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Accurate RNA 3D structure prediction using 
a language model-based deep learning 
approach

Tao Shen    1,2,3,17, Zhihang Hu1,17, Siqi Sun    4,5,17  , Di Liu    6,7,8,9,17  , 
Felix Wong10,11,12,13, Jiuming Wang    1,14, Jiayang Chen1, Yixuan Wang1, 
Liang Hong1, Jin Xiao    1, Liangzhen Zheng2,3, Tejas Krishnamoorthi15, 
Irwin King1, Sheng Wang    2,3  , Peng Yin    6,7  , James J. Collins    6,10,11,12   & 
Yu Li    1,6,10,11,16,17 

Accurate prediction of RNA three-dimensional (3D) structures remains 
an unsolved challenge. Determining RNA 3D structures is crucial for 
understanding their functions and informing RNA-targeting drug 
development and synthetic biology design. The structural flexibility of RNA, 
which leads to the scarcity of experimentally determined data, complicates 
computational prediction efforts. Here we present RhoFold+, an RNA 
language model-based deep learning method that accurately predicts 3D 
structures of single-chain RNAs from sequences. By integrating an RNA 
language model pretrained on ~23.7 million RNA sequences and leveraging 
techniques to address data scarcity, RhoFold+ offers a fully automated 
end-to-end pipeline for RNA 3D structure prediction. Retrospective 
evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate 
the superiority of RhoFold+ over existing methods, including human 
expert groups. Its efficacy and generalizability are further validated 
through cross-family and cross-type assessments, as well as time-censored 
benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and 
interhelical angles, providing empirically verifiable features that broaden its 
applicability to RNA structure and function studies.

RNA molecules occupy a key role in the central dogma of molecular 
biology. How RNA structures impinge on gene regulation and function 
has been a subject of intense study1. Studies focusing on RNA targeting 
have demonstrated that it can be an important, druggable target for 
drug development2–4 and a useful synthetic biology design element5. 
Over 85% of the human genome is transcribed, but a mere 3% encodes 
proteins, underscoring the substantial portion of transcribed RNAs 
with unknown functions and structures. In many cases, obtaining 
high-resolution structural information can enable a more predictive 
understanding of the RNA molecules of interest4,6.

The conformational flexibility of RNA molecules has made the 
experimental determination of their three-dimensional (3D) structures 
challenging. As of December 2023, RNA-only structures comprise less 
than 1.0% of the ~214,000 structures in the Protein Data Bank (PDB), 
and RNA-containing complexes account for only 2.1% (refs. 6,7). Despite 
advances in X-ray crystallography, NMR spectroscopy and cryogenic 
electron microscopy, these low-throughput techniques are limited by 
specialized requirements. Computational methods have emerged as 
a complementary approach for RNA 3D structure prediction, leverag-
ing RNA sequence data. These methods fall into two main categories: 
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focused on template-based or energy-based sampling techniques, 
which were informed by the scarcity of available RNA 3D structural 
data. Despite the scarcity of data, the success of AlphaFold2 (ref. 13)  
for protein structure prediction has catalyzed the development of 
de novo deep learning methods for RNA 3D structure prediction. These 
de novo methods often begin with a single input sequence and then 
construct multiple sequence alignments (MSAs) from it, which are 
subsequently used to build the 3D structures.

MSAs have been shown to provide additional information help-
ful for protein modeling and this may be similarly true for RNAs.  

template-based modeling, such as ModeRNA8 and RNAbuilder9, which 
are constrained by limited template libraries, and de novo prediction 
approaches, including FARFAR2 (ref. 10), 3dRNA11 and SimRNA12, which 
are more predictive but computationally intensive due to large-scale 
sampling requirements.

An orthogonal de novo prediction approach is to leverage deep 
learning, which has been successfully applied to various biological prob-
lems. These applications include predicting protein 3D structures13, 
RNA secondary structures14,15 and scoring RNA structures generated 
by other methods16. Previous methods for RNA 3D structure prediction 
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Fig. 1 | The architecture of RhoFold+ and the tasks used for performance 
evaluation. a, The architecture of RhoFold+, a fully automated and differentiable 
end-to-end approach to de novo RNA 3D structure prediction from the sequence. 
Using an RNA language model (RNA-FM) pretrained on 23,735,169 unannotated 
RNA sequences and several deep learning modules—including an IPA module 
that models 3D positions—RhoFold+ can generate valid and largely accurate RNA 
3D structures of interest typically within ~0.14 s (without MSA searching). init, 
initialized; norm, normalize. b, The preprocessing step of RhoFold+ to extract 
all available nonredundant single-stranded RNA 3D structures from the PDB 

database. IFE, integrated functional element. RhoFold+ is comprehensively 
benchmarked on community-wide challenges including RNA-Puzzles targets and 
CASP15 natural RNA targets, and on all available experimentally determined RNA 
3D structures. RhoFold+ also demonstrates high accuracy in cross-validation 
experiments, as well as generalizability to unseen, newly determined RNA 
structures and unseen RNA families and types in cross-family and cross-type 
validation experiments. Data split evaluations reveal that RhoFold+ does 
not overfit its training set. RhoFold+ is also capable of predicting secondary 
structures and parameters that are useful for construct engineering.
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For instance, DeepFoldRNA17 and trRosettaRNA18 utilize transformer 
networks (for example, RNAformer) to convert built MSAs and pre-
dicted secondary structures into various one-dimensional (1D) and 
two-dimensional (2D) distances, orientations and torsion angles. These 
predicted geometries are then leveraged as constraints to predict 
RNA 3D structures using energy minimization, integrating sampling 
and scoring processes into their frameworks. Several models, includ-
ing E2Efold-3D19 and RoseTTAFoldNA20, employ fully differentiable 
end-to-end pipelines that directly predict all-atom 3D models using built 
MSAs and secondary structure constraints. AlphaFold3 (ref. 21), the suc-
cessor to AlphaFold2 (ref. 22), is also capable of predicting RNA 3D struc-
tures directly from input sequences, while still relying on its constructed 
MSAs during the prediction process. In contrast to other methods, 
AlphaFold3 (ref. 21) employs a diffusion-based process to predict raw 
atom coordinates, replacing the AlphaFold2 structure module operat-
ing on amino acid-specific frames and side-chain torsion angles. While 
these MSA-based methods are capable of accurately predicting RNA 
3D structures, they require extensive searches across large sequence 
databases, which can be time consuming. In contrast, models based 
on single sequences, including DRFold23, do not utilize MSAs and thus 
do not require extensive searches in large sequence databases. Instead, 
DRFold23 relies solely on predicted secondary structures to inform 3D 
structure predictions. This approach is faster, but typically has a lower 
accuracy compared with MSA-based methods. Next-generation deep 
learning methods might better leverage MSA-based approaches in a 
way that improves both speed and accuracy.

Here we present a language model-based deep learning method, 
RhoFold+, for accurate and fast de novo RNA 3D structure prediction. 
RhoFold+ represents a fully automated and differentiable improvement 
over its predecessor, RhoFold19, leveraging improved integration of 
MSAs and other features to enhance performance. Our primary focus 
is on determining the structures of single-chain RNAs, which have 
limited interactions with other molecules. Addressing this challenge 
can help us better understand RNA biology and provide a starting point 
for solving more complex structural problems.

Results
Automated end-to-end platform for RNA 3D structure 
prediction
The development of RhoFold+ was guided by RNA-specific knowl-
edge and the limitations of existing RNA 3D structure data. To build 
our training dataset, we curated all available RNA 3D structures from 
the PDB, using the BGSU representative sets of RNA structures (ver-
sion 2022-04-13)24. We focused on single-chain RNAs and reduced 
redundancy by clustering sequences with Cd-hit25 at an 80% sequence 
similarity threshold, resulting in 782 unique sequence clusters from 
5,583 RNA chains. These RNA sequences were then processed through 
our pipeline, RhoFold+. First, the sequences were transformed using 
RNA-FM, our large RNA language model, to extract evolutionarily and 
structurally informed embeddings. Concurrently, MSAs were gener-
ated by searching through extensive sequence databases. The embed-
dings and MSA features were then fed into our transformer network, 
Rhoformer, and iteratively refined for ten cycles. Following this, our 
structure module employed a geometry-aware attention mechanism 
and an invariant point attention (IPA) module to optimize local frame 
coordinates and torsion angles for key atoms in the RNA backbone. 
Structural constraints, such as secondary structure and base pairing, 
were applied after reconstructing the full-atom coordinates (Fig. 1a and 
detailed discussion in Supplementary information). After developing 
RhoFold+, we rigorously benchmarked and evaluated its performance 
across a broad range of tests (Fig. 1b).

Benchmarking RhoFold+ on RNA-Puzzles
We performed a comprehensive retrospective comparison between 
RhoFold+ and other existing computational methods on two previously 

held community-wide challenges: RNA-Puzzles and CASP15. We first 
used the results from the RNA-Puzzles26–30 competition, where the 
submissions were produced and optimized by human knowledge or 
computational methods. Importantly, here RhoFold+ was trained using 
nonoverlapping training data with respect to the RNA-Puzzles targets 
tested (Methods). We conducted preprocessing to obtain 24 single-chain 
RNA targets and excluded RNA complexes. This set of RNA targets 
contained two puzzles (PZs), PZ34 and PZ38, that were introduced 
after our development of RhoFold+ (Fig. 2a and Supplementary Fig. 3)  
and thus served as a blind test. After collecting the predictions of other 
methods from the official server (http://www.rnapuzzles.org/), we 
found that the performance of RhoFold+ surpassed that of all other 
methods, including FARFAR2/ARES, on nearly all targets, except for 
PZ24. Notably, RhoFold+ outperformed the second-best method on 
more than half of the targets by ~4 Å r.m.s.d. On 17 targets, RhoFold+ 
achieved r.m.s.d. values of <5 Å, and only one target exhibited an r.m.s.d. 
of >10 Å (Fig. 2a and Supplementary Table 5). As a whole, RhoFold+ 
produced an average r.m.s.d. of 4.02 Å, 2.30 Å better than that of the 
second-best model (FARFAR2: top 1%, 6.32 Å). Assessed using the tem-
plate modeling (TM) score31, RhoFold+ achieved an average of 0.57 
(Supplementary Table 5), higher than the scores of other top perform-
ers (0.41 and 0.44).

To show that the promising results on RNA-Puzzles did not arise 
from overfitting, we studied whether the sequence similarity between 
the test set and our training data was substantially positively correlated 
with the performance of RhoFold+, as measured by the TM score and the 
local distance difference test (LDDT), a superposition-free score that 
evaluates local distance differences for all atoms in a model32,33. Such 
a correlation was previously found in protein structure prediction13, 
yet here we found that R2 values, which represent whether the slope 
is significantly nonzero, were 0.23 for the TM score and 0.11 for the 
LDDT (Fig. 2b,c), indicating no significant correlation between model 
performance and the similarity of our training and testing sets. These 
results suggest that RhoFold+ can generalize in predicting accurate 
RNA structures. A case study of a representative RNA-Puzzles target, 
PZ7 (a 186-nucleotide-long Varkud satellite ribozyme RNA), exemplifies 
this finding. Here, the structure of the most similar RNA in the training 
set differed substantially from the structure of PZ7 (Fig. 2b): the r.m.s.d. 
between these structures was 34.48 Å. As another example, PZ38 exhib-
ited the highest sequence similarity of 53% with respect to all RNAs in 
our training set, and the r.m.s.d. between the structure of the most 
sequence-similar RNA and PZ38 was 16.46 Å (Fig. 2b). This was larger 
than the r.m.s.d. of 8.92 Å between PZ38 and the RhoFold+ prediction.

To test the ability of RhoFold+ to generalize for structure-dissimilar 
(in addition to mainly sequence-dissimilar) targets, we sought to deter-
mine whether the predictions of RhoFold+ could surpass the best single 
template (the most structurally similar model) in the training set for a 
given query. To investigate this, we compared the TM scores between 
our predictions and experimentally determined structures against 
the TM scores between the best single templates and experimentally 
determined structures across all RNA-Puzzles. For the majority of puz-
zles, RhoFold+ produced predictions with a higher global similarity and 
an average TM score of 0.574, surpassing the best single template by 
0.05 (Fig. 2e and Supplementary Table 13). It is important to highlight 
that for proteins, surpassing the best single template required substan-
tial progress. Indeed, it was only during CASP14 that computational 
methods outperformed the best single template. Although RhoFold+ 
generated considerably more accurate predictions than other meth-
ods under the conventional sequence similarity data splitting para-
digm, we further tested the adaptability of RhoFold+ by eliminating 
3D structures from the training set whose TM score, with respect to 
any target, surpassed a specified threshold (Supplementary Fig. 6 and 
Supplementary Tables 6 and 10). Even under this more demanding 
condition, RhoFold+ continued to exhibit a promising performance 
(Supplementary Table 10).
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Fig. 2 | Benchmarking RhoFold+ on previously held community-wide 
challenges. a, The r.m.s.d. performance scatter plot of RhoFold+ and other 
methods across 24 nonoverlapping, nonredundant RNA-Puzzles targets. Each 
point represents a predicted model from the specific method. b, Visualization of 
RNA-Puzzles 7 and 38. In addition to the aligned RhoFold+ prediction, we show 
the most similar training structure with respect to each target, suggesting that 
RhoFold+ neither overfits the training set nor simply reproduces the most similar 
structure to the target. Seq-sim, sequence similarity. c, Regression plot of the 
TM score and LDDT of RhoFold+ predictions against the maximum sequence 
similarity among all the training sequences, across all RNA-Puzzles targets. Each 
point represents an RNA-Puzzles target. d, The running time comparison for 
different methods. e, Comparison of RhoFold+ predictions against the respective 
best single templates from our training set across all RNA-Puzzles targets.  
f, A regression plot for the r.m.s.d. of against atom-level pLDDT across all 
RNA-Puzzles and CASP15 targets. g, A regression plot for structure GDT-TS 

against MSA similarity across all RNA-Puzzles and CASP15 targets. h, A detailed 
performance comparison for CASP15 natural RNA targets. The pink columns 
record detailed r.m.s.d. values and the blue columns record the sum of Z-scores 
for the GDT-TS and TM score. Entries missing officially reported CASP15 data  
are marked as N/A; Yang-Sever and Chen are CASP15 registered groups.  
i, A comparison of RhoFold+’s average performance against the average reported 
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targets. j, A regression plot for the structure GDT-TS and LDDT against sequence 
length across all CASP15 targets. The central curve in c, g and j represents the fit 
regression model, while the two surrounding curves indicate the 95% percentile 
intervals. k, A comparison of RhoFold+ predictions against AIchemy_RNA2 and 
UltraFold on the R1116 target from CASP15. MSA-sim, MSA profile similarity. l, For 
the R1156 target, showing a RhoFold+ potential failure case, involving incorrect 
stacking patterns and orientations.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02487-0

In applying computational models to large-scale, real-world set-
tings, speed is often a top priority. In addition to generating largely 
accurate folding results, we found that RhoFold+ is fast, with typi-
cal RNA-Puzzles predictions completed within ~0.14 s (Fig. 2d). In 
contrast, other approaches, including SimRNA12, FARFAR210 and 
RNAComposer34, exhibited significantly longer running times, prob-
ably due to the large-scale sampling processes employed by these  
methods (Fig. 2d).

Benchmarking RhoFold+ on CASP15 targets
As RNA-Puzzles was first released over a decade ago26, we next used 
RhoFold+ to predict RNA targets from the more recent CASP15  
(refs. 35,36). We focused on CASP15’s six natural RNA targets (Fig. 2h  
and Supplementary Fig. 4). Artificially designed targets, which fell out-
side the expected domain of application for RhoFold+, were not included: 
in particular, the excluded targets were characterized by their lack of 
homology and divergence from our training set or their being RNA–
protein complexes. We followed the CASP15 guidelines, which specified 
that participating teams were permitted to submit up to five models. 
Utilizing different, randomly sampled MSAs (Methods), we modeled  
five candidate structures for each target using RhoFold+ and considered 
only the highest-performing prediction (Supplementary Table 6).

Several top-ranking CASP15 groups and recent published works 
on RNA 3D structure prediction17,18,20,21,23 were included in our bench-
marking. Particularly, CASP15 groups were divided into two catego-
ries, ‘server’ and ‘expert’, depending on whether or not human expert 
knowledge and fine tuning were used. Regardless of the category, many 
CASP15 groups employed computational pipelines that were based on 
comparative or statistical learning for natural targets, thus allowing us 
to assess the learning capability of RhoFold+. Our preliminary model, 
AIchemy_RNA (RhoFold), was a participant in the ‘expert’ category. 
Building on RhoFold, RhoFold+ represents a fully automated and 
end-to-end pipeline that is more similar to participants in the ‘server’ 
category. Here, we found that RhoFold+ outperformed RhoFold on 
CASP15’s natural RNA targets by an average r.m.s.d. of ~1 Å. Further-
more, RhoFold+ outperformed other methods whose predictions 
were available for all six natural RNA targets, including the first-ranked 
AIchemy_RNA2, the second-ranked Chen method and other computa-
tional methods, including DRfold23, DeepFoldRNA17, AlphaFold321 and 
trRosettaRNA18 (Fig. 2h,i). Although RhoFold+ outperformed AIchemy_
RNA2 marginally by 0.06 Å (average r.m.s.d.; Fig. 2i), AIchemy_RNA2 
required expert knowledge. Additionally, RhoFold+ demonstrated 
accuracy comparable to each top-performing method on almost every 
natural RNA target, with the exception of R1156 (Fig. 2h).

Following CASP15’s assessment approach36, we also computed 
Z-scores for the predictions from all participating groups. CASP15 pri-
oritized the TM score and the global distance test-total score (GDT-TS), 
which evaluates both overall structure similarity and local alignment, 
leading us to assess these models based on the cumulative Z-scores 

of these metrics (Fig. 2h). On the six natural RNA targets and among 
the subset of all CASP15 participants ranked on these specific tar-
gets, RhoFold (AIchemy_RNA) was fourth, while the performance of 
RhoFold+ was on par with that of AIchemy_RNA2 (with a difference of 
0.4 in the Z-score) and surpassed that of other methods. In a detailed 
analysis of performance on specific targets, we found that, for target 
R1108, RhoFold+ achieved the best Z-score and r.m.s.d. Interestingly, 
RhoFold+ also attained the best Z-score for R1116, although the r.m.s.d. 
was ~1 Å higher than that of UltraFold (other methods produced predic-
tions with significantly lower accuracy, all with r.m.s.d. >10 Å). Upon 
further investigation, we found that, while UltraFold outperformed 
RhoFold+ on this metric by producing accurate local predictions, the 
predicted global structure was less accurate, as evidenced by a TM 
score of 0.497 and a GDT-TS score of <0.4. In contrast, RhoFold+ inac-
curately predicted a helix angle, resulting in an r.m.s.d. of 8.92 Å, but 
its correctly predicted topology resulted in a higher TM score of >0.55. 
For this target, AIchemy_RNA2 incorrectly predicted the stem stackings 
and RNA topology, resulting in a high r.m.s.d. of 17.26 Å and a TM score 
of ~0.49. Notably, the RhoFold+ prediction for R1116 did not arise from 
overfitting, as indicated by the low maximum structural similarity (TM 
score) and maximum sequence similarity of R1116 with respect to the 
training set (Fig. 2k and Supplementary Table 6).

We also looked into targets where RhoFold+ may achieve reduced 
performance and found that higher MSA quality correlated with better 
performance. While RhoFold+ accurately predicted local structural 
topologies, it struggled with aligning helices, particularly at junctions. 
This discrepancy may be due to the dynamic and flexible nature of RNA 
junctions, which often adopt multiple conformations37–39, making 
them challenging for fully automated models to represent accurately 
(Fig. 2k,l and detailed discussion in Supplementary information).

Factors influencing prediction accuracy
Building on the findings above, we performed a more comprehensive 
study involving all CASP15 natural RNAs and RNA-Puzzles targets. We 
observed that the prediction accuracy of RhoFold+ is sensitive toward 
the query’s MSA profile similarity (Supplementary information) against 
the training set (Fig. 2g) and the complexity of RNA structures (query 
length; Fig. 2j). Additionally, predicted LDDT (pLDDT) scores were 
found to correlate with the confidence of RhoFold+, providing a useful 
metric for identifying regions with lower prediction accuracy, espe-
cially in more complex or less homologous queries (Fig. 2f and detailed 
discussion and analysis in Supplementary information).

Benchmarking RhoFold+ on all determined RNA 3D structures
After benchmarking RhoFold+ with RNA-Puzzles and CASP15, we next 
evaluated RhoFold+ in greater detail using all experimentally deter-
mined RNA structures, as defined by the BGSU representative sets of 
RNA structures (preprocessed to remove redundancy). To further study 
the performance of RhoFold+, we performed tenfold cross-validation 

Fig. 3 | Benchmarking RhoFold+ on all experimentally determined RNA 
structures supports the accuracy and ability of RhoFold+ to generalize 
to unseen structures. a, A plot of r.m.s.d. values against sequence length 
for all cross-validation experiments. Each point represents an RNA structure 
and is colored according to the cross-validation fold. b, A regression analysis 
for each prediction’s TM score (blue) and LDDT (pink) against the maximum 
sequence similarity with respect to all training data. Each point represents an 
RNA structure. c, The average TM score and LDDT for each fold. d, Visualization 
of two representative riboswitch structures, 6UES and 3UD4, and a pseudoknot 
1DDY (pink), along with the corresponding RhoFold+ predictions (slate) and 
the training RNA structures with the highest sequence similarity (cyan). In a–d, 
the tenfold cross-validation of RhoFold+ using all experimentally determined 
RNA structures is shown. e, Visualization of a newly determined RNA structure, 
7QR3, an hepatitis delta virus (HDV)-like ribozyme, which has a low structural 
similarity with respect to the training set, but whose structure (pink) is accurately 
predicted by RhoFold+ (slate). The most similar structure, 7DLZ, is shown in 

cyan. f, A comparison of average r.m.s.d. values generated by RhoFold+ and 
other methods on the new PDB set, a set of 76 newly determined solo RNA 
structures. g, A regression plot of the prediction r.m.s.d. values against maximum 
sequence similarity to the training set for RhoFold+ and other baseline methods. 
h, A regression plot of the correlation between the RhoFold+ predictions TM 
score/LDDT and the maximum MSA profile similarity against the training set. 
The central curve in b and h represents the fit regression model, while the two 
surrounding curves indicate the 95% percentile intervals. i, An overview of 
cross-type validation performance of RhoFold+ measured by LDDT and TM 
score. All structures in the type used for validation were masked during model 
training. sRNA, small RNA. j, A violin plot of RhoFold+ r.m.s.d. values in the cross-
family validation. Here, all the structures in a family to be tested were masked 
during model training and RhoFold+ accurately predicted RNA structures from 
most unseen families. The numbers of sequences in each family are shown in 
parentheses.
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by iteratively masking 80 sequence clusters for validation and leaving 
702 sequence clusters for training. We found that the performance 
of RhoFold+ across all RNA structures was robust regardless of the 
train–test data split and fairly consistent across all folds (Fig. 3a–c). 
Slight variations in TM score might be caused by challenging targets 
such pseudoknot cases in Fold2 and Fold7 similar to PZ24 (Fig. 3c,e), 
and we expect that the predictions of RhoFold+ on such targets could 

be improved if secondary structure constraints were provided. Also, 
during our cross-validation test, the accurate predictions of RhoFold+ 
were not due to merely mimicking the most sequence-similar training 
data (Fig. 3b,d,e). A plot of the r.m.s.d. against the sequence length 
shows that r.m.s.d. values were largely distributed below 10 Å, inde-
pendent of the sequence length (Fig. 3a). Outliers with r.m.s.d. >20 Å 
were more likely to occur for sequences longer than 200 nt, where we 
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expect further improvement by more tuning on long RNAs (detailed 
discussion in Supplementary information).

As a further evaluation of the capabilities of RhoFold+, we 
considered the model’s performance on newly determined RNA 
single-stranded structures released subsequent to the compilation 
of our training dataset. This approach acted as an additional blind 
test, similar to the CASP15 competition. We included comparisons 
against FARFAR2 and recent deep learning methods17,18,21,23, all of which 
have inference code and/or servers available and some of which also 
participated in CASP15 (Methods). RhoFold+ outperformed all bench-
marked models, achieving the highest average accuracy as measured 
by r.m.s.d. RhoFold+ produced an average r.m.s.d. of 7.74 Å, which 
was approximately 0.8 Å and 10.5 Å better than the second-ranked 
DeepRNAFold and the lowest-ranked FARFAR2, respectively. Notably, 
on average, RhoFold+ also outperformed AlphaFold3 and RoseTTA-
Fold2NA by approximately 2.2 Å and 1.8 Å, respectively (Fig. 3f and 
detailed discussion in Supplementary information). These results 
were consistent with the performance observed in our previous bench-
mark on CASP15, suggesting that RhoFold+ accurately generalizes to 
newly determined structures not seen in our training set. Furthermore, 
these results support that AlphaFold3 and RoseTTAFold2NA, which are 
designed to predict biomolecular complexes, do not perform as well 
as RhoFold+ when applied to single RNA molecules. Further examin-
ing sequence and structural similarities to our training set reveals 
that RhoFold+ maintained strong performance even with sequence 
similarities below 0.5 (Fig. 3g), and the TM score was greatly influenced 
by MSA profile similarity while local accuracy (LDDT) remained high 
and robust (Fig. 3h). Additionally, RhoFold+ demonstrated strong 
generalizability, accurately folding structures such as 7QR3 despite 
its low similarity to the closest training template, 7DLZ (TM score of 
0.40, r.m.s.d. of 16.45 Å; Fig. 3e).

RhoFold+ generalizes to unseen RNA types and families
Having demonstrated that RhoFold+ can generalize to predicting RNA 
structures with divergent sequence similarities, structural similarities 
and dates of release, we next investigated the ability of RhoFold+ to 
handle different RNA types and families defined by expert knowledge. In 
particular, RNA types and families—such as those curated in Rfam40—are 
often classified manually based on factors including function, struc-
ture and co-evolutionary information. Addressing the challenge of 
generalizing to different RNA types and families may be considerably 
more demanding for deep learning methods such as RhoFold+ as such 
a task requires larger domain shifts.

We benchmarked the cross-type performance of RhoFold+ by 
training the model on a subset of all RNA types while testing on the 
others. RhoFold+ showed robustness across RNA types. Though strug-
gling with introns and riboswitches, it performed well on transfer RNA 
(tRNA) and micro RNA (miRNA) types, achieving TM scores up to 0.73 
(Fig. 3i). When compared with FARFAR2, RhoFold+ outperformed 
it across all RNA types, particularly in tRNAs and ribosomal RNAs 
(rRNAs), with smaller margins for riboswitches (detailed discussion 

in Supplementary information). For cross-family tests, RhoFold+ 
achieved an average r.m.s.d. of 6.69 Å (Fig. 3j), but struggled with 
complex families such as group I introns (RF00028). This difficulty 
is consistent with challenges observed in cross-type tests, such as 
for complex RNA types such as introns and CRISPR RNA elements 
(RF01344). These elements interact with various proteins and enzymes, 
and focusing solely on RNA structure without considering these inter-
actions may limit the prediction accuracy (detailed discussion in Sup-
plementary information). Overall, these tests demonstrate the ability of 
RhoFold+ to generalize across unseen RNA types and families, though 
challenges remain for complex structures and datasets with limited 
available data.

RhoFold+ predicts secondary structures and substructures
RhoFold+ can accurately predict RNA 3D structures, but the limited 
number of experimentally determined RNA structures and types 
makes it difficult to understand the space of all possible RNA folds. 
This is particularly true for complicated and large RNA types, includ-
ing internal ribosomal entry sites, introns, synthetic RNAs and long 
noncoding RNAs. RNA secondary structures, however, can be more 
easily determined in experiments and accurate secondary structure 
predictions can supplement the predictions of 3D structures, offering 
valuable insights into RNA folding and function. Therefore, we adapted 
RhoFold+ to predict secondary structures as well. As RhoFold+ was 
designed to predict RNA 3D structures, we incorporated a postprocess-
ing module that utilizes the features retrieved from RhoFold+’s Rhofor-
mer to predict secondary structures (since Rhoformer’s features show 
attention maps highly aligned with the contact maps; Supplementary 
Fig. 8 and Supplementary Table 14). This module takes into account the 
same structural information as the module performing 3D reconstruc-
tion but operates under distinct geometric and biological constraints 
imposed to predict secondary structure.

We benchmarked the performance of RhoFold+ on newly deter-
mined PDB structures (the ‘new PDB set’) and the ArchiveII dataset41, 
which includes secondary structure information for diverse RNAs. 
On the new PDB set, RhoFold+ outperformed UFold41 by 0.035 in the 
average F1 score (Fig. 4a), even when UFold was trained on all available 
data (PDB and bpRNA-1M, a database with over 100,000 annotated 
RNA secondary structures). On the ArchiveII dataset comprising 2,975 
RNA samples, RhoFold+ also outperformed other secondary structure 
prediction methods (Fig. 4b), particularly on larger RNA types (Fig. 4c). 
For instance, it achieved an F1 score of 0.60 on structured domains in 
the dengue virus transcriptome (Supplementary Table 19), aligning 
with results from mutational profiling (RING-MaP)42,43. Similarly, the 
strong performance of RhoFold+ did not stem from mimicking training 
data, as it maintained an F1 score of ~0.7 even when sequence similarity 
dropped below 50% (Fig. 4e), and achieved a perfect F1 score of 1.0 on 
the CASP15 target R1117 (Fig. 4f). These results suggest that RhoFold+ 
not only excels in predicting 3D structures, but also generates rich, 
meaningful representations that enable state-of-the-art secondary 
structure prediction.

Fig. 4 | RhoFold+ accurately predicts secondary structures and IHAs from 
experimental data. a, F1 score comparison against multiple configurations of 
UFold on the PDB set. Here, a version of UFold trained on bpRNA is also presented 
as a baseline, to evaluate the improvement in terms of F1 score. b, The F1 score 
distribution of various methods on the ArchiveII dataset. Average scores are 
indicated at the top of the plot. c, F1 score comparison between RhoFold+ and 
UFold on the ArchiveII dataset. Each point represents an RNA structure and is 
colored according to its RNA type. srp, signal recognition particle RNA; tmRNA, 
transfer-messenger RNA. d, F1 score comparison of RhoFold+ versus UFold and 
SPOT-RNA on RNA substructures in the new PDB set. e, F1 score comparison 
of RhoFold+ versus UFold and SPOT-RNA against sequence similarity of RNA 
structures in the new PDB set. f, Visualization of a CASP15 RNA target where 
RhoFold+ predicted the correct secondary structures including pseudoknots. 
g, Visualization of a swapped dimer, tetrahydrofolate (THF) ribozyme, 3SUH, for 

which the RhoFold+ prediction (purple) resembles the biologically meaningful 
structure (orange) instead of the crystallographic artifact found in the PDB 
(pink). h, Visualization showing the definition of the IHAD, which is the difference 
between the IHAs derived from the RhoFold+ prediction and the experimentally 
determined structure. i, Regression analysis between the IHAD and r.m.s.d. of the 
RhoFold+ predictions. Each point represents an RNA. j, Comparison between the 
IHAs derived from the RhoFold+ predictions against those from experimental 
structures. Each point represents an angle instance and is colored according to 
the r.m.s.d. between the experimental structure containing the angle and the 
structure predicted by RhoFold+. k, A plot of the IHAD against experimentally 
determined IHA values. The coloring is the same as in j. The central curve in e, 
j and k represents the fit regression model, while the two surrounding curves 
indicate the 95% percentile intervals.
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We further evaluated substructures within RNA secondary struc-
tures, finding that RhoFold+ consistently outperformed SPOT-RNA44 
and UFold41 across all substructures, with the most significant improve-
ments in multiloops and external loops, while internal loops and pseu-
doknots showed similar performance across methods (Fig. 4d). These 
results underscore the potential capability of RhoFold+ in predicting 

RNA secondary structures and enhancing our understanding of  
RNA function.

Correcting artifacts and IHA prediction
As RhoFold+ accurately predicts RNA structures at both the secondary 
and tertiary levels, we asked whether we could leverage RhoFold+ for 
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experimental efforts. Toward this, we investigated two use cases of  
RhoFold+: (1) for correcting experimental structural artifacts and  
(2) for guiding RNA construct engineering.

X-ray crystallography is widely used to resolve RNA 3D structures, but 
it can introduce artifacts such as domain-swapped dimers45, potentially 
misleading machine learning models that do not generalize well. In one 
case, the RhoFold+ prediction for 3SUH initially yielded a high r.m.s.d. 
of 10.11 Å compared with the PDB structure. However, further analysis 
revealed that the crystal structure involved a domain-swapped dimer. 
When comparing the RhoFold+ prediction with the inferred monomeric 
structure, the r.m.s.d. improved to 5.71 Å, indicating RhoFold+ accurately 
predicted the biologically relevant structure (Fig. 4g). Similar findings were 
also observed for the ZTP riboswitch46 (Supplementary Fig. 9), suggesting 
that RhoFold+ can effectively correct for such experimental artifacts.

When comparing experimental data with RNA 3D models, addi-
tional geometric metrics, such as interhelical angles (IHAs), can provide 
insights beyond standard global alignment measures such as r.m.s.d., 
LDDT and TM score. IHAs, which can be estimated using experimental 
methods, are useful for validating predicted models and guiding RNA 
nanostructure design. We introduced the IHA difference (IHAD) as a 
metric to benchmark the predictions of RhoFold+ (Fig. 4h and Sup-
plementary information), finding that IHAD can reveal discrepancies 
in stem orientations that are not captured by r.m.s.d. alone (Fig. 4i). 
Our analysis shows that RhoFold+ generally predicted stem directions 
accurately (Fig. 4j,k), though performance decreased for IHAs near 
0° or 180°, probably due to underfitting of parallel stems in large and 
complex structures (Fig. 4k and detailed discussion in Supplementary 
information). We further demonstrated the practical application of 

RhoFold+ (default)
r.m.s.d.: 12.51 Å

RhoFold+ (worst)
r.m.s.d.: 22.45 Å

Low-
confidence
r.m.s.d.: 15 Å
pLDDT~40

High-
confidence
r.m.s.d.: 2.3 Å
pLDDT~80

R1116: 8S95
Lysine tRNA sca�old

TM score against 
MSA depth (power of 10)

a b c

RhoFold+ (Top5)
r.m.s.d.: 8.92 Å

TM
 s

co
re

1.4 2.0 2.6 3.2 3.8 4.4

0

10

20

30

40

1/seq-sim

r.m
.s

.d
. (

Å)

RhoFold+: 3.4
w/o self-distillation: 3.4

w/o MSA: 4.5
w/o RNA-FM: 5.0
w/o recycling: 3.6

Slope

20 25 210 215

0

0.2

0.4

0.6

0.8

1.0

MSA depth

TM
 s

co
re

RhoFold+ w/o MSA module
P value

w/o RNA-FM: 0.0112

With RNA-FM: 0.0005

w/o self-distillation

w/o self-recycling

w/o RNA-FM

w/o MSA

Modified 
AlphaFold2

r.m.s.d. (Å)

M
od

el
s

RhoFold+

Ab
la

tio
n 

st
ud

ie
s

27 28 29 210 211 212 213

0

2

4

6

8

10

MSA depth

Im
pr

ov
em

en
t (

Å)
P value: 0.0810

0 0.5 1.0
0

2

4

6

8

10

MSA profile similarity

Im
pr

ov
em

en
t (

Å)

P value: 0.0200

M
SA

 s
tu

di
es

RhoFold+ against RhoFold (CASP15)

MSA depth

RhoFold+ (default)
r.m.s.d.: 11.47 Å

Length: 188
MSA depth: 9,900

PDB ID: 7VPX_L
U2 snRNA

RhoFold+ (Top5)
r.m.s.d.: 7.24 Å

RhoFold+ (worst)
r.m.s.d.: 15.87 Å

M
ul

tip
le

 R
ho

Fo
ld

+ 
m

od
el

s

d e f

g h

–5 5 10 15 20

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

Fig. 5 | Ablation studies of RhoFold+ and sampling of multiple models.  
a, Ablation studies of RhoFold+ without (w/o) corresponding modules in 
RhoFold+ with performance measured by r.m.s.d. b, A regression analysis for 
prediction accuracy (measured by r.m.s.d.) against the reciprocal of sequence 
similarity. c, A regression analysis of the TM score against MSA depth for the 
ablation study of the RNA-FM module. Note that the x axis is log scaled. d, A plot 
of prediction accuracy (measured by the TM score) against MSA depth. e, A plot 
of the improvement of RhoFold+ against RhoFold (measured by r.m.s.d.) across 

different MSA depths. f, A plot of the improvement of RhoFold+ against RhoFold 
(measured by r.m.s.d.) across different MSA profile similarities. The central 
curve in e and f represents the fit regression model, while the two surrounding 
curves indicate the 95% percentile intervals. g, Visualization of a CASP15 target 
where RhoFold+ produces an r.m.s.d. of 12.51 Å, but improves by 8.92 Å using 
the Top5 prediction from MSA sampling. h, Visualization of a newly determined 
RNA structure where the r.m.s.d. of RhoFold+ improves by 7.92 Å using Top5 
prediction from MSA sampling.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02487-0

IHAs by predicting values for RNA constructs such as the FMN ribos-
witch and the P4–P6 domain from the Tetrahymena group I intron 
(Supplementary Fig. 9).

Ablation studies and generation of multiple predictions
Given the high accuracy and speed of RhoFold+, we finally conducted 
ablation studies to understand which components and information are 
important to the RhoFold+ predictions. The architectural components 
we investigated included four different modules (Fig. 5a and Methods). 
Ablation studies were performed on 138 PDB targets (collected between 
April 2022 and December 2023) with sequence similarities below 80% to 
our training set and lengths ranging from 16 to 300 nt (the ‘Ablation set’). 
By removing each RhoFold+ component, we observed that all contributed 
to improving the performance, with the MSA module being the most criti-
cal, followed by the RNA-FM language model (Fig. 5a). The RNA-modified 
version of AlphaFold2, without the MSA module, performed worse than 
RhoFold+ (Fig. 5a). Notably, removing RNA-FM led to a sharper perfor-
mance decline for dissimilar sequences (Fig. 5b), and the RNA-FM module 
seemed to compensate for the loss of the MSA module, maintaining higher 
TM scores (Fig. 5c). Additionally, removing the recycling module most 
significantly affected predictions for longer sequences, probably due 
to its role in effectively deepening the model (Supplementary Fig. 7 and 
detailed discussion in Supplementary information).

These findings are consistent with our results for CASP15’s natural 
RNA targets and RNA-Puzzles, where MSA quality significantly impacts 
predictions. We also explored how the number of sequences in the 
extracted MSA influences accuracy. While RhoFold+ is limited to 256 
MSAs due to training constraints, this limit did not compromise its 
effectiveness. A key enhancement in RhoFold+ is its ability to generate 
multiple predictions by sampling or clustering from a fixed number 
of MSAs, allowing for broader prediction selection and improved 
outcomes. Performance on RNA-Puzzles showed an inverse correla-
tion with reduced MSA counts, with a marked improvement when the 
MSA number exceeded 100 (Fig. 5d), indicating that a larger MSA pool 
enhances model optimization (detailed discussion in Supplementary 
information). With this expanded MSA sampling, the lowest r.m.s.d. of 
the RhoFold+ Top5 predictions significantly decreased compared with 
RhoFold, correlating positively with increased MSA depth and yield-
ing an up to 10 Å improvement (Fig. 5e). This improvement was more 
pronounced when the MSA profile similarity between the query and 
training sequences was high, resulting in smaller gains when similarity 
was already strong (Fig. 5f). Overall, additional MSA sampling is crucial 
for high performance, as demonstrated for CASP15 target R1116 and 
PDB 7VPX_L (Fig. 5g,h).

Discussion
In this study, we have developed an end-to-end language model-based 
deep learning method, RhoFold+, to predict RNA 3D structure from 
sequence. RhoFold+ is a fully automated and differentiable model 
that integrates an RNA language model pretrained on ~23.7 million 
RNA sequences without structural information leakage and multiple 
strategies to augment the scarce training data. RhoFold+ outperforms 
other RNA structure prediction approaches based on deep learning on 
CASP15 natural RNA targets and achieves a sub-4 Å mean r.m.s.d. for 
the nonoverlapping and nonredundant RNA-Puzzles structures. As 
RhoFold+ does not require any time-consuming and computationally 
intensive sampling processes, RhoFold+ is also fast and efficient, and 
neither does it rely on expert knowledge, which has been used in the 
most high-performing approaches to RNA structure prediction so 
far. RhoFold+ is able to generalize from different sets of training data 
and accurately predict both available RNA 3D structures and newly 
determined ones, an observation underscored by the strong robust-
ness of RhoFold+ during cross-fold validation. Additionally, RhoFold+ 
can accurately predict unseen RNA structures during cross-family and 
cross-type validations. Although RhoFold+ was designed to predict 

3D structures, it can also accurately predict RNA secondary struc-
tures. Applying RhoFold+ for the prediction of IHAs—a task inspired 
by cryogenic electron microscopy-based and NMR-based construct 
engineering design—suggests its potential to accelerate the process 
of experimentally determining more RNA structures.

Although RhoFold+ shows promising performance, it shares limi-
tations with other deep learning methods for RNA structure prediction. 
First, our knowledge of RNA structural diversity is limited, making 
it challenging to predict different conformations of the same RNA 
molecule due to their dynamic nature and interactions with other 
molecules. RNA junctions, for example, can adopt multiple conforma-
tions and are better represented as dynamic ensembles37–39. Second, 
due to insufficient data, predicting large and complex RNA structures, 
particularly those with multiple helices or pseudoknots, remains dif-
ficult, especially for sequences longer than 500 nucleotides. Third, 
RNA complexes involving ligands or proteins present additional chal-
lenges as current methods often fail to account adequately for these 
interactions, reducing accuracy. While methods such as AlphaFold3 
(ref. 21) and RoseTTAFoldNA20 can predict RNA complexes, their 
accuracy is still limited and they perform less well than RhoFold+ on 
single-strand RNAs. Fourth, RhoFold+ and similar models are trained 
on datasets derived from specific environmental conditions, which 
may not generalize well to the diverse and dynamic solution condi-
tions that RNA molecules encounter in vivo. These conditions include 
varying concentrations of ions, such as magnesium and potassium, 
and the presence of ligands, which are known to play critical roles in 
RNA folding and stability.

Methods that rely on MSAs are limited by the availability of these 
alignments, making accurate predictions difficult for artificially 
designed or orphan RNAs lacking corresponding MSAs. Although 
RNA-FM has helped mitigate this dependency, challenges remain. 
RhoFold+ and similar deep learning models, while accurate, are hin-
dered by limited knowledge of RNA structural diversity, difficulties 
in predicting large and complex structures and the reliance on MSAs. 
To mitigate these obstacles, integrating probing methods to define 
secondary structures, incorporating molecular dynamics and energy 
function techniques, and improving the MSA extraction process could 
potentially enhance the accuracy of RhoFold+. Additionally, addressing 
RNA–protein and RNA–ligand interactions remains crucial, and inte-
grating RhoFold+ with protein structure prediction tools such as RoseT-
TAFoldNA or AlphaFold3 could improve its capabilities in these areas.
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Methods
The RhoFold+ platform
MSA feature generation. We used the MSAs constructed by Infer-
nal47 and rMSA (https://github.com/pylelab/rMSA) to capture 
co-evolutionary information of the sequence as an additional input. 
Using Infernal, it is possible to locate homologous sequences with con-
served secondary structures, while on the other hand, rMSA employs 
an iterative search strategy based on RNA sequence databases. We 
utilized the nucleic acid sequence databases Rfam and RNAcentral48. 
In AlphaFold2, a similar approach was used with different alignment 
tools and sequence databases. Given the need to produce several 
models and the constraints imposed by hardware memory, we reduced 
our fully extracted MSAs to a maximum of 256 sequences during the 
training phase. Subsequently, during the inference phase, 256 MSAs 
were either randomly selected or chosen through clustering and then 
fed into RhoFold+. We implemented clustering with conserved sec-
ondary structure or sequence embeddings from our pretrained RNA 
language model. Different sampled and clustered results can be thus 
used for multiple predictions, as marked by Top5, Top10 and so on. By 
default, the top 256 MSAs are chosen as input features for predicting the 
standard structure, which we refer to as standard RhoFold+. RhoFold+ 
(TopK) refers to the optimal model selected from K different models 
generated using distinct sampled MSAs.

RNA-FM language model. Overview of RNA-FM. Our foundation model 
provides meaningful representations that are inferred from stan-
dalone sequence information. These representations may improve 
performances in various downstream tasks, especially for those with 
insufficient annotated data. Inspired by recent studies49,50, we leverage 
a general transformer architecture. In particular, our framework was 
built on the bidirectional transformer language model proposed in 
BERT (Bidirectional Encoder Representations from Transformers)51, fol-
lowed by the unsupervised training scheme. We named our framework 
‘RNA-FM’ as it represents a foundational model for future RNA-related 
studies (Supplementary Fig. 2). Below, we detail how we constructed 
the large-scale noncoding RNA (ncRNA) dataset, followed by model 
and training details.

Large-scale pretraining dataset. The large-scale dataset used in the 
pretraining phase was collected from RNAcentral48, the largest ncRNA 
dataset available to date. This dataset is a comprehensive collection of 
ncRNA sequences, representing all ncRNA types from a broad range 
of organisms. It combines ncRNA sequences across 47 different data-
bases, resulting in a total of ~27 million RNA sequences (Supplementary 
Tables 2–4).

We preprocessed all ncRNA sequences by replacing all instances of 
‘T’ with ‘U’ since they are both complementary to adenine and similar 
in structure (‘T’ representing thymine in DNA, while ‘U’ is for uracil 
in RNA). This resulted in a dataset involving four main types of bases 
(16 counted types of combinations in total: ‘A’, ‘C’, ‘G’, ‘U’, ‘R’, ‘Y’, ‘K’, ‘M’, 
‘S’, ‘W’, ‘B’, ‘D’, ‘H’, ‘V’, ‘N’ and ‘–’). Moreover, to minimize redundancy 
without compromising the size of our dataset (that is, to preserve as 
many sequences as possible), we removed duplicate sequences using 
Cd-hit-est, which was set to a 100% similarity threshold. After the above 
preprocessing steps, a final, large-scale dataset consisting of over 23.7 
million ncRNA sequences was obtained. We named this final dataset 
‘RNAcentral100’, and we used this dataset to train our RNA foundation 
model in a self-supervised manner (see Supplementary Information 
for more details).

RNA-FM training details. Our RNA-FM framework comprises 12 trans-
former–encoder blocks, inspired by BERT49,51. Each block includes a 
640 hidden size feed-forward layer and a multihead self-attention layer 
with 20 heads, along with layer normalization and residual connections 
applied pre- and postblock, respectively. For an RNA sequence of length 

L, RNA-FM takes raw sequential tokens as input, mapping each nucleo-
tide into a 640 dimensional vector via an embedding layer, forming an 
L × 640 embedding matrix. This matrix passes through each encoder 
block, retaining its size throughout and is followed by a softmax layer 
to predict corresponding tokens, including 16 nucleotides and four 
specific functional identifiers. Additional model details are in Sup-
plementary Information.

During pretraining, we employed self-supervised training akin 
to BERT51, randomly replacing 15% of nucleotide tokens with a special 
mask token. If the ith token was chosen, it was replaced with (1) the 
(MASK) token 80% of the time, (2) a random token 10% of the time and 
(3) left unchanged 10% of the time. We trained the model using masked 
language modeling (MLM)51, predicting the original masked token via 
cross-entropy loss. This training strategy is formulated as an objective 
function as follows:

ℒMLM = 𝔼𝔼x∼𝒳𝒳𝔼𝔼xℳ∼x ∑
i∈ℳ

− logp(xi|x/ℳ). (1)

A set of indices ℳ  is randomly sampled from each input sequence 
x, covering 15% of the sequence, and the corresponding tokens are 
replaced with mask tokens. For each masked token, given the masked 
sequence (x/ℳ) as context, the objective function minimizes the nega-
tive log-likelihood of the true nucleotide xi. This approach captures 
dependencies between the masked and unmasked parts of the 
sequence, leading to accurate predictions for masked positions. Train-
ing with the objective function in equation (1) allows RNA-FM to effec-
tively model representations of each sequential token. We trained 
RNA-FM on eight 80 GB A100 graphics processing units (GPUs) for 
1 month, using an inverse square root learning rate schedule with a 
0.0001 base rate, 0.01 weight decay and 10,000 warm-up steps. To 
optimize memory usage and batch size, we set the maximum input 
sequence length to 1,024, accelerating the training process.

Efficient development of a self-distillation dataset. Although our 
RNA-FM can alleviate the problem of data scarcity, there is still less 
structural data available for RNAs than for proteins. As a result, we 
collected a nonredundant, self-distillation dataset with ground truth 
secondary structure from the RNAStralign and bpRNA-1M databases. 
We filtered this dataset by removing sequences with more than 256 or 
fewer than 16 nucleotides, resulting in a dataset of 27,732 sequences. 
RhoFold+ was initially trained using only PDB data, which was then used 
to generate a self-distillation dataset by inferring pseudo-structural 
labels. We retrained the model by sampling 25% of the PDB data and 
75% of the distillation data for further improvement. During training, 
we masked out pseudo-label residues with pLDDT scores <0.7 and 
uniformly subsampled the MSAs to augment the distillation dataset.

A structure prediction module. The structure module of RhoFold+ 
aims to predict the 3D structure of an RNA based on the sequence and 
pair representation extracted by Rhoformer. The structure module of 
AlphaFold2 directly predicts the rotation and translation matrices of 
the backbone frames, as these are the most influential factors in protein 
folding. However, RNA folding is primarily driven by nucleotide base 
pairing. Due to their irregular structural patterns, directly predicting 
the base frame (C1′,N1/N9,C2/C4) defined over the nucleotides may 
pose a convergence problem in our experiments (Supplementary 
Table 1). To efficiently reconstruct the RNA full-atom coordinates, we 
used frame (C4′,C1′,N1/N9 ) and four torsion angles α, β, γ and ω to 
resolve this issue. Supplementary Table 1 provides the definitions of 
torsion angles and corresponding rigid groups. The 3D positions are 
modeled using IPA, a geometry-aware attention operation. On the basis 
of Rhoformer’s output features and pair presentation, the IPA operation 
predicts the rotation and translation matrices for each frame. In addi-
tion, the predicted structure is refined iteratively using a recycling 
strategy, in which the Rhoformer receives the prediction from the 
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previous iteration. The recycling process ends when the pLDDT, which 
is one of the outputs generated by IPA that measures the quality of the 
predicted 3D structure, converges. With the reconstructed full-atom 
coordinates, biological constraints, such as base pairing, can be 
enforced directly in 3D space to optimize the structure module and 
generate biologically valid structural predictions.

Feature processing with Rhoformer. As with the Evoformer intro-
duced in AlphaFold2, our main module, Rhoformer, is composed of a 
series of transformer modules with gated self-attention layers, which 
are employed to learn evolutionary information and simultaneously 
update the pairwise sequence embeddings and MSA representations. 
A transition block comprising two linear layers is added to the resulting 
pair and MSA representations to increase the embedding dimension 
by a factor of four, thereby increasing the model’s capacity. Lastly, 
four self-attention blocks are stacked on the Rhoformer to refine the 
pair and MSA representations. These representations are then fed into 
the structure module to obtain the predicted full atom coordinates in 
three-dimensional space, as described in the following sections.

The structure prediction loss. The loss function is defined at 1D, 2D 
and 3D levels. Each of these levels is discussed in detail below. We first 
employed a MLM loss Lmlm to improve the extraction of co-evolutionary 
information from the MSAs at the 1D level without adding curated corre-
lation features. In our experiments, 5% of the nucleotides were randomly 
masked and a linear projection layer was utilized to reconstruct them.

At the 2D level, a distance loss Ldis and a secondary structure loss 
Lss were applied to supervise RhoFold+ to learn the pairwise positional 
correlations between each residue. In particular, three feed-forward 
layers were used for distance prediction to predict the pairwise distance 
between the P, C4 and N atoms. The distance was divided into 40 bins, 
where the first and last bins indicate <2 Å and >38 Å, respectively, and 
the distances between 2 Å and 38 Å were evenly divided into 36 bins. 
Additionally, the cross-entropy loss was used to determine whether 
the distance predictions belong to the correct bin. For the secondary 
structure prediction loss Lss, a feed-forward layer was leveraged on top 
of pairwise features to predict the secondary structure. The second-
ary structure C is a L × L binary matrix, where L denotes the sequence 
length, and Ci,j = 0 or 1 indicates if the ith and jth residue from a base pair.

At the 3D level, gradients were derived from the main frame aligned 
point error (FAPE) loss, denoted as LFAPE, the secondary structure con-
straint loss and the clash violation loss Lclash. AlphaFold2’s FAPE loss 
compares a set of predicted atom coordinates under a set of predicted 
local frames with the corresponding ground truth atom coordinates 
and ground truth local frames. Loss is independent of rigid motions. 
The loss remains constant when the predicted structure differs from 
the actual structure by arbitrary rotation and translation.

The secondary structure constraint loss, Lss3d, encodes secondary 
structural information directly into 3D prediction. To unify the calcula-
tion of different types of base pairing constraints in 3D space, we intro-
duced four fixed pseudo atoms (T1, T2, T3 and T4) in the local 
coordinate system of a base52 (Supplementary Fig. 1). Lss3d aims to 
constrain the pseudo atoms in two base-paired nucleobases to satisfy 
the base-pairing property (base–base interactions). For two residue m 
and n, we computed the pairwise distance of the fixed points: 
𝔻𝔻m,n = {dm,n

i, j |i, j ∈ {1, 2, 3,4}}, where m and n denote two RNA residues and 
i and j are the indexes of the four atoms. We defined Lss3d as follows:

Lss3d =
Nnbpairs
∑

m = 1

n = 1

max ( ̂d
m,n
i, j − τ − dm,n

i, j ,0) , (2)

where m and n are the indices of two residues that form a base pair; i, j 
∈ {1, 2, 3, 4} denote the index of four pseudo atoms; ̂d

m,n
i, j  is the distance 

between two pseudo atoms i and j in the predicted structure; dm,n
i, j  is the 

corresponding standard pairwise distance; Nnbpairs is the number of all 
base pair residues in this structure and τ is a tolerance distance thresh-
old. The Lss3d penalizes pairwise atom distances in the nucleotides when 
two residues form a base pair. The calculation of the standard pairwise 
distance dm,n

i, j  is divided into two scenarios: (1) when the training sample 
comes from PDB data with 3D native structures, dm,n

i, j  comes directly 
from the structure and (2) when the training sample comes from 
self-distilled data, dm,n

i, j  are the statistical values generated from all PDB 
structures of the corresponding type of base pair. This can prevent 
RhoFold+ from overfitting the pseudo-labels and make full use of 
secondary structure information.

Lclash expects the model to learn to avoid atom clashes by penalizing 
distances that are too short between atoms according to their van der 
Waals radii. Additionally, we employ a loss, LpLDDT, to train an LDDT evalu-
ator that scores the predicted 3D RNA models as an indicator for global 
recycling (as introduced above). The purpose of the LpLDDT loss is to train 
an LDDT evaluator that predicts the LDDT of the predicted 3D model 
based on the ground truth structure. The LDDT value is discretized with 
a 0.02 bin interval into 50 bins. Once a predicted 3D model has been 
generated, its LDDT is computed against the ground truth structure as 
the ground truth pLDDT label, and the LDDT evaluator generates the 
predicted pLDDT bin. Cross-entropy loss is used as LpLDDT to determine 
whether the predicted LDDT falls within the ground truth bin.

The overall loss function is

L = Lmlm + 0.3 × Ldis + 0.1 × Lss + 0.03 × Lclash
+2 × LFAPE + 0.1 × Lss3d + 0.01 × LpLDDT.

(3)

Structure relaxation by force fields. As a preventive measure to 
resolve any remaining structural clashes and violations, we may relax 
our model predictions using a restrained energy minimization pro-
cedure, such as AMBER53 and BRiQ52. Specifically, we minimized the 
AMBER force field using harmonic restraints, allowing the system to 
maintain a close relationship with its input structure. This postpredic-
tion relaxation also enforces the geometric features of phosphodiester 
bonds. Our empirical evidence indicates, as measured by r.m.s.d. and 
TM score, that while this final relaxation does not improve the model’s 
accuracy, it eliminates distracting stereochemical violations without 
compromising accuracy.

Implementation details and running time. We used the Adam opti-
mizer with a 0.0003 learning rate for 300,000 iterations, alongside a 
polynomial decay scheduler with 10,000 warm-up steps and a batch 
size of 16. A dropout ratio of 0.1 was applied to the Rhoformer and 
structure modules during training. The hardware setup included a GPU 
cluster with 768 GB memory and eight NVIDIA A100 GPUs (80 GB each), 
supported by an Intel Xeon Gold 6230 central processing unit (CPU) 
@ 2.10 GHz with 64 cores. RhoFold+ was trained for 1,600 epochs over 
300,000 iterations, taking approximately 1 week. Posttraining, the 
inference is rapid, with RhoFold+ predicting a structure in about 0.14 s 
on a single A100 GPU. For FARFAR2 benchmarking, which demands 
significant computational resources, a Slurm job was run on the clus-
ter using a single central processing unit core and 8 GB memory, with 
execution times detailed in Supplementary Table 9.

Running other baselines
In our benchmarking experiments, we obtained DeepFoldRNA, DRfold, 
RoseTTAFold2NA, FARFAR2 and trRosettaRNA (v1.0) from their official 
code repositories (either their homepages or their GitHub reposito-
ries). The authors of AlphaFold3 did not publish the code, so we used 
their server to perform predictions. For FARFAR2, we followed the 
default settings specified in the corresponding code documentation 
or on the server and we trained 100 models. Our benchmarking and 
evaluation used CASP15 natural RNA targets and newly determined 
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single-stranded RNA structures. Following CASP15 guidelines, we col-
lected five candidate models for each competing method to compute 
r.m.s.d. and Z-score. For AlphaFold3, which generates five models per 
input sequence per run, we conducted one run and collected the five 
models. For RhoFold+, we ran it five times with different sampled MSAs, 
and for the other methods, we collected their five models from CASP15 
website. For the newly determined single-stranded RNA structures, 
we ran the default configurations of RhoFold+ and other methods to 
produce default predictions for each sequence. For AlphaFold3, only 
the top model (‘model_0’) of a single run was evaluated. The input of 
all methods consisted solely of RNA sequences, without ions or other 
molecules.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in our work were obtained from related public datasets. 
We obtained all the RNA 3D structures using the data list arranged by 
BGSU RNA representative sets (version 2022-04-13) (http://rna.bgsu.
edu/rna3dhub/nrlist/release/3.226) and downloaded them from the 
PDB (https://www.rcsb.org). For pretraining our language model 
(RNA-FM), we downloaded the unannotated RNA sequences from 
RNAcentral (https://rnacentral.org/). For RNA MSA construction, 
we built the database using a nucleotide database (https://ftp.ncbi.
nlm.nih.gov/blast/db/FASTA/nt.gz), Rfam (https://rfam.org) and 
RNAcentral (https://rnacentral.org) and use rMSA (https://github.
com/pylelab/rMSA) for searching and construction tools. We used 
secondary structural information for self-distillation. For this data, we 
downloaded the bpRNA dataset from SPOT-RNA at https://sparks-lab.
org/server/spot-rna/, bprna-1m data from https://bprna.cgrb.ore-
gonstate.edu/ and used RNAStralign, based on E2Efold available via 
GitHub at https://github.com/ml4bio/e2efold. The family/type infor-
mation in Rfam (https://rfam.xfam.org) was used for cross-family/
type validation. For RNA-Puzzles, we downloaded native structures 
and submissions of other methods from GitHub at https://github.
com/RNA-Puzzles/standardized_dataset and http://www.rnapuz-
zles.org/results/, respectively. Similarly, CASP15 data were obtained 
via https://predictioncenter.org/casp15/index.cgi. Source data are 
provided with this paper.

Code availability
For the RhoFold+ model, trained weights and inference scripts are 
available under an open-source license via GitHub at https://github.
com/ml4bio/RhoFold. RhoFold+ is also freely available as a server 
for academic purposes at https://proj.cse.cuhk.edu.hk/aihlab/Rho-
Fold/#/. Our pretrained language model (RNA-FM) and its inference 
pipeline can be found via GitHub at https://github.com/ml4bio/
RNA-FM. The RNA MSA search was performed by combining Infer-
nal (http://eddylab.org/infernal/), Blastn (https://blast.ncbi.nlm.
nih.gov/Blast.cgi), HMMER (http://hmmer.org) and rMSA (https://
github.com/pylelab/rMSA), we also used openmm 7.7 for AMBER 
force field relaxation. Source codes are written under Python 3.7. We 
also utilized the following software for data collection, data analy-
sis and visualization: Infernal 1.1.3 (cmbuild, cmcalibrate, cmscan, 
cmsearch), Cd-hit 4.8.1 (cd-hit-est), HMMER 3.3 (nhmmer), HH-suite 
2.0.15, numpy 1.21.2, PyTorch 1.10.2, pandas 1.3.1, matplotlib 3.4, 
scikit-learn 0.24, scipy 1.7.1, biopython 1.79, PyTorch-Ignite 0.4.6 
and TensorBoard 2.6.0.
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