric perspective taken

here emphasises the significance of conformational dynamics for the functional integration under-

taken by such ‘hubs’.

Testing these ideas on the scale of the regulatory machinery presents a daunting challenge, but

recent developments point the way towards approaching them, including advances in cryo-EM

(Lewis and Costa, 2020), single-molecule microscopy (Li et al., 2019; Bacic et al., 2020), NMR

(Shi et al., 2020), synthetic biology (Park et al., 2019b) and the measurement of higher-order quan-

tities (Gruber and Horovitz, 2018). Before experiments can be formulated, an appropriate concep-

tual picture needs to be described and that is what we have tried to formulate here. We now know a

great deal about the molecular components involved in gene regulation, but the question of how

these components collectively give rise to function has been harder to grasp. The allosteric analogy

to haemoglobin, upon which we have built here, suggests a potential way to fill this gap.

In extending the haemoglobin analogy, we have sidestepped the issue of energy expenditure.

This is not relevant for haemoglobin, but it can hardly be avoided in considering eukaryotic gene

regulation, where reorganisation of chromatin and nucleosomes requires energy-dissipating motor

proteins and post-translational modifications driven by chemical potential differences are found on

all components of the regulatory machinery (Wong and Gunawardena, 2020). What impact such

energy expenditure has on ensemble functional integration is a very interesting question. In a sepa-

rate study that was stimulated by the present paper, we have confirmed that, if a conformational

ensemble is maintained in steady state away from thermodynamic equilibrium, then it can exhibit

greater functional capabilities than at equilibrium. We hope to report on these findings
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subsequently. The results presented here offer a rigorous starting point for thinking about how regu-

latory ensembles integrate binding information at thermodynamic equilibrium. If, indeed, regulatory

energy expenditure is essential for gene expression function, as studies increasingly suggest

(Park et al., 2019a; Grah et al., 2020; Wolff et al., 2021), new methods, both theoretical and

experimental, will be required to understand its functional significance.

Materials and methods

The linear framework
Background and references
The graphs described in the main text, like those in Figure 4, are ‘equilibrium graphs’, which are

convenient for describing systems at thermodynamic equilibrium. Equilibrium graphs are derived

from linear framework graphs. The distinction between them is that the latter specifies a dynamics,

while the former specifies an equilibrium steady state. We first explain the latter and then describe

the former. Throughout this section we will use ‘graph’ to mean ‘linear framework graph’ and ‘equi-

librium graph’ to mean the kind of graph used in the main text.

The linear framework was introduced in Gunawardena, 2012, developed in Mirzaev and Guna-

wardena, 2013, Mirzaev and Bortz, 2015, applied to various biological problems in

Ahsendorf et al., 2014, Dasgupta et al., 2014, Estrada et al., 2016, Wong et al., 2018a,

Wong et al., 2018b, Yordanov and Stelling, 2018, Biddle et al., 2019, Yordanov and Stelling,

2020 and reviewed in Gunawardena, 2014, Wong and Gunawardena, 2020. Technical details and

proofs of the ideas described here can be found in Gunawardena, 2012, Mirzaev and Gunawar-

dena, 2013, as well as in the Supplementary Information of Estrada et al., 2016, Wong et al.,

2018b, Biddle et al., 2019.

The framework uses finite, directed graphs with labelled edges and no self-loops to analyse bio-

chemical systems under timescale separation. In a typical timescale separation, the vertices repre-

sent ‘fast’ components or states, which are assumed to reach steady state; the edges represent

reactions or transitions; and the edge labels represent rates with dimensions of (time)�1. The labels

may include contributions from ‘slow’ components, which are not represented by vertices but which

interact with them, such as binding ligands in the case of allostery.

Linear framework graphs and dynamics
Graphs will always be connected, so that they cannot be separated into sub-graphs between which

there are no edges. The set of vertices of a graph G will be denoted by nðGÞ. For a general graph,

the vertices will be indexed by numbers 1; � � � ;N 2 nðGÞ and vertex 1 will be taken to be the refer-

ence vertex. Particular kinds of graphs, such as the allostery graphs discussed in the paper, may use

a different indexing. An edge from vertex i to vertex j will be denoted i ! j and the label on that

edge by ‘ði ! jÞ. A subscript, as in i !G j, may be used to specify which graph is under discussion.

When discussing graphs, we used the word ‘structure’ to refer to properties that depend on vertices

and edges only, ignoring the labels.

A graph gives rise to a dynamical system by assuming that each edge is a chemical reaction under

mass-action kinetics with the label as the rate constant. Since each edge has only a single source ver-

tex, the corresponding dynamics is linear and can be represented by a linear differential equation in

matrix form:

du

dt
¼LðGÞu : (28)

Here, G is the graph, u is a vector of component concentrations and LðGÞ is the Laplacian matrix of

G. Since material is only moved between vertices, there is a conservation law,
P

i uiðtÞ ¼ utot. By set-

ting utot ¼ 1, u can be treated as a vector of probabilities. In such a stochastic setting, Equation 28 is

the master equation (Kolmogorov forward equation) of the underlying Markov process. This is a gen-

eral representation: given any well-behaved Markov process on a finite state space, there is a graph,

whose vertices are the states, for which Equation 28 is the master equation.

The linear dynamics in Equation 28 gives the linear framework its name and is common to all

applications. The treatment of the external components, which appear in the edge labels and which
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introduce nonlinearities, depends on the application. For the case of allostery treated here, we make

the same assumptions as in thermodynamics for the grand canonical ensemble, with each ligand

being present in a reservoir from which binding and unbinding to graph vertices does not change its

free concentration. In this case, the edge labels are effectively constant. The same assumptions are

implicitly used in other studies of allostery.

Steady states and thermodynamic equilibrium
The dynamics in Equation 28 always tends to a steady state, at which du=dt ¼ 0, and, under the fun-

damental timescale separation, it is assumed to have reached a steady state. If the graph is strongly

connected, it has a unique steady state up to a scalar multiple, so that dimkerLðGÞ ¼ 1. Strong con-

nectivity means that, given any two distinct vertices, i and j, there is a path of directed edges from i

to j, i ¼ i1 ! i2 ! � � � ! ik�1 ! ik ¼ j. Under strong connectivity, a representative steady state for the

dynamics, �ðGÞ 2 kerLðGÞ, may be calculated in terms of the edge labels by the Matrix Tree Theo-

rem. We omit the corresponding expression as it is not needed here, but it can be found in any of

the references given above. This expression holds whether or not the steady state is one of thermo-

dynamic equilibrium. However, at thermodynamic equilibrium, the description of the steady state

simplifies considerably because detailed balance holds. This means that the graph is reversible, so

that, if i ! j, then also j ! i, and each pair of such edges is independently in flux balance, so that

�iðGÞ‘ði! jÞ ¼ �jðGÞ‘ðj! iÞ : (29)

This ‘microscopic reversibility’ is a fundamental property of thermodynamic equilibrium. Note that a

reversible, connected graph is necessarily strongly connected.

Take any path of reversible edges from the reference vertex 1 to some vertex i,

1 ¼ i1*)i2*) � � �*)ik�1 ! ik ¼ i, and let �iðGÞ be the product of the label ratios along the path:

�iðGÞ ¼
‘ði1 ! i2Þ

‘ði2 ! i1Þ

� �

��� ��
‘ðik�1 ! ikÞ

‘ðik ! ik�1Þ

� �

: (30)

It is straightforward to see from Equation 29 that �iðGÞ does not depend on the chosen path and

that �iðGÞ ¼ �iðGÞ�1ðGÞ. The vector �ðGÞ is therefore a scalar multiple of �ðGÞ and so also a steady

state for the dynamics. The detailed balance formula in Equation 29 also holds for m in place of r.

At thermodynamic equilibrium, the only parameters needed to describe steady states are label

ratios.

Equilibrium graphs and independent parameters
This observation about label ratios leads to the concept of an equilibrium graph. Suppose that G is a

linear framework graph which can reach thermodynamic equilibrium and is therefore reversible

(above). G gives rise to an equilibrium graph, EðGÞ, as follows. The vertices and edges of EðGÞ are

the same as those of G, but the edge labels in EðGÞ, which we will refer to as ‘equilibrium edge

labels’ and denote ‘eqði ! jÞ, are the label ratios in G. In other words,

‘eqði! jÞ ¼
‘ði!G jÞ

‘ðj!G iÞ
: (31)

Scheme 1 illustrates the relationship between the linear framework graph and the corresponding

equilibrium graph. Note that the equilibrium edge labels of EðGÞ are non-dimensional and that

‘eqðj! iÞ ¼ ‘eqði! jÞ�1. The equilibrium edge labels are the essential parameters for describing a

state of thermodynamic equilibrium.

These parameters are not independent because Equation 29 implies algebraic relationships

among them. Indeed, Equation 29 is equivalent to the following ‘cycle condition’, which we formu-

late for EðGÞ: given any cycle of edges, i1 ! i2 ! � � � ! ik�1 ! i1, the product of the equilibrium

edge labels along the cycle is always 1:

‘eqði1 ! i2Þ� � � �� ‘eqðik�1 ! i1Þ ¼ 1 : (32)

This cycle condition is equivalent to the detailed balance condition in Equation 29 and either condi-

tion is equivalent to G being at thermodynamic equilibrium.
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There is a systematic procedure for choosing a set of equilibrium edge label parameters which

are both independent, so that there are no algebraic relationships among them, and also complete,

so that all other equilibrium edge labels can be algebraically calculated from them. Recall that a

spanning tree of G is a connected subgraph, T , which contains each vertex of G (spanning) and which

has no cycles when edge directions are ignored (tree). Any strongly connected graph has a spanning

tree and the number of edges in such a tree is one less than the number of vertices in the graph.

Since G and EðGÞ have the same vertices and edges, they have identical spanning trees. The equilib-

rium edge labels ‘eqði !T jÞ, taken over all edges i ! j of T, form a complete and independent set of

parameters at thermodynamic equilibrium. In particular, if G has N vertices, there are N � 1 indepen-

dent parameters at thermodynamic equilibrium.

In the main text, we defined an equilibrium allostery graph, A (Figure 4), without specifying a cor-

responding linear framework graph, G, for which EðGÞ ¼ A. Because label ratios are used in an equi-

librium graph, there is no unique linear framework graph corresponding to it. However, some choice

of transition rates, ‘ði !G jÞ and ‘ðj !G iÞ, can always be made such that their ratio is ‘eqði !EðGÞ jÞ.

Hence, some linear framework graph G can always be defined such that EðGÞ ¼ A. In some of the

constructions below, we will work with the linear framework graph, G, rather than with the equilib-

rium graph A and will then show that the construction does not depend on the choice of G.

Steady-state probabilities and equilibrium statistical mechanics
The steady-state probability of vertex i, PriðGÞ, can be calculated from the steady state of the

dynamics by normalising, so that

PriðGÞ ¼
�iðGÞ

�1ðGÞþ � � �þ �NðGÞ
or PriðGÞ ¼

�iðGÞ

�1ðGÞþ � � �þ�NðGÞ
; (33)

where the first formula holds for any strongly connected graph and the second formula also holds if

the graph is at thermodynamic equilibrium. In the latter case, Equation 29 holds and �ðGÞ can be

defined by Equation 30. The second formula in Equation 33 corresponds to Equation 3. If the

graph is at thermodynamic equilibrium, the equilibrium edge labels may be interpreted thermody-

namically, as illustrated in Figure 3 and discussed in the main text (Equation 1):

‘eqði! jÞ ¼ exp
DF

kBT

� �

: (34)

If Equation 34 is used to expand the second formula in Equation 33, it gives the specification of

equilibrium statistical mechanics for the grand canonical ensemble, with the denominator being the

partition function.

It will be helpful to let PðGÞ and 	ðGÞ denote the corresponding denominators in Equation 33,

so that PðGÞ ¼ �1ðGÞ þ � � � þ �NðGÞ for any strongly connected graph and

	ðGÞ ¼ �1ðGÞ þ � � � þ �NðGÞ for a graph which is at thermodynamic equilibrium. We will refer to PðGÞ

and 	ðGÞ as partition functions. It follows from Equation 33 that

PriðGÞPðGÞ ¼ �iðGÞ or PriðGÞ	ðGÞ ¼ �iðGÞ ; (35)

depending on the context.

The allostery graph
Structure and labels
An allostery graph, A, is an equilibrium graph which describes the interplay between conformational

change and ligand binding, as illustrated in Figure 4. Its vertices are indexed by ðck; SÞ, where ck
specifies a conformation with 1 � k � N and S � f1; � � � ; ng specifies a subset of sites bound by a

ligand whose concentration is x. There is no difficulty in allowing multiple ligands and overlapping

binding sites, but to keep the formalism simple, we describe here the case of a single ligand and dis-

tinct binding sites.

Recall from the main text that A has vertical subgraphs, Ack , consisting of vertices ðck;RÞ for all

binding subsets, R, together with all edges between them, with the vertices indexed by binding sub-

sets, R, and with R ¼ ; being the reference vertex. A has horizontal subgraphs, AS, consisting of
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vertices ðci; SÞ for all conformations ci, together with all edges between them, with the vertices

labelled by conformations ci, and with c1 being the reference vertex. The product structure of A is

revealed by all vertical subgraphs having the same structure as each other and all horizontal sub-

graphs having the same structure as each other (Figure 4).

As for the labels, the vertical binding edges have equilibrium labels,

‘eqððck;SÞ!A ðck;S[figÞÞ ¼ xKck ;i;S ði 62 SÞ ; (36)

where x is the concentration of the ligand and Kck ;i;S is the association constant for binding to site i

when the ligand is already bound at the sites in S. The horizontal edges, which represent transitions

between conformations, have equilibrium labels, ‘eqððck;SÞ!A ðcl;SÞÞ, which are not individually

annotated. However, it is only necessary to specify these equilibrium labels for a single horizontal

subgraph, of which the subgraph of empty conformations, A;, is particularly convenient. To see this,

let us calculate the quantity �ðck ;SÞðAÞ using Equation 30. Taking the reference vertex in A to be

ðc1;;Þ, we can always find a path to any given vertex ðck;SÞ of A by first moving horizontally within A;

from ðc1;;Þ to ðck;;Þ and then moving vertically within Ack from ðck;;Þ to ðck;SÞ. According to Equa-

tion 30, the steady state is given by the product of the equilibrium labels along this path, so that

�ðck ;SÞðAÞ ¼ �ck ðA;Þ�SðA
ck Þ : (37)

LINEAR FRAMEWORK GRAPH

EQUILIBRIUM GRAPH

Scheme 1. Graphs and equilibrium calculations. At top, a path of reversible edges in a linear framework graph, G,

from the reference vertex, 1, to a vertex i, with the edge labels shown. Below is the same path in the

corresponding equilibrium graph, EðGÞ, showing the equilibrium labels, as given by Equation 31. The formula for

the quantity �i, as specified in Equation 30, is shown at bottom. For m to be well defined, G must satisfy detailed

balance (Equation 29) or, equivalently, the cycle condition (Equation 32) must hold in EðGÞ. Equilibrium

probabilities are calculated from m using Equation 33.
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Now consider any horizontal edge in A, ðck;SÞ! ðcl;SÞ. Since A is at thermodynamic equilibrium, it

follows from Equation 29, using m in place of r, and Equation 37, that

‘eqððck;SÞ!A ðcl;SÞÞ ¼
�ðcl ;SÞðAÞ

�ðck ;SÞðAÞ
¼

�clðA;Þ

�ck ðA;Þ

� �

�SðA
clÞ

�SðAck Þ

� �

:

Applying Equation 29 to A;, with m in place of r, we see that

‘eqððck;;Þ!A;
ðcl;;ÞÞ ¼

�clðA;Þ

�ck ðA;Þ
:

Hence, it follows that

‘eqððck;SÞ!A ðcl;SÞÞ ¼ ‘eqððck;;Þ!A;
ðcl;;ÞÞ

�SðA
clÞ

�SðAck Þ

� �

: (38)

Accordingly, all the labels in A are determined by the vertical labels in Equation 36, from which

�SðA
ck Þ and �SðA

clÞ are determined, and the horizontal labels in the subgraph of empty conforma-

tions, A;. As can be seen from Scheme 2, Equation 38 amounts to exploiting the equilibrium cycle

condition in Equation 32.

Independent parameters
We can choose any spanning tree in the horizontal subgraph of empty conformations, A;. As

explained above, the equilibrium labels on the edges of this tree define a complete set of N � 1

independent parameters for A;. As for the vertical subgraphs, Ack , which all have the same structure,

consider the subgraph of Ack consisting of all edges, together with the corresponding source and tar-

get vertices, of the form, ðck; SÞ ! ðck; S [ figÞ, where ; � S � f1; � � � ; ng and i is less than all the sites

in S (i<S). It is not difficult to see that this subgraph is a spanning tree of Ack (Estrada et al., 2016,

SI, §3.2). Accordingly, the association constants, Kck ;i;S from Equation 36, with i<S, form a complete

set of independent parameters for Ack . Because of the product structure of A, adjoining the spanning

trees in Ack , for each conformation ck with 1 � k � N, to the spanning tree in A;, yields a spanning

tree in A. Hence, the independent parameters for Ack together with the N � 1 independent parame-

ters for A; are also collectively independent as parameters for A. It follows from the description of

labels above that these parameters are also complete for A, so that any equilibrium label in A can be

expressed in terms of them.

A general method of coarse graining
Coarse graining a linear framework graph and Equation 17
We will describe the coarse-graining procedure for an arbitrary reversible linear framework graph, G,

and then explain how this can be adapted to an equilibrium graph, as described for the allostery

graph A in the main text.

We will say that a graph G is in-uniform if, given any vertex j 2 nðGÞ, then for all edges i ! j,

‘ði ! jÞ does not depend on the source vertex i.

Lemma 1
Suppose that G is reversible and in-uniform. Then, G is at thermodynamic equilibrium and the vector

q given by �j ¼ ‘ði ! jÞ, which is well-defined by hypothesis, is a basis element in kerLðGÞ and a

steady state for the dynamics.

Proof: If i1*)i2*) � � �*)ik�1
*)ik is any path of reversible edges in G, then the product of the label

ratios along the path satisfies

‘ði1 ! i2Þ

‘ði2 ! i1Þ

� �

‘ði2 ! i3Þ

‘ði3 ! i2Þ

� �

� � �
‘ðik�2 ! ik�1Þ

‘ðik�1 ! ik�2Þ

� �

‘ðik�1 ! ikÞ

‘ðik ! ik�1Þ

� �

¼
‘ðik�1 ! ikÞ

‘ði2 ! i1Þ
; (39)

because the intermediate terms cancel out by the in-uniform hypothesis. If the path is a cycle, so that

ik ¼ i1, then, again because of the in-uniform hypothesis, the right-hand side of Equation 39 is 1.

Hence, G satisfies the cycle condition in Equation 32 and is therefore at thermodynamic equilibrium.
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For the last statement, assume that i1 is the reference vertex 1 and that ik ¼ j, for any vertex j. Using

Equation 30, we see that �jðGÞ ¼ �j=�1. Since �1 is a scalar multiple, the last statement follows.

&

Now let G be an arbitrary reversible graph, which need not satisfy detailed balance. Let G1; � � � ;Gm

be any partition of the vertices of G, so that Gi � nðGÞ, G1 [ � � � [Gm ¼ nðGÞ and Gi \Gj ¼ ; when i 6¼ j.

Let CðGÞ be the labelled directed graph with nðCðGÞÞ ¼ f1; � � � ;mg and let u!CðGÞ v if, and only if, there

exists i 2Gu and j 2Gv such that i!G j. Finally, let the edge labels of CðGÞ be given by

‘ðu!CðGÞ vÞ ¼Q
X

i2Gv

�iðGÞ

 !

: (40)

The quantity Q in Equation 40 is chosen arbitrarily so that the dimension of ‘ðu! vÞ is (time)�1, as

required for an edge label. This is necessary because, by the Matrix Tree Theorem, the dimension of

�iðGÞ is (time)1�N, where N is the number of vertices in G. However, Q plays no role in the analysis

which follows because the coarse graining applies only to the steady state of CðGÞ, not its transient

dynamics, and, as we will see, CðGÞ is always at thermodynamic equilibrium, so that Q disappears

when equilibrium edge labels are considered.

Note that CðGÞ inherits reversibility from G and that CðGÞ is in-uniform. Hence, by Lemma 1, CðGÞ

is at thermodynamic equilibrium and

l�vðCðGÞÞ ¼Q
X

i2Gv

�iðGÞ

 !

; (41)

where l is a scalar that does not depend on v2 nðCðGÞÞ. Since G1; � � � ;Gm is a partition of the vertices

of G, it follows from Equation 41 that

l	ðCðGÞÞ ¼ l
X

v2nðCðGÞÞ

�vðCðGÞÞ

0

@

1

A¼Q
X

i2nðGÞ

�iðGÞ

0

@

1

A¼QPðGÞ :

Equations 35 and 41 then show that both l and Q cancel in the ratio for the steady-state probabili-

ties, so that

PrvðCðGÞÞ ¼
X

i2Gv

PriðGÞ : (42)

Equation 42 is the coarse-graining equation, as given in Equation 17.

Coarse graining an equilibrium graph
The coarse-graining procedure described above can be applied to any reversible graph, which need

not be at thermodynamic equilibrium. However, the coarse graining described in the paper was for

an equilibrium graph. It is not difficult to see that the construction above can be undertaken consis-

tently for any equilibrium graph. It is helpful to first establish a more general observation. The choice

of edge labels for CðGÞ, as given in Equation 40, is not the only one for which Equation 42 holds, as

the appearance of the factor Q indicates. However, the label ratios in CðGÞ are uniquely determined

by the labels of G.

Suppose that G is a reversible graph with a vertex partition G1; � � � ;Gm, as above. G need not be

at thermodynamic equilibrium. Suppose that C is a graph which is isomorphic to CðGÞ as a directed

graph (‘structurally isomorphic’), in the sense that it has identical vertices and edges but may have

different edge labels. (Technically speaking, an ‘isomorphism’ allows for the vertices of C to have an

alternative indexing to those of CðGÞ as long as the two indexings can be inter-converted so as to

preserve the edges. For simplicity of exposition, we assume that the indexing is, in fact, identical.

No loss of generality arises from doing this.)
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Lemma 2
Suppose that C is at thermodynamic equilibrium and the coarse-graining equation (Equation 42)

holds for C, so that PruðCÞ ¼
P

i2Gu
PriðGÞ. If u*)Cv is any reversible edge, then its equilibrium label

depends only on G,

‘eqðu!C vÞ ¼

P

i2Gv
�iðGÞ

P

i2Gu
�iðGÞ

;

and C and CðGÞ are isomorphic as equilibrium graphs, so that identical edges have identical equilib-

rium labels.

Proof: It follows from Equation 35 that PriðGÞ ¼ �iðGÞ=PðGÞ and, since C is at thermodynamic

equilibrium, PruðCÞ ¼ �uðCÞ=	ðCÞ. Using the coarse-graining equation for PruðCÞ, we see that

Scheme 2. Illustration of Equation 38. A hypothetical allostery graph shows how the label for the edge at the

top, which links the vertical subgraphs at conformations ck and cl at the binding subset S, can be calculated from

the quantities �SðA
ck Þ and �SðA

cl Þ and the edge label at the bottom. The �S quantities come from paths to the

vertices in question from the respective reference vertices in the vertical subgraphs, as specified in Equation 30

and Scheme 1. The edge label at the bottom comes from the horizontal subgraph of empty conformations, A;.

The vertical subgraphs Ack and Acl have the same structure and the paths are shown as the same in each subgraph,

but they could be arbitrary paths because of the cycle condition at thermodynamic equilibrium (Equation 32).

Once appropriate directions are taken, the two paths and the edges at the top and bottom constitute a large

cycle in the allostery graph and Equation 38 is simply a rewriting of Equation 32 applied to this cycle.
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�uðCÞ ¼
X

i2Gu

�iðGÞ

 !

	ðCÞ

PðGÞ

� �

: (43)

Since C is at thermodynamic equilibrium, Equation 29, with m in place of r, implies that

‘eqðu!C vÞ ¼
�vðCÞ

�uðCÞ
:

Substituting with Equation 43, the partition functions cancel out to give the formula above. Since

CðGÞ satisfies the same assumptions as C, it has the same equilibrium labels. Hence, C and CðGÞ must

be isomorphic as equilibrium graphs.

&

Corollary 1
Suppose that A is an equilibrium graph and that G is any graph for which EðGÞ ¼ A, as described

above. If any coarse graining of G is undertaken to yield the coarse-grained graph CðGÞ, which must

be at thermodynamic equilibrium, then

‘eqðu!CðGÞ vÞ ¼

P

i2Av
�iðAÞ

P

i2Au
�iðAÞ

and EðCðGÞÞ depends only on A and not on the choice of G.

Proof: A acquires from G the same coarse graining, with the partition A1; � � � ;Am of nðAÞ, where

Ai ¼ Gi � f1; � � �mg. By hypothesis, G is at thermodynamic equilibrium, so that �iðGÞ ¼ l�iðGÞ for

some scalar multiple l. Also, since EðGÞ ¼ A, �iðGÞ ¼ �iðAÞ. Substituting in the formula in Lemma 2

yields the formula above. The equilibrium labels of CðGÞ therefore depend only on the equilibrium

labels of A, as required.

&

It follows from Corollary 1 that coarse graining can be carried out on an equilibrium graph, A, by

choosing any graph G for which EðGÞ ¼ A and carrying out the coarse-graining procedure described

above on G. This justifies the coarse-graining construction described in the main text.

Coarse graining the allostery graph
Proof of Equation 18
As described in the main text and Figure 4, the coarse-grained allostery graph, Af ¼ CðAÞ, is defined

using the partition of A by its horizontal subgraphs, AS, where S runs through all binding subsets,

S � f1; � � � ; ng. Af has the same structure of vertices and edges as any of the binding subgraphs, Ack ,

and is indexed in the same way by the binding subsets, S. Scheme 3 shows an example, which illus-

trates the calculations undertaken in this section.

Consider the reversible edge in Af, S*)S [ fig, where i 62 S. This reversible edge effectively arises

from the binding and unbinding of ligand at site i. According to Equation 36, its effective associa-

tion constant, Kf
i;S, should satisfy

xK
f
i;S ¼ ‘eqðS!Af S[figÞ : (44)

Since A is at thermodynamic equilibrium, we can make use of the formula in Corollary 1 to rewrite

this as

K
f
i;S ¼ x�1

P

1�k�N �ðck ;S[figÞðAÞ
P

1�k�N �ðck ;SÞðAÞ

 !

:

Equations 30 and 36 tell us that �ðck ;S[figÞðAÞ ¼ xKck ;i;S�ðck ;SÞðAÞ, so that, after rearranging,
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K
f
i;S ¼

X

1�k�N

Kck ;i;S

�ðck ;SÞðAÞ
P

1�k�N �ðck ;SÞðAÞ

 !

: (45)

We can now appeal to Equations 35 and 37 to rewrite the term in brackets on the right as

�SðA
ck Þ�ck ðA;Þ

P

1�k�N �SðAck Þ�ck ðA;Þ
¼

�SðA
ck ÞPrck ðA;Þ

P

1�k�N �SðAck ÞPrck ðA;Þ
: (46)

At this point, it will be helpful to introduce the following notation. If G is any equilibrium graph and

u : nðGÞ!R is any real-valued function defined on the vertices of G, let hui denote the average of u

over the steady-state probability distribution of G,

hui ¼
X

i2nðGÞ

uiPriðGÞ : (47)

With this notation in hand, we can rewrite the denominator in Equation 46 as h�SðA
ck Þi, where, from

now on, averages will be taken over the steady-state probability distribution of the horizontal sub-

graph of empty conformations, A; (Scheme 3, bottom). Inserting this expression back into Equa-

tion 45 and rearranging, we obtain a formula for the effective association constant as a ratio of

averages,

K
f
i;S ¼

hKck ;i;S :�SðA
ck Þi

h�SðAck Þi
; (48)

which gives the first formula in Equation 18. The ‘dot’ in Equation 48 signifies a product to make

the formula easier to read. Scheme 3 demonstrates this calculation. Recall from the main text that

HOCs are defined by normalising to the empty binding subset, so that !f
i;S ¼K

f
i;S=K

f

i;;. Furthermore,

since the reference vertex of the vertical subgraphs, Ack , is taken to be the empty binding subset,

�;ðA
ck Þ ¼ 1. It follows that the effective HOCs are given by

!f
i;S ¼

hKck ;i;S :�SðA
ck Þi

hKck ;i;;i : h�SðAck Þi
; (49)

which gives the second formula in Equation 18.

Elementary properties of effective HOCs
The main text describes three elementary properties of effective HOCs which follow from Equa-

tion 49. The only quantity in Equation 49 which involves the ligand concentration, x, is �SðA
ck Þ. It fol-

lows from Equation 30 that this quantity is a monomial in x of the form axp, where a does not

involve x and p ¼ #ðSÞ. In particular, xp does not depend on the conformation ck. It follows that xp

can be extracted from the averages in Equation 49 and cancelled between the numerator and

denominator. Hence, !f
i;S is independent of x. If S ¼ ;, then �SðA

ck Þ ¼ 1 for all 1 � k � N and it follows

from Equation 49 that !f

i;; ¼ 1. Finally, if there is only one conformation c1, the averages in Equa-

tion 49 collapse and �SðA
c1Þ cancels above and below, so that !f

i;S ¼ !c1;i;S, as required.

Generalised MWC formula
The original MWC formula calculates the binding curve, or fractional saturation, of the two-confor-

mation model as a function of ligand concentration x (Monod et al., 1965). Here, we do the same

for an arbitrary allostery graph, A. Let s ¼ #ðSÞ. The fractional saturation of A is given by the average

binding,
X

1�k�N

X

S�f1;���;ng

sPrðck ;SÞðAÞ ;

normalised to the number of binding sites, n. By the coarse-graining formula in Equation 42, we can

rewrite the fractional saturation as

Biddle, Martinez-Corral, et al. eLife 2021;10:e65498. DOI: https://doi.org/10.7554/eLife.65498 34 of 47

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.65498


1

n

X

S�f1;���;ng

sPrSðA
fÞ

0

@

1

A : (50)

The probability, PrSðA
fÞ, can be calculated using Equation 33, which requires the quantities �SðA

fÞ.

These can in turn be calculated by the path formula in Equation 30. We can choose the path in Af

to use the independent parameters introduced above. Let S¼ fi1; � � � ; isg, where i1< � � �<is. Making

use of Equation 44, we see that

�SðA
fÞ ¼K

f

i1;fi2 ;���;isg
K

f

i2 ;fi3;���;isg
� � �Kf

is�1 ;fisg
K

f

is;;
xs : (51)

Equation 51 can be rewritten in terms of the non-dimensional effective HOCs, but it is simpler for

our purposes to use instead the effective association constants, Kf
i;S. The dependence on x in Equa-

tion 51 shows that average binding is given by the logarithmic derivative of the partition function,

	ðAfÞ, so the fractional saturation can be written as

�

ALLOSTERY GRAPH (    )

HORIZONTAL SUBGRAPH OF 

EMPTY CONFORMATIONS  (      )

COARSE-GRAINED GRAPH (       )

Scheme 3. Coarse graining and effective association constants. At top left is an example allostery graph, with

binding of a single ligand to n ¼ 2 sites for N ¼ 3 conformations. Vertices indicate a bound site with a solid black

dot and an unbound site with a black dash and binding subsets are colour coded: both sites unbound, black; only

site 1 bound, magenta; only site 2 bound, cyan; both sites bound, blue. Some vertices are annotated and some

edge labels are shown, with x denoting ligand concentration. Note that the allostery graph has been oriented with

its reference vertex at the top, in contrast to the graphs in the main text figures, in order to accommodate the

formulas. Example calculations of �S based on Equation 30 are shown for the vertical subgraph Ac3 . At bottom is

the horizontal subgraph A; along with the calculation of its steady-state probability distribution in terms of the

equilibrium labels, l1; l2. and the quantities �ck . At top right is the coarse-grained allostery graph, Af, with vertices

colour coded as for the binding subsets of the allostery graph. Equation 48 for the effective association constants

is illustrated below Af.
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1

n

X

S�f1;���;ng

sPrSðA
fÞ

0

@

1

A¼
1

n

x

	ðAfÞ

� �

d	ðAfÞ

dx

� �

: (52)

With this in mind, Equation 51 shows that the partition function can be written as a polynomial in x,

	ðAfÞ ¼
X

S�f1;���;ng

�SðA
fÞ ¼

X

0�s�n

X

1�i1<���<is�n

K
f

i1;fi2 ;���;isg
K

f

i2 ;fi3;���;isg
� � �Kf

is�1;fisg
K

f

is;;

 !

xs :

Finally, the K
f
i;S can be determined as averages over the horizontal subgraph of empty conformations

using Equation 48. In this way, the fractional saturation in Equation 52 is ultimately determined by

the independent parameters of A, giving rise thereby to a generalised MWC formula that is valid for

any allostery graph. We explain below how the classical MWC formula is recovered using this

procedure.

Effective HOCs for MWC-like models
Proof of Equation 19 and related work
Let A be an allostery graph with ligand binding to n sites which are independent and identical in

each conformation. Because of independence, !ck ;i;S ¼ 1, so that Kck ;i;S ¼ Kck ;i;; does not depend on

S; because the sites are identical, Kci ;i;S does not depend on i. Hence, we may write Kck ;i;S ¼ Kck and

the labels on the binding edges of the vertical subgraph Ack are all given by Kck . It follows from

Equation 30 that �SðA
ck Þ ¼ ðKck Þ

s, where s ¼ #ðSÞ. Equation 49 then tells us that !f
i;S also depends

only on s, so that we can write it as !f
s , and Equation 49 simplifies to

!f
s ¼

hðKck Þ
sþ1i

hKck ihðKck Þ
si
; (53)

which gives Equation 19.

If we consider the effective association constant instead of the effective HOC, then, with the

same assumptions as above, Equation 48 tells us that

Kf
s ¼

hðKck Þ
sþ1i

hðKck Þ
si

:

Suppose that only two conformations, R and T , are present. Let ‘eqðcR ! cTÞ ¼ L and write KcT and

KcR as KT and KR, respectively. Then, for any random variable on conformations, Xck , the average is

given by hXck i ¼ ðXcR þXcTLÞ=ð1þLÞ. Hence,

Kf
s ¼

Ksþ1

R þKsþ1

T L

Ks
RþKs

TL
; (54)

which is the formula for the (s + 1)-th ‘intrinsic binding constant’ given by Gruber and Horovitz,

2018, Equation (2.10). In their analysis, the word ‘intrinsic’ corresponds to our ‘effective’.

We can use Equation 54 to work out what the generalised MWC formula derived above yields

for the classical MWC model. Substituting Equation 54 in Equation 51, the intermediate terms in

the product cancel out to leave,

�SðA
fÞ ¼ ðKs

RþKs
TLÞx

s ;

in which the right-hand side depends only on s¼#ðSÞ. Collecting together subsets of the same size,

the partition function of Af may be written as

	ðAfÞ ¼
X

0�s�n

nsðKs
RþKs

TLÞx
s ¼ ð1þ xKRÞ

nþLð1þ xKTÞ
n :

It then follows from Equation 52 that the fractional saturation is given by
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1

n

x

	ðAfÞ

� �

d	ðAfÞ

dx

� �

¼
xKRð1þ xKRÞ

n�1 þ xKTLð1þ xKTÞ
n�1

ð1þ xKRÞ
nþLð1þ xKTÞ

n :

If we set a¼ xKR and ca¼ xKT , this gives, for the fractional saturation,

að1þaÞn�1 þ caLð1þ caÞn�1

ð1þaÞnþLð1þ caÞn
; (55)

which recovers the classical MWC formula in the notation of Monod et al., 1965, Equation 2.

Proof of Equation 20
The following result is unlikely not to be known in other contexts but we have not been able to find

mention of it.

Lemma 3
Suppose that X is a positive random variable, X>0, over a finite probability distribution. If s � 1, the

following moment inequality holds,

hXsþ1ihXs�1i � hXsi2 ;

with equality if, and only if, X is constant over the distribution.

Proof: Suppose that the states of the probability space are indexed by 1 � i � m and that pi

denotes the probability of state i. Then,

hXsi ¼
X

i

Xs
i pi : (56)

The quantity as ¼ hXsþ1ihXs�1i� hXsi2 can then be written as

as ¼
X

i

Xsþ1

i pi

 !

X

i

Xs�1

i pi

 !

�
X

i

Xs
i pi

 !2

:

Collecting together terms in pipj, we can rewrite this as

as ¼
X

1�i�m

X

i<j�m

ðXsþ1

i Xs�1

j þXs�1

i Xsþ1

j � 2Xs
i X

s
j Þpipj

 !

: (57)

Note that the terms corresponding to i¼ j yield ðXsþ1

i Xs�1

i �Xs
i X

s
i Þp

2

i ¼ 0 and so do not contribute to

Equation 57. Choose any pair 1� i�m and i<j�m and let Xj ¼ �Xi. Then, the coefficient of pipj in

Equation 57 becomes

Xsþ1

i Xs�1

i �s�1 þXs�1

i Xsþ1

i �sþ1� 2Xs
i X

s
i �

s ¼ ðXs
i Þ

2�s�1ð1� 2�þ�2Þ :

Now, 1� 2�þ�2 ¼ ð�� 1Þ2 � 0 for �2R, with equality if, and only if, �¼ 1. Since X>0 by hypothe-

sis, �>0, so the coefficient of pipj is positive unless �¼ 1. Hence, as>0 unless Xi ¼ Xj whenever

1� i�m and i<j�m, which means that X is constant over the distribution. Of course, if X is constant,

then clearly as ¼ 0 for all s� 1. The result follows.

&

Corollary 2
If A is an MWC-like allostery graph, its effective HOCs satisfy

1� !f
1
� !f

2
� �� � � !f

n�1
; (58)

with equality at any stage if, and only if, Kck is constant over A;.

Proof: It follows from Equation 53 that we can rewrite the effective HOCs recursively as
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!f
s ¼ !f

s�1

hðKck Þ
sþ1ihðKck Þ

s�1i

hðKck Þ
si2

: (59)

Since !f
0
¼ 1, the result follows by recursively applying Lemma 3 to X ¼Kck>0. Equation 58 gives

Equation 20.

&

Negative effective cooperativity
We consider an allostery graph A with two conformations and two sites, in which binding is indepen-

dent but not identical, so that the association constants differ between sites. Let Kck ;1;; ¼ Kck ;1 and

Kck ;2;; ¼ Kck ;2, for k ¼ 1; 2. Since the sites are independent, !ck ;1;f2g ¼ 1, so that Kck ;1;f2g ¼ Kck ;1, for

k ¼ 1; 2. It follows from Equation 30—see also Scheme 1—that

�f1gðA
ck Þ ¼ xKck ;1 and �f2gðA

ck Þ ¼ xKck ;2 for k¼ 1;2 :

Let l be the single equilibrium label in the horizontal subgraph of empty conformations,

l¼ ‘eqðc1 !A;
c2Þ ¼ ‘eqððc1;;Þ!A ðc2;;ÞÞ :

It follows from Equations 30 and 33—see also the similar calculation in Scheme 3—that

Prc1ðA;Þ ¼ 1=ð1þlÞ and Prc2ðA;Þ ¼ l=ð1þlÞ. We know from Equation 49 that

!f

1;f2g ¼
hKck ;1;f2g :�f2gðA

ck Þi

hKck ;1;;i : h�f2gðAck Þi
;

and using the identifications above, we see that

hKck ;1;f2g :�f2gðA
ck Þi ¼

ðKc1;1Kc1 ;2 þlKc2;1Kc2;2Þx

1þl

h�f2gðA
ck Þi ¼

ðKc1;2 þlKc2;2Þx

1þl

hKck ;1;;i ¼
Kc1;1 þlKc2;1

1þl
:

Substituting and simplifying, we find that

!f

1;f2g ¼
ðKc1;2Kc1 ;1þlKc2;2Kc2 ;1Þ � ð1þlÞ

ðKc1;2 þlKc2 ;2Þ � ðKc1;1 þlKc2;1Þ

¼
Kc1;1Kc1 ;2þlðKc1;1Kc1 ;2þKc2;1Kc2;2Þþl2Kc2;1Kc2;2

Kc1;1Kc1 ;2þlðKc1;1Kc2 ;2þKc2;1Kc1;2Þþl2Kc2;1Kc2;2

:

The first and last terms are the same in the numerator and denominator, so it follows that !f

1;f2g<1 if,

and only if,

Kc1;1Kc1 ;2þKc2;1Kc2;2

Kc1;1Kc2 ;2þKc2;1Kc1;2
<1 ;

which is to say

Kc1;1Kc1;2 þKc2 ;1Kc2;2 �ðKc1;1Kc2 ;2þKc2;1Kc1;2Þ<0 :

The left-hand side factors to give

ðKc1;1 �Kc2 ;1ÞðKc1 ;2�Kc2;2Þ<0 :

We see that negative cooperativity arises if, and only if, the sites have opposite patterns of associa-

tion constants in the two conformations.
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Flexibility of allostery
The integrative flexibility theorem
We provide here a complete version of the proof that was sketched in the main text, showing rigor-

ously how the approximation is handled. Some preliminary notation is needed. Recall that if X is a

finite set—typically, a subset of f1; � � � ; ng—then #ðXÞ will denote the number of elements in X. If X

and Y are sets, then XnY will denote the complement of Y in X, XnY ¼ fi 2 X ; i 62 Yg. To control the

approximation, we will use the ‘little o’ notation: Ouð1Þ will stand for any quantity which depends on

u and for which Ouð1Þ ! 0 as u ! 0. For instance, Auþ Bu2 is Ouð1Þ but ðAuþ Bu2Þ=u is Ouð1Þ if, and

only if, A ¼ 0. This notation allows concise expression of complicated expressions which vanish in the

limit as u ! 0. Note that f ðuÞ ! A as u ! 0 if, and only if, f ðuÞ ¼ Aþ Ouð1Þ, which is a useful trick for

simplifying f .

Theorem 1
Suppose n � 1 and choose 2

n � 1 arbitrary positive numbers

bi>0 (1� i� n) and ai;S>0 (; 6¼ S� f1; � � � ;ng ; i<S) :

Given any ">0 and d>0, there exists an allosteric conformational ensemble, which has no intrinsic

HOC in any conformation, such that

K
f

i;; ¼ biþO"ð1Þ and !f
i;S ¼ ai;SþO"ð1ÞþOdð1Þ

for all corresponding values of i and S.

Proof: Recall from the main text that we use an allostery graph A whose conformations are

indexed by subsets T � f1; � � � ; ng and denoted cT , as illustrated in Figure 6. The reference vertex of

A is r ¼ ðc;; ;Þ. For the horizontal subgraph of empty conformations, A;, let lT ¼ �cT ðA;Þ. It follows

from Equation 30, using m in place of r, that the lT determine the equilibrium labels of A;. Keeping

in mind that l; ¼ 1, the lT form a set of 2n � 1 independent parameters for A;, as explained above.

The steady-state probabilities are then given by PrcT ðA;Þ ¼ lT=ð
P

;�X�f1;���;ng lXÞ (Equation 35).

Let k1; � � � ; kn>0 be positive quantities whose values we will subsequently choose. We assume that

all intrinsic HOCs are one and, for any binding microstate S � f1; � � � ; ng, we set

KcT ;i;S ¼KcT ;i;; ¼
ki if i 2 T

"ki if i 62 T

�

(60)

If cT is a conformation and S� f1; � � � ;ng is a binding microstate, it follows from Equation 60 that

�SðA
cT Þ ¼

Y

i2S

kix

 !

"#ðSnTÞ ¼

Q

i2S ki
� �

x#ðSÞ if S� T

O"ð1Þx
#ðSÞ otherwise .

(

(61)

After coarse graining, we can calculate effective association constants and effective HOCs using

the formulas in Equations 48 and 49. Let S be a binding microstate and i 62 S. Using Equation 48

and Equations 60 and 61,

K
f
i;S ¼ ki

P

S[fig�T lT þO"ð1Þ
P

S�T lT þO"ð1Þ

 !

:

Letting "! 0, we can use the trick described above to rewrite this as

K
f
i;S ¼ ki

P

S[fig�T lT
P

S�T lT

 !

þO"ð1Þ : (62)

Equation 62 is the more rigorous version of Equation 22. It follows from Equation 62, using the

same trick to reorganise the terms which are O"ð1Þ, that the effective HOCs are

!f
i;S ¼

K
f
i;S

K
f

i;;

¼

P

;�T lT
� �

P

S[fig�T lT

� �

P

fig�T lT

� �

P

S�T lT
� �

þO"ð1Þ: (63)

Biddle, Martinez-Corral, et al. eLife 2021;10:e65498. DOI: https://doi.org/10.7554/eLife.65498 39 of 47

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.65498


Equation 63 is the more rigorous version of Equation 23. We see that the effective HOCs are inde-

pendent of the quantities ki and depend only on the parameters, lT , of the horizontal subgraph A;.

We can now specify the lT . If T ¼ fi1; � � � ; ikg, where i1<i2< � � �<ik, we set

lT ¼ ai1;fi2 ;���;ikgai2;fi3;���;ikg � � �aik�1;fikgd
k ; (64)

where each of the a quantities is given by hypothesis. Note that the exponent of d depends only on

the size of T and not on which elements T contains. Equation 64 is illustrated in Figure 6.

It follows from Equation 64 that, given any X � f1; � � � ; ng,
X

X�T

lT ¼ lXð1þOdð1ÞÞ :

Using this, we see that the main term in Equation 63 has the form

ð1þOdð1ÞÞ �
lS[figð1þOdð1ÞÞ

dð1þOdð1ÞÞlSð1þOdð1ÞÞ
: (65)

It follows from Equation 64 that, when i<S, lS[fig ¼ ai;SlSd, so using the trick above for reorganising

the Odð1Þ terms, we can rewrite Equation 65 as ai;S þOdð1Þ. Substituting back into Equation 63, we

see that, when i<S,

!f
i;S ¼ ai;S þO"ð1ÞþOdð1Þ : (66)

Equation 66 is the more rigorous version of Equation 26.

With the choice of lT given by Equation 64, we can return to Equation 62 with S ¼ ; and define

ki ¼ bi

P

fig�T lT
P

;�T lT

 !�1

:

Substituting back into Equation 62 with S¼ ;, we see that

K
f

i;; ¼ biþO"ð1Þ : (67)

Equation 67 is the more rigorous version of Equation 27. The result follows from Equations 66, 67.

&

Construction of Figure 8
We implemented in a Mathematica notebook the proof strategy in Theorem 1 for any number n of

sites. The notebook takes as input parameters the bi and the ai;S for i<S in the statement of the the-

orem, along with specified values for the quantities e and d. It produces as output the effective bare

association constants, Kf

i;;, and effective HOCs, !f
i;S for i<S, as given by Theorem 1. The values of �

and d can then be adjusted so that the calculated K
f

i;; and !f
i;S are as close as required to the bi and

ai;S. The notebook is available on request.

Figure 8 shows the results from using this notebook on three examples, chosen by hand to illus-

trate different patterns of effective bare association constants and effective HOCs. The actual

numerical values are listed below.

The colour names used here refer to the colour code for the three examples in Figure 8. The

maximum error was calculated as the larger of maxi
bi�K

f

i;;

bi

�

�

�

�

�

�

�

�

and maxi;S
ai;S�!f

i;S

ai;S

�

�

�

�

�

�

�

�

. The quantities d and e

were adjusted to make the maximum error less than 0.01.

The binding curves for each example (Figure 7B) show the dependence on concentration of aver-

age binding to site i (coloured curves), which can be written in terms of the coarse-grained graph,

Af, in the form
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X

S�f1;���;ng

�iðSÞPrSðA
fÞ :

Here, �iðSÞ is the indicator function for i being in S,

�iðSÞ ¼
1 if i2 S

0 if i 62 S :

8

<

:

Since the size of S, which was denoted by s above, is given by s¼
P

1�i�n�iðSÞ, we see from Equa-

tion 50 that the fractional saturation (Figure 7B, black curves) is the sum of the average bindings

over all sites, normalised to the number of sites, n.

Maroon Orange Red

d ¼ 10
�7; " ¼ 10

�12 d ¼ 10
�7; " ¼ 10

�14 d ¼ 10
�7; " ¼ 10

�16

i bi K
f

i;;
bi K

f

i;;
bi K

f

i;;

1 1.5777 1.5776 0.031353 0.031353 0.21257 0.21257

2 24.013 24.014 0.011104 0.011104 0.84301 0.84301

3 89.958 89.959 13.195 13.195 9.8514 9.8514

4 0.015685 0.015685 52.437 52.437 27.000 27.000

i; S ai;S !f
i;S

ai;S !f
i;S

ai;S !f
i;S

1; f2g 0.084815 0.0848456 1.0801 1.0801 50.455 50.454

1; f3g 3.7432 3.7432 34.768 34.768 0.016359 0.016401

1; f4g 0.044245 0.044264 0.032668 0.032669 0.60018 0.60018

2; f3g 30.240 30.239 4.0683 4.0683 7.2944 7.2944

2; f4g 0.074064 0.074083 1.5098 1.5098 0.010809 0.010809

3; f4g 9.2687 9.2685 0.025183 0.025184 0.012613 0.012613

1; f2; 3g 4.0933 4.0933 0.31238 0.31238 57.783 57.783

1; f2; 4g 15.687 15.683 0.70016 0.70016 0.025618 0.025623

1; f3; 4g 0.013335 0.013349 0.13042 0.13056 4.4450 4.4450

2; f3; 4g 0.082851 0.082892 2.5235 2.5235 0.13584 0.13584

1; f2; 3; 4g 6.5843 6.5825 0.017404 0.017407 0.063587 0.063833

Max. error 0.00105 0.00105 0.00386

Allosteric ensembles for Hill functions
Construction of Figure 9
As described in the main text, we considered an allosteric ensemble with four conformations and six

ligand binding sites with no intrinsic cooperativity in any conformation. Accordingly, the bare associ-

ation constants, Kck ;i;;, constitute 6 free parameters for each conformation ck, k ¼ 1; � � � ; 4, giving 24

free parameters. A further 3 free parameters arise for the independent equilibrium labels of the hori-

zontal subgraph of empty conformations, A;, giving 27 free parameters in total. The association con-

stants were restricted to lie in the range ½10�4; 104� and the equilibrium labels in the range ½10�6; 106�.

To compare the binding function, f ðuÞ, to the Hill functions HhðxÞ, the concentration variable, u, was

normalised to its half-maximal value, u0.5, for which f ðu0:5Þ ¼ 0:5 (Estrada et al., 2016). The normal-

ised binding function, gðxÞ ¼ f ðxu0:5Þ, then satisfies gð1Þ ¼ 0:5. We followed a two-step procedure to

find binding functions which approximated Hill functions. The algorithm is publicly available on

GitHub (github.com/rosamc/allostery-paper-2021; copy archived at swh:1:rev:

386b23961732962e8ac8390322c9c6e6dfc39168), and we describe it here in general terms. For step

1, we used the measures of position, gðgÞ, and steepness, �ðgÞ, of a normalised binding function,
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gðxÞ, introduced previously (Estrada et al., 2016). The steepness of gðxÞ is the maximum value of its

derivative,

�ðgÞ ¼max
x�0

dg

dx
;

and the position of g is the normalised concentration at which that maximum occurs,

gðgÞ ¼ z ; such that
dg

dx

�

�

�

�

x¼z

¼ �ðgÞ :

The combination of these two measures provides an estimate of the shape of the binding function

(Estrada et al., 2016). Starting with a seed for random number generation, we randomly sampled

parameter values independently and logarithmically within the ranges specified above to find param-

eter sets for which gðgÞ 2 ½0:5;1:2� and �ðgÞ 2 ½0:5;1:3�, which ensures that g is not too far in position-

steepness space from the Hill functions (Estrada et al., 2016, Supplementary Information, §6.1).

This narrows down the search space substantially. Once such a parameter set has been found, step

2 of the procedure followed a Monte Carlo optimisation as follows. This algorithm was fine-tuned by

hand, and full details are available with the source code on GitHub. The error between the selected

binding function g and the appropriate Hill function, Hh, was measured as the average absolute dif-

ference between the functions at 1000 logarithmically spaced points between 0.0005 and 5,

dðg;HhÞ ¼

P

1�j�1000
jgð0:0005ujÞ�Hhð0:0005u

jÞj

1000
;

where u¼ 10
0:0003003. Starting from the initial parameter set, �0, as selected in the first step, we ran-

domly chose each parameter with probability p and, for each chosen parameter, we randomly picked

a new value v1 logarithmically in the range ½mv0;Mv0�, where v0 is the existing parameter value. If the

chosen value fell outside the appropriate parameter range, we took v1 to be the limit of the range.

Having done this for each parameter to generate a new parameter set, �1, we chose �1 for the next

step of the iteration if dðg�1 ;HhÞ<dðg�0 ;HhÞ and, if not, we chose �1 with probability b; otherwise, we

retained �0. The algorithm parameters p, m and M were adjusted so that p decreased and the range

½m;M� narrowed as the error decreased. Iterations were continued to an upper limit of 5� 10
6, or

until a parameter set was found for which dðg�;HhÞ<0:0002. Step 1 and iterations of step 2 were

undertaken with b¼ 0:25;0:5 and 0.75 for each of 290 initial seeds for random number generation,

and the examples shown in Figure 9 were selected from among those with the least error. For Hill

coefficient h¼ 4, we had to relax the error bound slightly and the two examples shown in Figure 9

satisfy 0:0003<dðg�;HhÞ<0:0004.
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