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SUMMARY

The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning ap-

proaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. 
Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through 
two approaches: a fragment-based method to comprehensively screen >10 7 chemical fragments in silico 
against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently expanding promising fragments, 
and an unconstrained de novo compound generation, each using genetic algorithms and variational autoen-

coders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead com-

pounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of 
action and reduced bacterial burden in vivo in mouse models of N. gonorrhoeae vaginal infection and meth-

icillin-resistant S. aureus skin infection. We further validated structural analogs for both compound classes as 
antibacterial. Our approach enables the generative deep-learning-guided design of de novo antibiotics, 
providing a platform for mapping uncharted regions of chemical space.
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INTRODUCTION

Antibiotic-resistant bacterial infections underlie an urgent public 

health crisis and are associated with approximately five million 

annual deaths globally. 1 Bacterial pathogens such as Neisseria 

gonorrhoeae and Staphylococcus aureus are categorized as ‘‘ur-

gent’’ and ‘‘serious’’ threats, respectively, by the U.S. Centers for 

Disease Control and Prevention (CDC) due to the widespread 

incidence of resistance to existing antibiotics and dearth of 

new, effective antibiotic treatments. 2 Between 1980 and 2003, 

only five antibacterial agents were developed by the top 15 phar-

maceutical companies. 3 There is a dire and growing need for 

structurally novel compounds, especially those with unique 

mechanisms of action, to overcome antibiotic-resistant 

infections.

Given the extensive time and resources needed for antibiotic 

discovery, computational approaches to facilitate the identifica-

tion of new candidates have emerged. Recently, deep learning 

approaches have been used to screen millions of compounds 

in silico for activity against diverse pathogens. 4–10 A graph neural 

network (GNN), for example, is a type of deep learning model 

that has successfully been used to predict antibacterial activity. 

GNNs represent chemical structures as mathematical graphs 

and iteratively update graph node and edge values using ‘‘mes-

sage passing’’ operations. 11 Ultimately, for a given molecule, a 

GNN produces a single output value between 0 and 1, represent-

ing the predicted probability that the molecule possesses a 

specific property of interest (e.g., antibacterial activity or 

cytotoxicity).

Although deep learning approaches have substantially 

increased discovery rates 4–8 and facilitated the discovery of a 

new structural class of antibiotics, 7 they have largely been 

applied to existing in silico small molecule libraries, limiting the 

structural diversity that can be explored. Drug-like chemical 

space has been theoretically estimated to contain ∼10 60 com-

pounds, 12 but the largest in silico libraries currently contain 

only ∼10 11 compounds. 13,14 Generative artificial intelligence 

(AI) approaches can expand beyond these known chemical 

spaces 15–22 and have recently been applied to both antimicrobial 

peptide design 23–25 and to the design and optimization of small 

molecules. 26–31 A recent study explored a large chemical space 

using a Monte Carlo tree search coupled to a GNN and found 

compounds with antibacterial activity against Acinetobacter 

baumannii when used in the presence of an outer membrane 

permeabilizerwhen used in the presence of an outer membrane 

permeabilizer. 32 Developing and experimentally validating 

generative AI methods that can design structurally novel anti-

bacterial molecules, beyond those enumerated in commercial 

chemical spaces, would substantially augment the capability to 

search chemical space for antibiotic candidates.

In recent years, fragment-based drug discovery (FBDD) has 

emerged as a powerful tool for drug design, offering an efficient 

framework to screen large fragment libraries against a specific 

protein target. 33–36 By contrast, target-agnostic approaches pri-

oritize phenotypic measurements from the start. By screening 

against whole-cell activity rather than specific molecular targets, 

phenotypic approaches can integrate useful structural informa-

tion across diverse chemotypes, can yield molecules with

diverse mechanisms of action, and could reduce the down-

stream attrition rates commonly associated with target-centric 

methods. 37 Despite their potential, phenotypic-guided ap-

proaches to both fragment-based and de novo molecule gener-

ation remain underexplored, representing a significant opportu-

nity to develop novel chemical entities informed by biological 

outcomes rather than predefined structural constraints.

Here, we present a deep learning-based approach to the 

generative design of antibiotic compounds using fragments as 

starting points or generating these compounds de novo. In our 

fragment-based approach, we used GNNs to comprehensively 

screen >45 million chemical fragments in silico and identified 

fragments predicted to have selective antibacterial activity 

against N. gonorrhoeae and S. aureus. To expand the fragments 

into molecules, we provided them as inputs to two types of 

generative algorithms—a genetic algorithm based on chemically 

reasonable mutations (CReM) and a variational autoencoder 

(VAE). In our de novo approach, we removed the need for a frag-

ment input and allowed the CReM and VAE models to design 

molecules based on knowledge learned during training. 

Together, these models generated >36 million previously une-

numerated compounds with predicted antibacterial activity. Af-

ter down selection, we synthesized 24 compounds and empiri-

cally validated 7 compounds to be antibacterial. Two of these 

compounds, NG1 and DN1, displayed high potency and selec-

tivity, with mechanisms of action distinct from those of clinically 

used antibiotics and efficacy in mouse models of infection. Our 

approach provides a platform for the generative deep-learning-

guided design of antibiotic candidates, facilitating the discovery 

of antibacterial compounds and enabling the efficient explora-

tion of vast, uncharted regions of chemical space.

RESULTS

Applying GNN models to large fragment spaces

As chemical fragments underlie the biological activity of structural 

classes of compounds and graph search algorithms can accu-

rately identify substructures associated with selective antibacte-

rial molecules, 7,12 we reasoned that fragments offer starting 

points for designing structurally unique antibacterial molecules 

using generative models. We found that the antibacterial predic-

tion scores of commonly used antibiotics in three major classes 

are indeed associated with the prediction scores of their corre-

sponding fragments (STAR Methods; Figure S1A). Accordingly, 

we comprehensively screened large, enumerated chemical frag-

ment spaces using Chemprop models 11 based on GNNs that 

predict the antibacterial activity of a given fragment or molecule 

against N. gonorrhoeae or S. aureus (Figure 1A). These models 

were previously trained and benchmarked on empirical, binarized 

growth inhibition data for 38,765 compounds screened against 

N. gonorrhoeae American Type Culture Collection (ATCC) 

49226 and 39,312 compounds screened against S. aureus 

RN4220, a methicillin-susceptible strain, at a final concentration 

of 50 μM 7,8 (Table S1). To further assess our models’ predictive 

capabilities, we performed additional analyses and observed 

that the prediction scores for N. gonorrhoeae and S. aureus (1) 

significantly differed between compounds that were experimen-

tally active and inactive (Figure S1B), (2) were influenced by
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certain functional groups (Figure S1C), and (3) demonstrated spe-

cies specificity (Figure S1D). These analyses indicated that our 

models could reliably identify antibacterial compounds and frag-

ments as starting points for generative AI algorithms. To avoid se-

lecting human cytotoxic compounds, we counter-screened frag-

ments using human cytotoxicity models for hepatocellular 

carcinoma (HepG2), human skeletal muscle cells (HSkMCs), 

and human lung fibroblasts (IMR-90) that we had previously 

trained and benchmarked (Table S1). 7

To comprehensively search fragment space, we assembled a 

database of >45 million chemical fragments with chemically 

meaningful structures (‘‘possible fragments’’). The database 

combines three large libraries: (1) all possible (chemically stable)

fragments containing up to 11 atoms of C, N, O, and F from the 

Generated DataBase-11 (GDB-11) (26,434,571 fragments); (2) all 

additional possible fragments containing up to 11 atoms of C, N, 

O, Cl, and S from GDB-13 (1,089,000 fragments); and (3) all frag-

ments in the Enamine readily accessible (REAL) database, which 

have improved synthetic accessibility and can vary in the num-

ber of atoms per fragment 38–42 (18,338,026 fragments). We 

then examined the structural novelty spanned by these fragment 

libraries by visualizing the chemical space they occupied relative 

to our training library and our manually compiled set of 559 

known antibacterial compounds (Data S1). We used a t-distrib-

uted stochastic neighbor embedding (t-SNE) plot based on Tani-

moto similarity using RDKit fingerprints as a distance metric, a

Figure 1. GNNs predict chemical fragments and compounds with antibacterial activity against N. gonorrhoeae

(A) Schematic of the fragment-based generation approach.

(B) t-SNE representation of chemical space, showing that fragment libraries represent chemical space diverse from known antibiotics.

(C) Rank-ordered fragment prediction scores from the N. gonorrhoeae antibacterial activity model.

(D) Computational filters applied to sets of fragments, resulting in final sets of fragments for N. gonorrhoeae.

(E) Rank-ordered plot of fragment (above) and compound (below) prediction scores for available compounds procured for empirical testing at 50 μM.

(F) Chemical structures of fragment F1 and associated active compounds from (E). The fragment is highlighted in the compounds.

(G) MIC and CC 50 values for the compounds in (F). n = 2, * indicates values >64 μg/mL, and # indicates values >32 μg/mL.

See also Figure S1.
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commonly used measure of chemical similarity (Figure 1B). This 

two-dimensional projection of chemical space, in which structur-

ally similar fragments or compounds cluster, showed that 

the fragment libraries substantially expand on the chemical di-

versity beyond that of known antibiotics (Data S1). Thus, our cu-

ration resulted in a consolidated, exhaustive database of 

45,858,026 unique fragments spanning a diverse subset of 

chemical space.

Fragment-based generative design of antibacterial 

compounds

We virtually screened our fragment library using Chemprop 

models predicting antibacterial activity against N. gonorrhoeae 

(Figure 1C) and shortlisted those with prediction scores > 0.05 in 

the GDB databases and, due to better synthetic accessibility, > 

0.1 in the Enamine REAL database (Figure S1E). This resulted in 

3,844,505 fragments (8.4%) predicted to be active against 

N. gonorrhoeae (Figure 1D). To prioritize structurally novel and 

selective fragments with no obvious chemical liabilities, we im-

plemented a series of filters on the fragments (Figures 1D and 

S1E). First, we removed fragments that were predicted to be 

cytotoxic (cytotoxicity prediction score > 0.5) by any of the three 

human cell cytotoxicity models (HepG2, HSkMC, and IMR-90). 

Second, we removed fragments containing pan-assay interfer-

ence substructures (PAINS) or Brenk substructures, which 

are associated with unfavorable properties such as promiscu-

ous binding, toxicity, chemical reactivity, and metabolic insta-

bility. 43,44 Third, we required that all remaining fragments be 

structurally distinct from those in known antibiotics, which we 

enforced by requiring the Tanimoto similarity to be <0.5 with 

respect to any compound in our curated set of 559 known anti-

bacterial compounds (STAR Methods; Data S1; Figure S1E). 

The number of unique fragments passing these filters was 

1,156,945 (Figure 1D).

To validate that our screening approach successfully identifies 

fragments with antibacterial activity, we searched for full com-

pounds that contained any of our filtered fragments and selected 

those predicted to be antibacterial (compound prediction 

score > 0.1) and non-cytotoxic (cytotoxicity prediction 

score < 0.5), without PAINS or Brenk substructures, and struc-

turally distinct from known antibiotics (Tanimoto similarity < 0.5). 

Applying these filters to 799,149 compounds from the Broad 

Institute, 6–8,45 we obtained 66 molecules representing 27 frag-

ments for testing against N. gonorrhoeae ATCC 49226 

(Figure 1E). We found that 7 of them inhibited the growth of 

N. gonorrhoeae at 50 μM, resulting in a working true discovery 

rate of 10.6% (Figure 1E; Table S2; Data S2). Notably, a single 

fragment, F1, was represented in two active Broad (BRD) com-

pounds, BRD1 and BRD2 (Figure 1F), and their minimum inhibi-

tory concentrations (MICs) ranged from 8 to 16 μg/mL. The com-

pounds also exhibited a range of selectivity values, with half-

maximal cytotoxic concentration (CC 50 ) of 32 to >128 μg/mL 

when tested against HEK293, HepG2, and HSkMC cells, respec-

tively (Figure 1G). The therapeutic indices (TIs; ratio of human cell 

CC 50 to MIC) were thus between 2 and 8 for the two compounds 

associated with F1. To identify molecules associated with F1 ex-

hibiting higher TIs, we searched for analogs containing F1 and 

found a paucity of compounds in a purchasable compound li-

brary comprising >6 million molecules (STAR Methods). There-

fore, we reasoned that a generative approach to the design of 

compounds based on F1 could enable the exploration of much 

larger chemical spaces and produce compounds with higher po-

tency and selectivity.

We leveraged two generative machine learning algorithms: a 

genetic algorithm based on CReM and a fragment-based VAE 

(F-VAE) 17,20,46 (Figures 2A and 2C). CReM is a computational 

framework that starts with a compound of interest and generates 

new molecules by adding, replacing, or deleting atoms and func-

tional groups. When additions are made, they are sampled from 

up to 1,557,992 distinct structures containing only common 

atoms (C, N, O, S, P, F, Cl, Br, I, and B) from ChEMBL. 47 In our 

pipeline, we coupled CReM to Chemprop models for antibacte-

rial activity prediction (hereafter referred to as F-CReM), such 

that only high-scoring compounds containing F1 (prediction 

score > 0.7) were successively provided as inputs for the next 

round of molecule generation. After five rounds of selection, 

where each round resulted in progressively higher-scoring com-

pounds (Figure 2B), we generated 518,203 F1-containing com-

pounds. To obtain an experimentally tractable list of promising 

molecules, we filtered these compounds based on their pre-

dicted antibiotic activity and cytotoxicity, Tanimoto similarity to 

known antibiotics, and calculated synthetic complexity (based 

on either the synthetic accessibility score [SAscore], 48 retrosyn-

thetic accessibility score [RAscore], 49 or R-score from Spaya Ik-

tos 50 ) (STAR Methods). We further ensured that the compounds 

of interest did not display PAINS or Brenk alerts. This resulted in 

285 F-CReM-generated compounds with predicted activity 

against N. gonorrhoeae (Figure 2D).

In addition to F-CReM, which relies on computational sam-

pling of chemical modifications, we employed a deep 

learning-based VAE for generative design. Specifically, we 

developed an F-VAE trained on all 1,686,695 compounds from 

ChEMBL (v2019). 47 The F-VAE architecture (Figure 2C) consists 

of a graph convolutional network encoder module, in which mo-

lecular graphs are encoded as latent vectors, as well as a recur-

rent graph decoder module, in which latent vectors are con-

verted back to molecular graphs. The decoding procedure 

starts from a fragment and expands it atom-by-atom until the 

assembled structure converges into a compound. Compounds 

are designed by the F-VAE by sampling the latent space gener-

ated from an input fragment (e.g., by creating random latent 

vectors and passing them to the decoder). By applying the 

F-VAE, we generated 6,937,677 molecules containing fragment 

F1. We then used our Chemprop models to predict antibacterial 

activity for all of these molecules. Filtering the molecules simi-

larly to above (STAR Methods; Figure S1F), we obtained 678 

F-VAE-generated compounds with predicted activity against 

N. gonorrhoeae (Figure 2D).

To better understand and comparatively assess the 

chemical matter produced by the two generative models, we 

evaluated their physicochemical properties and synthesizability 

(Figure 2E). We found that F-CReM-generated compounds typi-

cally possessed lower molecular weights, lower calculated 

partition coefficients (calculated log P; clogP), 51 and lower 

calculated topological polar surface area (TPSA) values, 

compared to F-VAE-generated compounds. Both models
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generated synthesizable molecules, with comparable RAscores 

as computed by a machine learning (ML)-based synthetic feasi-

bility estimator. 49 In general, all compounds generated based on 

F1 exhibited lower molecular weights, lower numbers of H-bond 

acceptors and donors, higher clogP values, and lower

TPSA values compared to known Gram-negative antibiotics 

(Figure 2E). Taken together, our analyses suggest that our gener-

ative approach can produce realistic and synthesizable com-

pounds with promising Chemprop prediction scores. We there-

fore aimed to synthesize and test several of these compounds.

Figure 2. Generative deep-learning-guided design of compounds containing fragment F1 with predicted antibacterial activity

(A) Schematic of the genetic algorithm based on F-CReM and examples of filtered generated compounds, with fragment F1 highlighted.

(B) Distributions of antibacterial activity prediction scores from five rounds of compound generation using F-CReM.

(C) Schematic of the F-VAE algorithm and examples of filtered generated compounds, with fragment F1 highlighted.

(D) Computational filters applied to fragment-based designed compounds, resulting in two final sets of compounds shortlisted for chemical synthesis.

(E) Molecular weights, TPSA, calculated log P (clogP), hydrogen bond acceptors, hydrogen bond donors, and retrosynthetic accessibility score (RAscore) values 

for all filtered compounds generated by F-CReM and F-VAE, compared with the median of known Gram-negative antibiotics.

(F) Structures of two designed and synthesized compounds, NG1 and NG2.

(G) MICs against N. gonorrhoeae ATCC 49226 and CC 50 values of the compounds for three different human cell types. n = 2, * indicates values >128 μg/mL.

(H) MICs of compound NG1 against various bacterial species. Results are representative of two biological replicates.

See also Figure S2.
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Synthesis and experimental validation of fragment-

based designed compounds

Synthesizing deep learning-generated compounds can be chal-

lenging due to the possibility of formidable or undefined synthe-

sis routes. Therefore, to obtain a diverse and reasonably sized 

set of compounds for synthesis, we prioritized compounds that 

were structurally dissimilar from each other and had the highest 

predicted antibacterial scores (>0.7) (Figure 2D; STAR Methods). 

This resulted in 80 compounds, which were evaluated by com-

mercial chemical synthesis providers. After attempting to syn-

thesize 27 compounds (9 from CReM and 18 from F-VAE), we 

successfully synthesized two (NG1 and NG2) with high (>95%) 

purity (Figure 2F). Both molecules were generated by the 

F-VAE model. We empirically tested the compounds and found 

that NG1, but not NG2, inhibited the growth of N. gonorrhoeae 

ATCC 49226 with an MIC of 0.5 μg/mL (Figure 2G). Determining 

selectivity as before, we found that NG1 had CC 50 values of 25– 

128 μg/mL against HEK293, HepG2, and HSkMC cells, resulting 

in TIs of 50–256 (Figure 2G). NG1 is structurally dissimilar to 

active compounds in the training dataset and possesses favor-

able physicochemical properties (Table S5). Interestingly, NG1 

exhibited narrow-spectrum activity against N. gonorrhoeae and 

Neisseria meningitidis—the only other pathogenic Neisseria spe-

cies—but not against Neisseria cinerea and Neisseria mucosa 

(two human commensal species) or any other Gram-positive or 

Gram-negative species tested (Figure 2H). NG1 also exhibited 

potent activity against highly drug-resistant N. gonorrhoeae 

strains, including the first strain found in the United States that 

had lost susceptibility not just to ceftriaxone but to all other drugs 

previously recommended for first-line treatment (Figure 3A; 

Table S4). These data consistently indicate that NG1 is antibac-

terial against multidrug-resistant and pathogenic strains of 

N. gonorrhoeae, suggesting that it might act through a mecha-

nism of action to which resistance has not yet evolved.

Mechanism of action, toxicology, and in vivo efficacy of 

NG1

We investigated the mechanism of action of NG1 by first exam-

ining whether the compound was bactericidal. In a time-kill exper-

iment using N. gonorrhoeae ATCC 49226, NG1 exhibited concen-

tration-dependent killing, with efficacy similar to that of 

azithromycin (Figure 3B), and a minimum bactericidal concentra-

tion (MBC) of 1 μg/mL (Figure 3C). In suppressor mutant genera-

tion experiments on solid agar, the frequency of resistance against 

NG1 was 4.3 × 10 − 8 at 8× MIC. The spontaneously arising NG1-

resistant isolates retained susceptibility to ceftriaxone, azithromy-

cin, and ciprofloxacin, with unchanged MICs relative to those of 

the parental susceptible strain (Figure S2A). The lack of cross-

resistance was supported by checkerboard assays demon-

strating that NG1 acted indifferently (neither synergistically nor 

antagonistically) to ceftriaxone, fosfomycin, and CCCP, indicating 

that NG1 does not act similarly to other cell-wall- and membrane 

proton motive force (PMF)-targeting antibiotics (Figure S2B). 

Indeed, NG1 did not alter the PMF, as measured by the potentio-

metric fluorophore 3,3-dipropylthiadicarbocyanine iodide (DiSC 3 -

[5]), 4,7,52 which displays an increase in fluorescence when the 

membrane potential, ΔΨ, is disrupted and a decrease in fluores-

cence when the pH gradient, ΔpH, is dissipated 52 (Figure S2C).

To investigate the mechanism of action further, we tested 

whether NG1 treatment alters membrane fluidity using a Laurdan 

dye assay, 6 where cells with decreased membrane fluidity 

exhibit increases in Laurdan fluorescence. Treatment of 

N. gonorrhoeae cells with NG1 resulted in a modest increase in 

Laurdan fluorescence, suggesting that NG1 may act, in part, 

by decreasing membrane fluidity (Figure 3D). We hypothesized 

that this would compromise membrane integrity and tested 

this hypothesis by measuring the uptake of a hydrophobic fluo-

rescent probe, 1-N-phenylnaphthylamine (NPN), which fails to 

penetrate intact outer membranes. NG1 treatment resulted in a 

significant increase in NPN fluorescence, suggesting that the 

outer membranes of cells were indeed compromised 

(Figure 3E). NG1-treated N. gonorrhoeae cells also exhibited 

increased fluorescence of SYTOX green (a DNA-intercalating 

dye) that only penetrates cells with compromised membranes 

(Figure 3F), supporting the suggestion that membrane damage 

leads to cell death. We then directly examined the morphological 

changes induced by NG1 treatment by performing cryogenic 

transmission electron microscopy (cryo-TEM) on N. gonor-

rhoeae ATCC 49226 cells. We found pronounced changes, 

where the NG1-treated cells showed reduced area and round-

ness and increased elongation (Figures S2D and S2E).

As NG1 might compromise bacterial membranes by acting on 

membrane-related proteins, we performed a proteome integral 

solubility alteration (PISA) assay to study possible protein targets 

on a proteome-wide scale. 53 The assay revealed a striking 

destabilization of the lipooligosaccharide (LOS) export system 

protein, LptA (p value = 1.9 × 10 − 7 , log 2 fold change = − 2.4), 

upon treatment of N. gonorrhoeae lysate with NG1 (Figure 3G). 

Time-resolved RNA sequencing experiments revealed a dose-

dependent up-regulation of lptA in response to NG1 treatment, 

in addition to changes in either upstream or downstream pro-

teins of the LOS biosynthesis pathway (Figures 3H and S2F). 

Given NG1’s potential effect on LOS, we hypothesized that 

NG1 would synergize with polymyxin B, an antibiotic that extra-

cellularly binds lipid A, 54 and indeed observed a potent synergis-

tic interaction (fractional inhibitory concentration index < 0.5) 

(Figure 3I). Taken together, these experimental results strongly 

suggest that LptA is the main target of NG1. This mechanism 

of action is notable, as LptA has been a proposed, 55 but as yet 

undrugged, antibiotic target in the LOS biosynthesis pathway. 

Given that NG1 appears to inhibit LptA, a protein absent in eu-

karyotic cells, 56 we aimed to further study its translational poten-

tial. We first carried out in vitro toxicology studies measuring hu-

man red blood cell (RBC) hemolysis and bacterial mutagenesis. 

We found that NG1 was neither hemolytic nor mutagenic up to 

concentrations of 64 μg/mL, the highest tested (Figures S2G 

and S2H). Building on these observations, we tested the efficacy 

of NG1 in a mouse model of N. gonorrhoeae vaginal infection. 

Here, ovariectomized and estradiol-treated mice were intravagi-

nally inoculated with N. gonorrhoeae ATCC 49226. Two h later, 

mice were given their first dose of intravaginal NG1 (1%), ceftri-

axone (0.1%), or vehicle control, followed by four additional 

doses within a 24 h period (Figure 3J). We found that mice 

treated with NG1 exhibited a significant decrease in vaginal bac-

terial load (two-sided Mann-Whitney U test, p = 0.0120) of ∼3 

logs in colony-forming units (CFUs) relative to vehicle-treated
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Figure 3. Mechanistic study and in vivo efficacy of compound NG1

(A) MICs against wild-type and antibiotic-resistant strains of N. gonorrhoeae (listed in Table S4). Each data point represents a strain tested in biological duplicates.

(B) Time-kill curves for ATCC 49226 treated with NG1 or azithromycin. Mean ± SD; n = 2.

(legend continued on next page)
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mice (Figure 3K). Furthermore, treatment with NG1 was well-

tolerated by all mice. Overall, these results support the transla-

tional potential of NG1 with topical in vivo efficacy in treating a 

model of N. gonorrhoeae infection.

Synthesis and analysis of structural analogs of NG1 

Building on the high selectivity of NG1, as well as to further test 

the functional significance of fragment F1, we investigated its 

structure-activity landscape by synthesizing and testing struc-

tural analogs. We synthesized 74 analogs primarily by altering 

two functional groups, R1 and R2, connected to the pyrrolidine 

ring and the amine, respectively (Figure S3A). Testing all analogs, 

we found eight active molecules against N. gonorrhoeae ATCC 

49226, with MIC values between 16 and 32 μg/mL (Figures 

S3B and S3C). We also procured four analogs in the Enamine 

REAL Space library, and one of the four compounds, named 

NG1 analog, was active against N. gonorrhoeae ATCC 49226 

with an MIC of 4 μg/mL. Additionally, its CC 50 values against 

HEK293, HepG2, and HSkMC cells were higher than those of 

NG1 (Figure S3D). Given its promise for further development, 

we investigated the NG1 analog’s mechanism of action as 

above and found that it acted similarly to NG1 (Figures S3E– 

S3G). From this analysis, we observed that compounds with 

an R1 group containing a 2,3-dichlorophenyl group were more 

effective at inhibiting N. gonorrhoeae than those with a 2,4-di-

chlorophenyl group, and compounds containing either group 

were more efficacious than those with a 2-chlorophenyl or 

phenyl group alone (Figure 3L). Together, these findings support 

the antibacterial activity of fragment F1 and its associated mole-

cules, suggesting the possibility that additional optimization will 

improve the potency and selectivity of this structural class of 

antibacterial compounds.

Design of compounds with activity against S. aureus 

Having taken a fragment-based approach to designing com-

pounds active against N. gonorrhoeae, we asked whether the 

same approach could produce compounds active against a 

Gram-positive pathogen, S. aureus. To start, we predicted anti-

bacterial activity against S. aureus using an ensemble of 20 

GNN-based Chemprop models. 11,45,57 We used this ensemble 

of S. aureus models to screen our original set of 45,858,026 frag-

ments using the same prediction score thresholds as before. Of 

these fragments, 432,919 (0.94%) were predicted to be active 

against S. aureus (Figure 4A), and 259,807 unique fragments re-

mained after filtering for low predicted human cytotoxicity 

scores, no obvious chemical liabilities, and structural novelty. 

To validate that the identified fragments were associated with 

compounds with antibacterial activity against S. aureus, we 

searched our set of 799,149 compounds from the Broad Institute 

as well as the Enamine purchasable space to identify com-

pounds containing these fragments. Applying similar filters as 

above to these compounds, we found 130 compounds repre-

senting 68 unique fragments that we procured for empirical 

testing against S. aureus RN4220 (Figure 4B). We found that 

19 compounds inhibited the growth of S. aureus at 50 μM or 

below, resulting in a working true discovery rate of 14.6% 

(Figure 4B; Table S2; Data S2). Notably, the active fragment 

with the highest model prediction score, F2, was represented 

in the second-highest scoring compound, EN1 (Figure 4C), 

with an MIC of 8 μg/mL against methicillin-susceptible 

S. aureus (MSSA) RN4220 and methicillin-resistant S. aureus 

(MRSA) BAA1556. EN1 also exhibited half-maximal inhibitory 

concentration (CC 50 ) values ranging from 32 to >64 μg/mL 

when tested against HEK293, HepG2, and HSkMC cells 

(Figure 4D), indicating favorable selectivity.

EN1 contained a unique 1,4-epoxycyclohexane moiety, and a 

search within Enamine’s 64 billion compound space yielded only 

38 structures containing F2, suggesting that it might be a rare 

and appropriate starting point for generative AI algorithms that 

expand on its associated chemical space. We applied F-CReM 

and F-VAE to F2, and these models generated 141,109 and 

3,297,292 molecules, respectively (Figure 4E). Filtering the re-

sulting molecules similarly as before (STAR Methods; 

Figure S1F), we retained the top 210 compounds predicted to 

be antibacterial against S. aureus. These remaining compounds 

were down-selected to five compounds by a medicinal chemist 

to prioritize properties such as synthesizability, stability, perme-

ability, drug-likeness, and diversity; however, none of these 

compounds were synthetically accessible within typical synthe-

sis time frames and costs. To circumvent synthesizability obsta-

cles and determine if preserving the entire F2 fragment is essen-

tial for our approach, we truncated F2 to a more synthetically

(C) MBC of NG1 in ATCC 49226. Mean ± SD; n = 2.

(D) Membrane rigidification of ATCC 49226 treated with NG1 at 64 μg/mL and control compounds, as measured by the Laurdan generalized polarization (GP). 

Mean ± SD; n = 2.

(E) Loss of membrane integrity of ATCC 49226 treated with NG1 and DMSO, as measured by the uptake of the hydrophobic fluorescent probe, 1-N-

phenylnaphthylamine (NPN). Mean ± SD; n = 2.

(F) Membrane permeabilization of ATCC 49226 treated with NG1 or Triton X-100, as seen by a time-dependent increase in SYTOX green fluorescence signal 

normalized to the untreated control. Mean ± SD; n = 2.

(G) Volcano plot of PISA results from FA 1090 lysate treated with NG1 compared with the vehicle control. The most significantly affected protein, LptA, is shown in 

purple.

(H) Expression levels of lptA in FA 1090 treated with NG1 at 4× MIC, expressed in log 2 counts-per-million (CPM).

(I) Checkerboard study of NG1 and polymyxin B (PMB) in ARB #0187 revealing a synergistic effect. Data are representative of biological duplicates.

(J) Schematic of the in vivo study of NG1 in the N. gonorrhoeae vaginal infection model using strain ATCC 49226. Treatment with vehicle, NG1, or ceftriaxone was 

administered intravaginally for five doses.

(K) Bacterial titers in vaginal lavage fluid. Horizontal lines represent median log 10 CFU/mL values. Data represent treatment with vehicle control (n = 8), NG1 (n = 9), 

or ceftriaxone (n = 5). Two-sided Mann-Whitney U test compared with vehicle: *p ≤ 0.05, **p ≤ 0.01. Horizontal lines represent medians.

(L) Summary of a structure-activity relationship analysis for NG1.

See also Figures S2 and S3.
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Figure 4. Effect of fragment modification on synthesizability and antibacterial activity

(A) Rank-ordered fragment prediction scores as determined by the S. aureus antibacterial activity model (above) and computational filters applied to the frag-

ments (below).

(B) Rank-ordered fragment (above) and compound (below) prediction scores for available compounds procured for empirical testing at 50 μM.

(C) Structure of fragment F2 and its associated active compound from (B). The fragment is highlighted in EN1.

(D) MIC and CC 50 values for EN1. n = 2, * indicates values >64 μg/mL.

(E) Structures of fragment F2 and the truncated fragment F2 ′ , with the number of molecules generated for both fragments by the F-CReM and F-VAE models.

(F) Computational filters applied to down-selected compounds using fragment F2 ′ .

(G) RAscore of molecules generated by F-CReM and F-VAE using fragments F2 and F2 ′.

(legend continued on next page)
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accessible starting point, F2 ′ (Figure 4E). We used F-CReM and 

F-VAE to generate 106,557 and 18,164,746 molecules based on 

F2 ′ and down-selected 9,684 molecules as before (Figure 4F; 

STAR Methods). As expected, the molecules associated with 

F2 ′ were more likely to be synthesizable than those associated 

with F2, as measured by two metrics: RAscore (Figure 4G) 

and a retrosynthesis planning tool, ASKCOS (Automated 

System for Knowledge-based Continuous Organic Synthesis) 

(Figure 4H). 58 Intriguingly, F-VAE-generated molecules were 

consistently predicted and selected by a medicinal chemist to 

be more synthesizable than those from F-CReM and exhibited 

more drug-like properties (Figure S4A; Table S3). Confirming 

these predictions, we were able to synthesize 16 F-VAE-

designed molecules within typical synthesis time frames and 

costs. We found that only one of these 16 compounds (6.25%) 

(Figure S4B; Data S2) demonstrated activity against S. aureus 

RN4220, with a marginal MIC of 128 μg/mL, the highest concen-

tration tested (Figure 4I). By contrast, six of 12 additional mole-

cules (50%) (Figure S4B; Data S2) procured from the Enamine 

REAL Space containing the original F2 fragment displayed activ-

ity, exhibiting MICs as low as 16 μg/mL (Figure 4I). Together, 

these findings indicate that preservation of F2 is important for 

antibacterial activity and that designing compounds based on 

this particular fragment appears to result in a trade-off between 

antibacterial activity and synthesizability.

Generation, synthesis, and experimental validation of de 

novo designed compounds

To further investigate the generality of our approach, we asked if 

our generative models could design antibacterial molecules 

without the need for specific fragments as starting points 

(Figure 5A). We modified our models by providing either 

ammonia, methane, or water as inputs to CReM (Figure 5B) 

and no fragment as input to a junction tree variational autoen-

coder (JT-VAE) (Figure 5C). Together, the models generated 

29,014,974 molecules. Interestingly, the JT-VAE model pro-

duced more drug-like molecules (Figure 5D; Table S3), while 

compounds produced by CReM tended to have high molecular 

weights and many H-bond acceptors and donors (which could 

reduce membrane permeability) (Figure 5D; Table S3). CReM 

compounds were predicted to be highly unsynthesizable by 

both the RAscore (Figure 5D) and the ASKCOS retrosynthesis 

prediction tool (Figure S5A; Table S3). We therefore prioritized 

molecules generated by JT-VAE and filtered them for favorable 

properties, including high predicted antibacterial scores against 

S. aureus, low predicted cytotoxicity scores, and Tanimoto sim-

ilarity to known antibiotics (Figure S5B). The down selection re-

sulted in 4,831 molecules that were manually inspected and 

shortlisted to 90 compounds based on synthesizability and di-

versity (Figure 5E). After review by a chemical synthesis vendor, 

we procured 22 molecules and tested them against MSSA 

RN4220 and MRSA BAA1556 at a high starting concentration

of 64 μg/mL. Remarkably, six molecules (27.3%; DN1–DN6) 

showed antibacterial activity and were structurally dissimilar to 

each other (Figures 5F and 5G; Data S2), suggesting that our 

generative models can design antibacterial molecules de novo 

without the requirement of a fragment as a starting point.

To further investigate the six active compounds, we deter-

mined their MICs against MSSA RN4220, MRSA BAA1556, 

and, as a starting point for assessing spectrum, N. gonorrhoeae 

ATCC 49226. DN1 was the most potent and selective against 

S. aureus, with an MIC of 4 μg/mL for both MSSA RN4220 and 

MRSA BAA1556 and a TI of 32 for HEK293, HepG2, and 

HSkMC cells. By contrast, DN4 was the least potent and selec-

tive, with an MIC of 64 μg/mL for S. aureus and a TI of 2 

(Figure 6A). Four of the six compounds also exhibited MICs ≤

8 μg/mL for N. gonorrhoeae, despite being selected based on 

their S. aureus model prediction scores. To further assess their 

spectrum of activity, we tested each compound against a panel 

of Gram-positive and Gram-negative species. We found that 

DN1–DN3 exhibited broad-spectrum activity against Gram-pos-

itive bacteria, including Bacillus subtilis and vancomycin-sus-

ceptible Enterococcus faecalis. However, none of the six com-

pounds inhibited the growth of other tested Gram-negative 

species or Gram-neutral Mycobacterium tuberculosis 

(Figure 6B; Data S2). Interestingly, DN1–DN3 gained activity 

against E. coli when the outer membrane was permeabilized 

through genetic (lptD4213) or chemical (polymyxin B nonapep-

tide co-treatment) means, or when efflux pumps were genetically 

disrupted (ΔtolC). In combination with polymyxin B nonapeptide, 

DN1–DN3 also effectively inhibited the growth of wild-type 

E. coli, A. baumannii, and P. aeruginosa, and DN1 gained activity 

against K. pneumoniae and M. tuberculosis (Data S2). These 

findings suggest that the efficacy of DN1–DN3 is hindered by 

outer membranes, which may act to block penetration or in-

crease efflux of these compounds.

Although DN1–DN3 exhibited similar spectra of activity to 

each other, performing membrane PMF assays as above for 

S. aureus cells treated with each of DN1–DN6 resulted in mark-

edly different DiSC 3 (5) fluorescence profiles (Figure 6C), consis-

tent with the observation that these compounds are structurally 

distinct. DN1 and DN6 treatment resulted in similar dissipation of 

ΔΨ; however, microscopic imaging of morphological changes in 

B. subtilis 168 revealed that treatment with DN6 resulted in fila-

mentation and membrane rupture after 2 h, in contrast to treat-

ment with DN1–DN5 (Figures 6D, 6E, and S6A). Given DN1’s po-

tency, we investigated its potential membrane-active 

mechanism by testing whether DN1 alters membrane fluidity us-

ing a Laurdan dye assay as before. 6 Treatment of S. aureus cells 

with DN1 resulted in a modest increase in Laurdan fluorescence 

(Figure 6F), suggesting a decrease in membrane fluidity. Per-

forming cryo-TEM on both MSSA RN4220 and N. gonorrhoeae 

ATCC 49226 cells treated with compound at 4× MIC, we found 

pronounced morphological changes in the membranes of both

(H) Predicted retrosynthesis success rates as determined by ASKCOS for molecules generated by F-CReM and F-VAE using fragments F2 and F2 ′.

(I) MICs of 12 compounds from the Enamine REAL space with fragment F2 and 16 de novo designed and synthesized compounds with the fragment F2 ′ against 

S. aureus RN4220.

See also Figure S4.
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bacteria. In MSSA, we observed thickening of the membrane 

and increased perimeter (Figures 6G, 6H, and S6B), and 

in N. gonorrhoeae, we observed dislodging of the membrane 

and increased cell swelling (Figure S6C), quantified further 

by increased cell roundness and decreased elongation 

(Figure S6D). Overall, these results indicate that our de novo 

design models can generate bona fide antibacterial compounds 

and that a subset of structurally distinct compounds exhibit 

different, membrane-active mechanisms of action.

Resistance and in vivo efficacy of DN1

Building on our previous findings, we aimed to further investigate 

the translational relevance of DN1. Time-kill experiments indi-

cated that DN1 substantially decreased log-phase MSSA 

RN4220 CFUs as early as 2 h post-treatment (Figure 7A), exhibit-

ing faster bactericidal activity than that of vancomycin, a first-line 

antibiotic for treating S. aureus infections. Additionally, the MBC 

of DN1 was 8 μg/mL for MSSA RN4220 (Figure 7B). In sponta-

neous mutant generation experiments on solid agar, no colonies 

emerged after 7 days of incubation at 4× and 8× MIC, suggesting 

a low frequency of resistance (<9.6 × 10 − 9 for MSSA RN4220 and 

<1.0 × 10 − 9 for MRSA BAA1556). Similarly, the MIC of DN1 for 

MRSA BAA1556 did not meaningfully increase after 30 serial pas-

sages in LB (lysogeny broth) or LB supplemented with 0.002% 

Tween. DN1 also inhibited the growth of 10 multidrug-resistant 

Gram-positive isolates from the CDC-FDA (Food and Drug 

Administration) Antimicrobial Resistance Isolate Bank (ARB), 

including isolates from the vancomycin-intermediate S. aureus 

(VISA), aminoglycoside/tetracycline-resistant (ATR), and tedi-

zolid/linezolid (oxazolidinone)-resistant staphylococci (TLZD)

Figure 5. De novo generation of antibacterial compounds without a fragment starting point

(A) Schematic of the de novo generative approach.

(B) Schematic of the de novo genetic algorithm based on CReM and examples of generated compounds.

(C) Schematic of the de novo JT-VAE algorithm and examples of generated compounds.

(D) Molecular properties and RAscores for a random subset of 10,000 compounds generated by the de novo CReM and JT-VAE models, compared with the 

median of known Gram-positive antibiotics.

(E) Computational filtering and summary of experimental results for JT-VAE-designed compounds.

(F) Experimental validation of 22 JT-VAE-designed molecules against S. aureus when tested at 64 μg/mL. n = 2.

(G) Structures of the six de novo designed compounds with activity against MSSA RN4220 and MRSA BAA1556.

See also Figure S5.
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Figure 6. Characterization of de novo designed compounds DN1–DN6

(A) MICs against S. aureus RN4220, MRSA BAA1556, N. gonorrhoeae ATCC 49226, and CC 50 values of the compounds in three different human cell types. n = 2, * 

indicate values >128 μg/mL.

(B) MICs against various Gram-positive species (top) and Gram-negative bacterial species (middle), or in combination with a sub-MIC concentration of polymyxin 

B nonapeptide (bottom). n = 2. See also Table S4.

(C) DiSC 3 (5) fluorescence of S. aureus RN4220 treated with DN1–DN6, valinomycin (positive control), and DMSO (negative control).

(D) Images of B. subtilis 168 cells treated with the active de novo designed compounds at 2× MIC for 2 h. DAPI in blue and FM4-64 in red.

(E) Area of untreated and compound-treated (2× MIC) B. subtilis cells, where n is the number of cells quantified and ****p ≤ 0.0001, evaluated using a two-sided 

Mann-Whitney U test.

(legend continued on next page)
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panels, with MICs of 8 μg/mL across all tested isolates (Figure 7C; 

Table S4). Consistent with its activity against N. gonorrhoeae 

ATCC 49226, DN1 exhibited MICs at or below 16 μg/mL against 

a panel of drug-resistant N. gonorrhoeae isolates (Figure 7D). 

As DN1 exhibited a favorable resistance profile and physico-

chemical properties (Table S5), we aimed to evaluate its potential 

for therapeutic development. For this, we tested DN1 for efficacy 

in treating a mouse model of MRSA BAA1556 skin infection. In 

this model, each mouse was rendered neutropenic and inflicted 

with a skin wound. After inoculation of ∼10 5 CFU of MRSA, each 

wound was topically treated with DN1 (1% w/v) six times before 

all mice were sacrificed, and the wounds were excised for CFU 

determination 25 h after infection (Figure 7E). We found that 

treatment with DN1 significantly decreased the average bacte-

rial load by 10-fold relative to vehicle (two-sided Mann-Whitney 

U test, p = 0.0043), with efficacy similar to that of fusidic acid, 

a positive control antibiotic used in the clinical treatment of 

Staphylococcus infections (Figure 7F). Together, these findings 

support the translational potential of DN1, highlighting its effi-

cacy in treating a model of topical staphylococcal infection.

Synthesis and analysis of structural analogs of DN1

As a starting point for further developing and optimizing DN1, we 

investigated its structure-activity landscape similarly to NG1. We 

modified the position or type of halogen atom (Cl or F) on the aryl 

ring and replaced the central pyrrolidine with 4- or 6-membered 

nitrogen-containing heterocycles. Of the 19 analogs synthesized 

(Data S2) that include these modifications, we found that five an-

alogs exhibited MICs ranging from 2 to 8 μg/mL when tested 

against MSSA RN4220, MRSA BAA1556, and a panel of 10 

MRSA isolates from the ARB (Figures S7A and S7B). A more 

potent analog, DN1–164, exhibited MICs ≤ 4 μg/mL for all anti-

biotic-resistant S. aureus strains tested and against wild-type 

N. gonorrhoeae without increase in cytotoxicity against human 

cells, resulting in TIs > 32 (Figure S7C). The most potent analogs 

(DN1–154, DN1–164, and DN1–173) increased DiSC 3 (5) fluores-

cence in S. aureus RN4220 cells, suggesting that, similar to DN1, 

these analogs dissipate the ΔΨ component of the PMF 

(Figure S7D). Furthermore, the chemical structures of the active 

analogs suggest that substitutions of the central pyrrolidine are 

tolerated, the placement of a halogen in the meta position of 

the aryl ring might improve potency, and the carboxylic acid is 

needed for activity (Figure 7G). Thus, these findings highlight a 

broad structure-activity landscape relevant to improving the 

selectivity of our de-novo-generated compound, DN1, and its 

associated chemical series.

DISCUSSION

The unmet need for novel antibiotics is large and growing. Virtual 

screening of chemical compound libraries offers a way to leverage

the diversity of enumerated chemical space, yet these libraries 

sample an infinitesimal fraction of drug-like chemical space, which 

is estimated to contain ∼10 60 compounds. Here, we have pre-

sented a deep learning-enabled approach to the generative 

design of compounds with antibacterial activity. Using GNNs as 

scoring functions, we first comprehensively screened >45 million 

chemical fragments to identify selective antibacterial starting 

points against N. gonorrhoeae or S. aureus. We then developed 

two models—a genetic algorithm-based model (CReM) and a vari-

ational autoencoder (VAE)—to generate compounds based on 

these fragments. While fragments offer consistent and tractable 

starting points, these models can also generate molecules de 

novo, without any fragment input, as demonstrated. Of the 24 

compounds that we designed using these generative approaches 

and subsequently synthesized, two compounds—NG1 and 

DN1—possessed narrow-spectrum activity against pathogenic 

Neisseria and broad-spectrum activity against Gram-positive bac-

teria and N. gonorrhoeae, respectively. Both compounds ex-

hibited mechanisms of action distinct from those of often-used an-

tibiotics and were effective in reducing bacterial titers in different 

animal models of infection. Additionally, both compounds ex-

hibited a structure-activity landscape that can be productively 

used for further optimization. Together, our results enable the 

generative design of two unique structural classes of antibacterial 

compounds and demonstrate the ability of our platform to explore 

uncharted regions of chemical space.

Here, we focused on implementing two molecular generation 

models: CReM and VAE. Despite CReM’s reliance on rule-

based features of bioactive molecules to either grow or intro-

duce modifications and generate structurally diverse mole-

cules, our VAE-based models consistently generated com-

pounds that were more drug-like and synthesizable. Our 

platform is modular in that other generative models, such as 

generative adversarial networks, 15,59 molecular transformers, 60 

flow-based models, 61 diffusion-based methods, 21,62–64 and 

fragment linkers, 65 can be readily incorporated. Combining 

these diverse approaches and continuing to explore fragments 

that lead to readily synthesizable molecules will enable new 

portions of chemical space to be harnessed for successful de 

novo design efforts.

Our approach also allowed for the models to have different 

chemical starting points, enabling either constrained (fragment-

based) or unconstrained (de novo) design. Using fragments as 

starting points possesses several unique advantages. First, it al-

lows one to comprehensively search molecular building blocks 

(e.g., all possible combinations of up to 11 atoms comprised of 

C, N, O, and F) to systematically identify and exploit underex-

plored areas of chemical space that would otherwise be unlikely 

to be sampled by generative methods. The disparity between 

the millions of fragments that our GNN models predicted to be 

antibacterial and the hundreds of fragments that could be found

(F) Membrane rigidification of RN4220 treated with DN1 at 32 μg/mL and control compounds, as measured by the Laurdan generalized polarization (GP). Mean ± 

SD; n = 2.

(G) Cryo-TEM images of untreated and DN1-treated (4× MIC) S. aureus.

(H) Quantification of S. aureus membrane thickness (untreated, n = 14; DN1, n = 11). ****p ≤ 0.0001, evaluated using a two-sided Mann-Whitney U test.

See also Figure S6.
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within commercially available libraries suggests that much of anti-

bacterial chemical space indeed remains underexplored. Second, 

by screening fragments based on target-agnostic phenotypic out-

comes, specifically bacterial growth inhibition, our method in-

creases the likelihood of discovering molecules with unique 

mechanisms of action that potentially circumvent existing antimi-

crobial resistance mechanisms. Lastly, if chosen carefully, a high-

ly synthesizable starting point can constrain the search space to 

realistic, drug-like molecules, reduce the risk of generating 

implausible structures, and facilitate a coherent structure-activity 

relationship analysis. In contrast to the fragment-based approach, 

de novo design without predefined chemical starting points en-

ables unrestricted exploration of chemical space and more vari-

ability in the properties of the generated compounds. After manual 

inspection and stringent filtering for structural novelty, low pre-

dicted cytotoxicity, and synthesizability, the tested de novo de-

signed compounds produced a high working true discovery rate 

of 27% and were structurally diverse with drug-like properties. 

Importantly, compounds from both approaches exhibited anti-

bacterial activity against highly drug-resistant strains of 

N. gonorrhoeae and Gram-positive bacteria, highlighting the 

versatility of generative AI models when coupled to antibacterial 

scoring functions.

Overall, these findings underscore the value of multiple 

approaches to the generative design of antibiotics and that 

the choice of a chemical starting point should be guided 

by strategic considerations, including chemical novelty, di-

versity, and synthesizability. We anticipate that future studies 

will leverage multi-objective optimization frameworks to iden-

tify compounds that simultaneously satisfy multiple criteria, 

including high antibacterial activity, synthetic accessibility, 

low toxicity, and favorable drug-like properties such as 

metabolic stability, low protein binding, and optimal 

pharmacodynamics.

Limitations of the study

Despite our observations of high working true discovery rates 

and promising chemical diversity of generated molecules, it is

A B C

G

D

E F

Figure 7. Mechanistic study and in vivo efficacy of DN1

(A) Time-kill curves for S. aureus RN4220 treated with DN1 or vancomycin. Mean ± SD; n = 2.

(B) MBC of DN1 in RN4220. Mean ± SD; n = 2.

(C) MICs against antibiotic-resistant strains of S. aureus (listed in Table S4). Each data point represents a strain tested in biological duplicates.

(D) MICs against wild-type and antibiotic-resistant strains of N. gonorrhoeae (listed in Table S4). Each data point represents a strain tested in biological duplicates.

(E) Schematic of the in vivo study of DN1 in a neutropenic mouse skin infection model using MRSA strain ATCC BAA1556. Treatment with vehicle, DN1, or fusidic 

acid was administered topically in six doses.

(F) Bacterial titers in skin tissue. Horizontal lines indicate median CFU/mouse values. Data represent treatment with vehicle control (n = 6), DN1 (n = 6), or fusidic 

acid (n = 6). Two-sided Mann-Whitney U test compared with vehicle treatment: *p ≤ 0.05, **p ≤ 0.01.

(G) Summary of the structure-activity relationship analysis for DN1.

See also Figures S6 and S7.
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possible for the ML models used here to produce false posi-

tive predictions or generate structurally non-diverse mole-

cules. Model outputs should therefore be analyzed on a 

case-by-case basis, and when such outputs appear prom-

ising, the compounds should be empirically tested. Further-

more, the utility of our generative approach heavily relies on 

the ability to synthesize compounds for validation. As evi-

denced by the small number of generated compounds that 

we could synthesize, chemical synthesis remains a challenge 

when molecules are not designed according to prespecified 

synthetic routes. Improvements in synthesizability predictors 

and complex retrosynthesis-based algorithms should enable 

larger sets of de novo designed compounds to be experimen-

tally tested and validated.
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18. Blaschke, T., Arú s-Pous, J., Chen, H., Margreitter, C., Tyrchan, C., Engkv-

ist, O., Papadopoulos, K., and Patronov, A. (2020). REINVENT 2.0: an AI 

tool for de novo drug design. J. Chem. Inf. Model. 60, 5918–5922. 

https://doi.org/10.1021/acs.jcim.0c00915.

19. Zhou, Z., Kearnes, S., Li, L., Zare, R.N., and Riley, P. (2019). Optimization 

of molecules via deep reinforcement learning. Sci. Rep. 9, 10752. https:// 

doi.org/10.1038/s41598-019-47148-x.

20. Polishchuk, P. (2020). CReM: chemically reasonable mutations framework 

for structure generation. J. Cheminform. 12, 28. https://doi.org/10.1186/ 

s13321-020-00431-w.

21. Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J. (2022). GeoDiff: a 

Geometric Diffusion Model for Molecular Conformation Generation. Pre-

print at arXiv. https://doi.org/10.48550/arxiv.2203.02923.
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Saei, A.A., Morishita, Y., Mü hlethaler, T., Lim, J., Ritz, D., et al. (2024). An-

tibiotics that Kill Gram-negative Bacteria by Restructuring the Outer Mem-

brane Protein BamA. Preprint at bioRxiv. https://doi.org/10.1101/2024.12. 

16.628070.

77. Zhang, X., Lytovchenko, O., Lundströ m, S.L., Zubarev, R.A., and Gaetani, 
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Bacterial and virus strains

Staphylococcus aureus RN4220 (MSSA) DSMZ-German Collection of 

Microorganisms and Cell Cultures 

GmbH, Leibniz Institute

DSM 26309

Staphylococcus aureus FPR3757 (MRSA) ATCC - American Type 

Culture Collection

BAA-1556

Neisseria gonorrhoeae F-18 ATCC 49226

Neisseria gonorrhoeae FA1090 ATCC 700825

Bacillus subtilis 168 ATCC 23857

Escherichia coli BW25113 DSMZ DSM 27469

Escherichia coli K-12 MG1655 ATCC 700926

Escherichia coli JW5503-KanS 

(ΔtolC832::FRT)

EC GRC – E coli Genetic 

Resource Center

CGSC: 14206

Escherichia coli RFM795 (lptD4213) EC GRC – E coli Genetic 

Resource Center

CGSC: 14179

Klebsiella pneumoniae NCTC 9633 ATCC 13883

Pseudomonas aeruginosa PAO1 ATCC 47085

Acinetobacter baumannii 5377 ATCC 17978

Mycobacterium tuberculosis H37Ra ATCC 25177

CDC & FDA Antibiotic Resistance 

Bank (ARB) isolates

CDC & FDA AR Isolate Bank https://wwwn.cdc.gov/arisolatebank/; 

See Table S4 for unique identifiers

Chemicals, peptides, and recombinant proteins

De novo generated compounds and analogs This study; synthesized by 

Enamine Ltd. (Kyiv, Ukraine)

See Data S2

NG1 analogs CC4CARB (Chemistry Center for 

Combating Antibiotic-Resistant Bacteria)

See Data S2

Vancomycin Fisher Scientific AAJ6279003

Valinomycin Thermo Fisher V1644

Triclosan MilliporeSigma 72779

Azithromycin Cayman Chemical 15004

Ceftriaxone Cayman Chemical 18866

Fosfomycin sodium MilliporeSigma 34089

CCCP (carbonyl cyanide m-chlorophenyl hydrazone) MedChemExpress HY-100941

Fusidic acid MilliporeSigma F0881

Ciprofloxacin MilliporeSigma 17850

Kanamycin sulfate MilliporeSigma 60615

DMSO MilliporeSigma D5879

PrestoBlue Cell Viability Reagent Invitrogen A13261

Resazurin MilliporeSigma R7017

Triton X-100 MilliporeSigma T8787

DiSC 3 (5) Invitrogen D306

Laurdan Sigma-Aldrich 40227

NPN (N-phenyl-1-naphthylamine) Sigma-Aldrich 104043

SYTOX Green Invitrogen S7020

TRIzol Reagent Thermo Fisher 15596026

Chloroform Sigma-Aldrich C2432
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FM4-64 Thermo Fisher T13320
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Experimental models: Cell lines

HEK293 ATCC CRL-1573

HepG2 ATCC HB-8065

HSkMC ATCC PCS-950-010

IMR90 ATCC CCL-186

Experimental models: Organisms/strains

Female C57BL/6J mice Jackson Laboratory 000664

Female BALB/cJ Jackson Laboratory 000651

Female ovariectomized BALB/cJ mice Jackson Laboratory 000651

Software and algorithms

Chemprop Yang et al. 11 https://github.com/chemprop/chemprop

RDKit RDKit https://www.rdkit.org

SHAP Lundberg and Lee 66 https://github.com/slundberg/shap

openTSNE Policar et al. 67 https://opentsne.readthedocs.io

CReM Polishchuk 20 https://github.com/DrrDom/crem

F-VAE Jin et al. 46 https://github.com/wengong-

jin/multiobj-rationale

JT-VAE Jin et al. 17 https://github.com/wengong-

jin/hgraph2graph

ASKCOS Tu et al. 58 https://askcos.mit.edu

GraphPad Prism v10.1.0 GraphPad Software https://www.graphpad.com

Harmony & Signal Image Artist PerkinElmer N/A

Omnipose Cutler et al. 68 https://github.com/kevinjohncutler/omnipose

Proteome Discoverer Thermo Fisher v3.2

edgeR v4.4.2 Bioconductor https://bioconductor.org/packages/release/

bioc/html/edgeR.html

clusterProfiler v4.10.0 Bioconductor https://www.bioconductor.org/

packages//2.13/bioc/html/

clusterProfiler.html

Deposited data

Code platform for reproducing 

all analyses in this work

This study https://github.com/aartikrish/

de-novo-antibiotics

Data generated from the computational 

pipelines (fragment based and de novo design)

This study Zenodo repository: 

https://doi.org/10.5281/zenodo.15191826

Data generated from experimental 

chemical screening

Wong et al. 7 ; Anahtar et al. 8 Zenodo repository 

https://doi.org/10.5281/zenodo.15191826

RNA sequencing data This study Zenodo repository 

https://doi.org/10.5281/zenodo.15191826

Proteomics data This study PRIDE ID: PXD063107

Other

SpectraMax M3 Multi-Mode 

Microplate Reader

Molecular Devices N/A

JEM-2100F Field Emission 

Electron Microscope for Cryo-TEM
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Gatan Cryoplunge Gatan N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Human cell lines were obtained from ATCC: HEK293 (CRL-1573), HepG2 (HB-8065), HSkMCs (PCS-950-010) and IMR-90 (Institute 

for Medical Research-90 cell line; CCL-186). HEK293 and HepG2 cells were grown to log phase in high-glucose Dulbecco’s Modified 

Eagle Medium (DMEM; Corning 10-013-CV) supplemented with 10% fetal bovine serum (FBS; ThermoFisher 16140071) and 1% 

penicillin-streptomycin (ThermoFisher 15070063). HSkMCs were grown in mesenchymal stem cell basal medium for adipose, um-

bilical and bone marrow-derived MSCs (ATCC: PCS-500-030) supplemented with ATCC’s primary skeletal muscle growth kit 

(ATCC: PCS-950-040) and 1% penicillin-streptomycin. IMR-90 cells were grown in in Eagle’s Minimum Essential Medium (EMEM; 

ATCC 30-2003) supplemented with 10% FBS and 1% penicillin-streptomycin. Cells were cultured at 37 ◦ C and 5% CO 2 in humidi-

ty-controlled incubators and passaged <5-10 times. All cell lines were authenticated by the supplier, ATCC, using STR profiling.

Bacterial cell culture

The main bacterial strains used in this study include methicillin-susceptible Staphylococcus aureus RN4220 (MSSA DSM 26309; 

DSMZ German Collection of Microorganisms and Cell Cultures, Leibniz Institute), methicillin-resistant Staphylococcus aureus 

FPR3757 (MRSA USA300; ATCC BAA-1556), and Neisseria gonorrhoeae (ATCC 49226). Other common strains include N. gonor-

rhoeae FA 1090 (ATCC 700825), Bacillus subtilis 168 (ATCC 23857), Escherichia coli BW25113 (DSMZ 27469), MG1655 (ATCC 

700926), JW5503-KanS (ΔtolC832::FRT, CGSC 14206), and RFM795 (lptD4213) (CGSC 14179), Klebsiella pneumoniae (ATCC 

13883), Pseudomonas aeruginosa PAO1 (ATCC 47085), Acinetobacter baumannii (ATCC 17978) and Mycobacterium tuberculosis 

MTB H37Ra (ATCC 25177). Additional bacterial isolates in Table S4 were obtained from the CDC & FDA Antibiotic Resistance 

(AR) Isolate Bank (Atlanta, Georgia). 69 All bacterial strains were authenticated by their respective suppliers: ATCC, DSMZ and/or 

CDC, using next-generation sequencing or Sanger sequencing. Unless specified, LB medium containing 1.5% Difco agar (Becton 

Dickinson 244520) was used to grow individual colonies. Cells were grown in liquid LB (Becton Dickinson 244620) from single col-

onies aerobically in 14 mL Falcon tubes using 2-3 mL working volumes without antibiotic selection. The cultures were incubated at 37
◦ C in a light-insulated, humidity-controlled chamber, shaking at 300 rpm. All Neisseria strains were passaged twice on chocolate agar 

plates (CAP; Hardy Diagnostics, H25). Several colonies were picked from plates to obtain a desired OD 600 and grown in specialized 

Graver Wade media 70 at 37 ◦ C with 5% CO 2 in a humidity-controlled incubator.

Mouse models

All animal studies were performed at the Wyss Institute at Harvard in accordance with protocol IS00000852-6, approved by the Har-

vard Medical School Institutional Animal Care and Use Committee and the Committee on Microbiological Safety. All mice were all 

purchased from Jackson Laboratory and housed in pathogen-free facility maintained at 20-26ºC ambient temperature, 40-65% rela-

tive humidity, and a 12:12 light-dark cycle. Enrichment devices were included in the animal environments as required and changed bi-

weekly. For NG1, female BALB/c mice had a 1 week acclimation period to the mouse facility prior to testing the toxicity (healthy; 6– 

8 weeks old, 20 ± 2 g) and efficacy (healthy; ovariectomized at Jackson Laboratory, 23 ± 3 g). None of the mice had been involved in 

previous procedures. For DN1, female C57BL/6J mice had a 48-hour acclimation period upon arrival to the mouse facility prior to 

testing the toxicity (healthy; 6-12 weeks old, weight of 22 ± 2 g) and efficacy (rendered neutropenic with cyclophosphamide on 

Day -4 and Day -1; 19 ± 2 g).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Opera Phenix 2 Confocal Microscope 

for High-Content Screening

PerkinElmer N/A

Biometra T-GRADIENT thermocycler Analytik Jena 8464070201

Orbitrap Exploris 480 Mass Spectrometer Thermo Fisher Scientific BRE725539

NovaSeq X Plus Illumina N/A

Labcyte Echo 555 Acoustic Dispenser Beckman Coulter N/A

Qubit 4 Fluorometer Thermo Fisher N/A

Direct-zol RNA Miniprep Plus Kit Zymo Research R2070

Sep-Pak C18 Column Waters N/A

PepMap C18 trap and RSLC 

nano-LC columns

Thermo Fisher N/A
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METHOD DETAILS

Computational methods

Machine learning models

Chemprop 11 is a software package that implements directed message-passing neural networks (D-MPNNs). Here, these models are 

trained on binarized data representing the empirical growth inhibitory activity of compounds. As described previously, 11 D-MPNNs, 

which are a form of graph neural networks (GNNs), take as input a simplified molecular-input line-entry system (SMILES) string of a 

compound and convert it to a molecular graph representation. Graph convolutional operations are applied to each atom and bond, 

and information from local substructures of the compound are aggregated. An intermediate vector representation is generated by 

collapsing the information associated with each bond and atom into a single embedding. This embedding is then concatenated 

to a list of global biophysical features, such as molecular weight, which are used to potentially improve the predictions made, and 

the output is then passed to a fully-connected feed-forward neural network. The output of each trained model is a score between

0 and 1, representing the probability that the input molecule is antibacterial (0: does not inhibit bacterial growth and 1: inhibits bac-

terial growth). The output of an ensemble was taken as the average of all models in the ensemble.

In this work, ensembles of 20 binary classification Chemprop models for two bacterial species, N. gonorrhoeae and S. aureus, were 

trained on 38,765 and 39,312 compounds (as described in detail in Anahtar et al. 8 and Wong et al. 7 ), respectively. Training datasets 

containing the experimentally-determined inhibitory activity of each compound are available in Anahtar et al. 8 and Wong et al. 7 Hy-

perparameter optimization was performed, and each ensemble was previously benchmarked. 7,8 Chemprop models predicting cyto-

toxicity against human cells were previously developed and described in Wong et al. 7 ; in this work, we use these models to predict 

the cytotoxicity of a given fragment or compound against human hepatocellular carcinoma (HepG2), human skeletal muscle cells 

(HSkMCs), and human lung fibroblasts (IMR-90). The output of these models is a score between 0 and 1, describing the probability 

that the inputted compound is cytotoxic (0: non-toxic and 1: toxic).

SHAP analysis of molecular feature importance

Model setup and background data

A SHAP (SHapley Additive exPlanations) analysis was conducted to quantify the contribution of 2D RDKit-derived descriptors (200 

features) to antibacterial activity predictions. Features were stored in .npz format, and background data comprised the first 100 com-

pounds from the dataset. Data were split into 240 equal-sized chunks to enable parallel execution across a high-performance 

computing (HPC) cluster.

SHAP feature attribution for antibacterial activity models

To interpret the contribution of molecular descriptors to model predictions, we applied SHAP analysis to neural network models 

trained to predict antibacterial activity from RDKit-derived 2D chemical features. Separate SHAP analyses were performed for 

models trained on N. gonorrhoeae and S. aureus, each using the same set of 200 standardized descriptors as model input. SHAP 

values were computed using a model-agnostic approach with the shap.Explainer class, where predictions were generated via a 

custom wrapper around the Chemprop command-line interface. This wrapper accepted NumPy arrays of feature vectors, saved 

them to temporary files compatible with Chemprop, and invoked model inference using subprocess calls. A background set of 

100 representative molecules was used to approximate conditional expectations for feature ablation. To parallelize SHAP compu-

tations, the full dataset was divided into 240 chunks and processed independently across a CPU-based HPC cluster. For each chunk, 

SHAP values were computed and saved as serialized objects. After completion, all chunks were aggregated into a single SHAP 

explanation object per species. We calculated global feature importance by taking the mean absolute SHAP value across all mole-

cules for each descriptor. The top 10 most influential features were visualized in SHAP summary plots, annotated with short chemical 

descriptions and colored by feature value. All 200 features were also exported to a CSV file reporting their names, descriptive anno-

tations, and mean SHAP contributions. These results enabled identification of key structural and physicochemical properties asso-

ciated with antibacterial activity across species-specific models. SHAP analysis was performed in Python 3.10 on CPU nodes on the 

high performance computing cluster. Predictions were generated using the Chemprop CLI (version 1.6.1). RDKit (version 2024.3.6) 

was used for descriptor generation. All scripts utilized shap, matplotlib, numpy, and pandas for computation and visualization. 

Species specificity of Chemprop models

To examine the species specificity of the different models for N. gonorrhoeae and S. aureus, our original training data that were empir-

ically tested against both species were split into a training set (80%) and test set (20%). Both N. gonorrhoeae- and S. aureus-specific 

models were re-trained and the mean predicted scores were compared with the antibacterial activity of the test set. Compounds with 

high mean scores against one species demonstrated selective activity against that species, and compounds with high (or low) mean 

scores against both species demonstrated activity (inactivity) against both species.

Fragment and compound libraries

A fragment library comprising 45,858,026 fragments was assembled from the Generated DataBase (GDB, courtesy of Dr. Jean-Louis 

Reymond at the University of Bern, Switzerland) and the Readily AccessibLe (REAL) fragment database from Enamine. 71 The GDB 

libraries enumerate all theoretically-possible fragments up to a prespecified number of atoms following simple chemical stability and 

synthetic feasibility rules. 72 To compile a set of 11-atom fragments including C, N, O, F, Cl, and S atoms, we combined the entire 

GDB-11 39 (fragments up to 11 atoms including C, N, O, and F atoms, N = 26,434,571) and all up-to-11-atom fragments in the
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GDB-13 40 (which includes C, N, O, Cl, and S atoms, N = 1,089,000). Enamine fragments (version October 5, 2022, N = 18,338,026) 

were obtained from the Enamine REAL database.

To experimentally assess chemically diverse compounds containing the above fragments, as well as to search for analogs, we 

assembled a database from two large purchasable libraries: 799,149 compounds from the Broad Institute and 6,138,200 commer-

cially available compounds from MolPort, MayBridge, and Ambinter.

Identification and selection of fragments and compounds associated with antibiotic activity

All 45,858,026 fragments, containing readily-accessible fragments from the Enamine REAL Fragment database, were scored using 

the trained N. gonorrhoeae 8 and S. aureus ensemble 7 models, as described above. All 6,937,349 compounds were scored using both 

N. gonorrhoeae and S. aureus ensembles. For the analysis shown in Figure S1A, three fragments representative of known antibiotics 

were encoded using the following SMILES strings: nitrofuran: ‘O=[N+](O)c1ccco1’; fluoroquinolone: ‘O=C(O)c2c[nH]c1ccc(F) 

cc1c2=O’; and carbapenem: ‘O=C(O)C1=CCC2CC(=O)N12’. Compounds containing these moieties were identified in a manually-

compiled set of 559 known antibiotics and antiseptics 6 (Data S1). Compounds containing the fragments were identified using RDKit’s 

HasSubstructMatch function, and the known antibacterial compounds were subsequently scored using either the N. gonorrhoeae or 

S. aureus ensembles. We found that the prediction scores for compounds correlated with the prediction scores of the fragment alone 

(Figure S1A), supporting the performance of an algorithm that identifies fragments with high predictive scores for the discovery and 

design of selective antibacterial compounds.

As detailed in the main text, our approach to fragment selection and compound testing involved the following steps. For each of 

N. gonorrhoeae and S. aureus, fragments with antibiotic activity prediction scores > 0.05 or > 0.1 were retained in the GDB and REAL 

libraries, respectively. Of these fragments, those with cytotoxicity prediction scores < 0.5 across all three human cell types (HepG2, 

HSkMC, and IMR90) were retained. Fragments were then tested for the presence of PAINS or Brenk substructures using RDKit’s 

FilterCatalogParams.FilterCatalogs.PAINS and FilterCatalogParams.FilterCatalogs.BRENK built-in structure lists, respectively. To 

focus on structurally novel fragments, only fragments with maximum Tanimoto similarity < 0.5 with respect to the aforementioned 

set of 559 known antibiotics were retained. Here, Tanimoto similarity was calculated using Morgan fingerprints, with radius equal 

to 2 and number of bits equal to 2048. The remaining fragments were matched to compounds using RDKit’s HasSubstructMatch 

function. Matched compounds were considered if they had an antibacterial activity prediction score > 0.1, and matched compounds 

were filtered in the same way for cytotoxicity and structural novelty as described for fragments above (GitHub repository, see data 

and code availability).

De novo design of compounds with generative models

CReM: chemically reasonable mutations framework

For the genetic algorithm based on F-CReM described in this work, a modified version of CReM 20 was implemented. For each run of 

the algorithm, the SMILES string of a fragment and molecule containing the fragment was provided as input; the former was provided 

in order to ensure that all generated compounds possessed the fragment using RDKit’s HasSubstructMatch() function, and the latter 

was provided as a seed. For de novo design of molecules based on CReM, the SMILES string of either ammonia, methane, or water 

was provided as input.

By default, CReM provides two methods: ‘grow’ and ‘mutate’ (as implemented in the CReM Python package). Ranges for param-

eter combinations were provided as additional input. Parameter combinations for grow algorithms included max_atom (4, 6, 8, and 

10 were used), min_atom (0 was used), and radius (2 and 3 were used), while the parameter combinations for mutate algorithms 

included the max_size (4, 6, 8, and 10 were used), min_size (0 was used), radius (2 and 3 were used), min_inc (-2 was used), and 

max_inc (2 was used). All possible combinations of these parameters were considered using a full grid search. For a given parameter 

set, the algorithm proceeded as follows:

(i) The original molecule was used to generate de novo molecules with either the grow or mutate function from CReM, and mol-

ecules that did not contain the original fragment were discarded.

(ii) Compounds containing PAINS and Brenk substructures were excluded.

(iii) Chemprop scores for the resulting molecules were calculated using either the S. aureus or N. gonorrhoeae ensemble.

(iv) If the user-defined scoring method was set to ‘regular score’, then the compounds were ranked according to the Chemprop 

models (chempropsco). If not, modified scores that incorporate additional criteria were calculated. The additional criteria 

included the following variables: SAScore (predicted synthesizability score), tansim (Tanimoto similarity to known antibiotics), 

hepg2 (predicted toxicity score for HepG2 cells), and prim (predicted toxicity score for HSkMC cells). To improve speed, pre-

diction scores from the IMR-90 cytotoxicity ensemble were not considered as additional variables here, but all generated 

compounds were eventually filtered based on cytotoxicity prediction scores from all three cytotoxicity ensembles (as 

described in Down-selection of generated compounds for synthesis and testing below). Modified scores (adj_score) were 

calculated based on the original score (chempropsco) and the additional variables according to the formula: 

adj_score = (2.0 * chempropsco) - ((sascore / 10.0) + tansim + hepg2 + prim).

(v) Finally, to seed the next iteration of the algorithm, we calculated the number of compounds generated and scored in steps (i)-

(iv) above (N gen ) and compared it to the sum of two prespecified numbers, N top and N rand . If max_atom_range ≥ 8, then N top = 2 

and N rand = 1; else N top = 5 and N rand = 5. If N gen ≤ N top + N rand , then all N gen compounds were used to seed the next iteration.
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Otherwise, the N top highest-scoring compounds among the N gen generated compounds, as well as N rand other randomly cho-

sen compounds among the N gen generated compounds were used to seed the next iteration.

Fragment-based Variational Autoencoder (F-VAE)

The F-VAE described in the main text was inspired by fragment-based drug discovery strategies often used by medicinal chemists. 

The algorithm starts with fragments associated with specific properties of interest (e.g., antibacterial activity) and expands these frag-

ments into molecules. In particular, our rationale-conditioned molecular graph generator is a variational autoencoder which com-

pletes a full molecule, G, given a fragment, S. Since each fragment (S) may be realized into many different molecules, we introduce 

a latent variable, z, to generate diverse outputs:

P(G|S) = 

∫

z

P(G|S; z)P(z)dz;

where P(z) is the prior distribution. The F-VAE model consists of a graph encoder and a graph decoder. In this case, the encoder is a 

message passing neural network (MPNN) which learns the approximate posterior for variational inference. In the graphical represen-

tation of each molecule, each atom or bond is represented by a one-hot encoding of its atom or bond type. The encoder then uses 

three message-passing layers, followed by an average pooling operation, to transform the initial graph representation into a 

20-dimensional latent vector, z G .

The decoder then generates a molecule (a molecular graph) according to its breadth-first order. In each step, the model generates 

a new atom and all its connecting edges. During generation, we maintained a queue that contained frontier nodes in the graph with 

neighbors to be generated. Let G t be the partial graph generated by step t. To ensure that the full molecule, G, contains S as a sub-

graph, we set the initial state of G 0 = S and put all the leaf atoms (atoms with degree = 1 in the graph) in the queue. In each generation 

step, the decoder first runs an MPNN over the current graph to compute an atom representation, h v , for each atom, v. Suppose that 

the first atom in the queue is v. The decoder then expands the current molecule using three decision steps:

1. Predict whether there will be a new atom attached to v. The probability of this expansion step is predicted based on the latent 

vector, z G , and atom representation of v: p v = sigmoid(MLP(h v ;z G )).

2. If p v > 0:5, discard v and move on to the next node in the queue. Otherwise, create a new atom, u, predict its atom type, and 

append it to the queue.

3. Predict the bond type between u and other leaf nodes in the queue. Since atoms are generated in breadth-first order, there are 

no bonds between u and atoms not in the queue. To fully capture edge dependencies, we predict the bonds between u and 

atoms in the queue sequentially, and we update the representation of u when new bonds are added to the molecule.

The F-VAE was pre-trained on 1,686,695 molecules from ChEMBL (version 22) to enable the model to generate realistic molecules. 

Each training example was a pair, (S, G), where S is a random connected subgraph of a molecule G with up to 15 atoms. We trained 

the generative model to maximize the likelihood of the ground truth molecule G given fragment S, using the following hyperpara-

meters: hidden_size = 400, batch_size = 16, MPNN depth = 3, learning rate = 1e-3, optimizer = Adam, and epoch = 20. 

Junction Tree Variational Autoencoder (JT-VAE)

The JT-VAE described in the main text is a deep generative model designed to generate a molecule without a starting fragment. It 

represents a molecule at two different levels: an atom graph that represents how atoms are connected to each other and a junction 

tree that captures how chemical motifs are connected to each other. The model consists of an encoder that maps a molecular graph 

and a junction tree to a latent representation and a decoder that reconstructs a molecule by sequentially assembling chemical sub-

structures based on the learned junction tree structure. The encoder of JT-VAE is a hierarchical MPNN with three layers.

1. Motif layer: This layer represents how the motifs are coarsely connected in the graph. This layer provides essential information 

for the motif prediction in the decoding process.

2. Attachment layer: This layer encodes the connectivity between motifs at a fine-grained level, highlighting the attachment points 

between two chemical motifs.

3. Atom layer: The atom layer is a molecular graph representing how its atoms are connected, where each node represents an 

atom, and each edge represents a bond.

The decoder generates a molecule motif by motif according to their depth-first order, using the information encoded by the latent 

representation. In each generation step, the decoder expands the current molecule based on two predictions:

1. Motif Prediction: The model predicts the next motif to be attached to the current graph.

2. Attachment Prediction: Next, the model needs to predict the attachment configuration between the newly selected motif and 

the current graph.

The above three predictions together give an autoregressive factorization of the distribution over the next motif and its attachment. 

We trained JT-VAE on 1,686,695 drug-like compounds from the ChEMBL database, the same training set as F-VAE. We trained the
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generative model to maximize the likelihood of the molecules in the training set. The model hyperparameters are as follows: hidden_ 

size = 400, batch_size = 16, MPNN depth = 3, learning rate = 1e-3, optimizer = Adam, and epoch = 20. By sampling from JT-VAE 

latent space 40 million times, we generated 28,534,490 unique molecules and ranked them based on their predicted antibacterial 

properties.

Down-selection of generated compounds for synthesis and testing

All compounds were down-selected based on (i) de-duplication of SMILES, (ii) predicted antibacterial score, (iii) maximum Tanimoto 

similarity with respect to the set of known antibiotics as well as all active antibacterial compounds in the respective training set, (iv) 

synthesizability score (SAscore 48 or RAscore 49 ), and (v) predicted HepG2 and/or HSkMC cytotoxicity score. Both SAscore and RA-

score were used only to sample different synthetic accessibility scoring approaches.

For fragments F1, F2 and F2’, F-CReM compounds were down selected using predicted antibacterial score > 0.7, SAScore < 3, 

Tanimoto similarity < 0.5, and HepG2 and HSkMC cytotoxicity score < 0.2. Compounds that contained a β-lactam motif, as defined 

by those returning True using HasSubstructMatch() with the molecule described by ‘O=C1CCN1’, were additionally filtered out to 

preserve structural novelty. For fragments F1, F2 and F2’, F-VAE generated-compounds were filtered using predicted antibacterial 

score > 0.3, RAScore > 0.8, Tanimoto similarity < 0.4, and HepG2 cytotoxicity score < 0.2.

Visualization with t-SNE

t-SNE plots were generated using openTSNE’s TSNE() function with perplexity 45, Euclidean distance as the metric, and PCA initial-

ization. Molecules were represented as RDKit fingerprints with min_path=1, max_path=7, n_bits=2048.

ASKCOS retrosynthesis planning tool

The Monte Carlo tree search retrosynthesis model in ASKCOS 58 was used to generate retrosynthetic pathways to each compound. 

The retrosynthetic search was run on nodes with four CPUs with an expansion time of 60 seconds, a branching factor of 25, and a 

maximum depth of 6. All other search parameters were set to ASKCOS defaults. We consider the search successful if ASKCOS iden-

tified at least one retrosynthetic path from the target compound to purchasable compounds.

Experimental methods

Chemical compounds

Compounds with high purity (>90%) were procured either from the Broad Institute Center for the Development of Therapeutics 

(CDoT) or from commercial chemical vendors including BIONET-Key Organics Ltd.(Cornwall, UK), ChemBridge (San Diego, CA), 

ChemDiv (San Diego, CA), Maybridge (Altrincham, UK), MedChemExpress (Monmouth Junction, NJ), TargetMol (Boston, MA), 

Vitas-M (Hong Kong, China), and Enamine (Kyiv, Ukraine). Stock solutions and serial dilutions of all compounds were freshly prepared 

in dimethyl sulfoxide (DMSO; MilliporeSigma D5879), unless stated otherwise. Known antibiotics were obtained as follows: vanco-

mycin (Fisher Scientific AAJ6279003), valinomycin (Thermo Fisher, V1644), triclosan (MilliporeSigma, 72779), azithromycin (Cayman 

Chemical, 15004), ceftriaxone (sodium salt hydrate, Cayman Chemical, 18866), fosfomycin sodium (MilliporeSigma, 34089), CCCP 

(carbonyl cyanide m-chlorophenyl hydrazone; MedChemExpress, HY-100941), and fusidic acid (Millipore Sigma F0881), all dis-

solved in DMSO. Kanamycin sulfate (MilliporeSigma, 60615) was dissolved in ultrapure MilliQ-water and ciprofloxacin powder 

(MilliporeSigma 17850) was dissolved in dilute acid (0.1 M HCl). De novo generated compounds, and their respective analogs 

were synthesized and procured from Enamine (Kyiv, Ukraine). Analogs of compounds containing fragment F1 (NG1 analogs) 

were designed and synthesized by CC4CARB (Chemistry Center for Combating Antibiotic-Resistant Bacteria), an NIAID-led (Na-

tional Institute of Allergy and Infectious Diseases) partnership with RTI (Research Triangle Institute).

MIC, MBC, and bacterial growth inhibition assays

For S. aureus, a bacterial suspension of ∼10 5 CFU/mL was obtained either by performing a 1:10,000 dilution of an overnight culture, 

picked from a single colony, or a 1:500 dilution of an OD 600 0.08 suspension in fresh LB (Becton Dickinson 244620). Cells were 

seeded in a 96-well plate, with 99 μL of bacteria and one μL of two-fold serially diluted compound in DMSO. Plates were sealed 

with breathable membranes (Millipore Sigma Z763624) and incubated for 18-24 hours at 37 ◦ C with 5% CO 2 . The MIC was deter-

mined as the minimum concentration for which OD 600 < 0.1, as measured using a SpectraMax M3 plate reader. For initial screening 

experiments, active compounds were determined as those for which OD 600 < 0.15. For calculating the MBC (maximum bactericidal 

concentration), overnight treated cells were removed from incubation and serially diluted 10-fold in room temperature LB. Five μL was 

spotted on LB agar plates and allowed to dry at room temperature before stationary incubation at 37 ◦ C overnight for 16 to 24 h. CFUs 

were determined by manual counting, and all measurements are based on counts containing at least six colonies.

For N. gonorrhoeae, MICs were determined via broth microdilution when screening compounds, via agar dilution when confirming 

values for a given candidate small molecule (e.g., NG1), or via ETEST when testing a standard-of-care antibiotic, per CLSI M100 and 

M07 guidelines. Prior to MIC testing, frozen stocks were passaged twice on chocolate agar plates (CAP; Hardy Diagnostics, H25). 

N. gonorrhoeae broth microdilution was performed by first preparing the bacterial inoculum by picking individual colonies from an 

overnight CAP, suspending in PBS to OD 600 0.08, and diluting the suspension 1:200 in Graver Wade media. 70 Within 15 minutes 

of inoculum preparation, each well of a 96- or 384-well plate was inoculated with bacteria and compound (serially diluted in 

DMSO) such that the final DMSO concentration in each well was ≤1% and bacterial concentration was ∼5 × 10 5 CFU/mL. Plates 

were incubated at 36-37 ◦ C with 5% CO 2 for 20-24 hours. The MIC was determined as the concentration of compound resulting 

in complete inhibition of growth both visually and as measured by PrestoBlue HS Cell Viability Reagent (Invitrogen) after 1-2 hours 

of incubation. N. gonorrhoeae agar dilution was performed for candidate small molecules by first preparing agar dilution plates
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following CLSI M07 guidelines. Briefly, serial dilutions of 100× compound stock solutions were made in DMSO and added to molten 

agar, made of gonococcal (GC) medium base (BD Difco 228950) with 1% IsovitaleX Enrichment (BD 211876), which had been equil-

ibrated to 45-50 ◦ C in a water bath. The agar and compound solution were mixed thoroughly and poured into a 6-well plate and al-

lowed to solidify at room temperature. A DMSO-only growth control was included with every dilution series. Plates were used imme-

diately or stored in sealed plastic bags at 4 ◦ C for up to a week and allowed to equilibrate to room temperature before use. The 

bacterial inoculum was prepared by making a 1:10 dilution of a 0.5 McFarland standardized inoculum of each bacterial strain in sterile 

saline and inoculating 2 μL of the suspension onto each marked location of a plate. The inoculated plates were allowed to dry and 

incubated at 36-37 ◦ C with 5% CO 2 for 16-20 hours while inverted. MICs were read on a dark surface, with growth on the growth 

control plate required for validity. Neisseria gonorrhoeae ETESTs (bioMé rieux) were performed as described previously. 73 Briefly, 

a sterile swab was soaked in a 0.5 McFarland standard bacterial suspension, excess fluid was removed, and the swab was used 

to evenly cover the entire surface of a plate of GC agar base with 1% IsoVitaleX. The plate was allowed to completely dry before 

placing an ETEST with sterile forceps, incubating for 18-24 hours at 37 ◦ C with 5% CO 2 , and reading the MIC as the lowest antibiotic 

concentration that inhibited growth.

For M. tuberculosis, 100 μL of exponentially growing bacteria was seeded at a density of 5 × 10 4 cells per well in 7H9 supplemented 

with ADS (albumin dextrose saline), incubated with drug for 5 days at 37 ◦ C, then incubated for another 24 hours with 15 μL of 0.02% 

resazurin (w/v), and fluorescence was read with a SpectraMax M3 plate reader (Ex = 530 nm, Em = 590 nm).

For other species not previously specified, an OD 600 0.08 suspension was made in PBS and diluted 1:500 in fresh LB or Haemo-

philus Test Medium Broth (Remel) for Haemophilus. Each well of a 96-well plate received 99 μL of the bacterial suspension and 1 μL of 

compound. Plates were incubated at 37 ◦ C in ambient conditions, except for Haemophilus (5% CO 2 ), for 18-24 hours and MICs were 

read visually and confirmed by measuring OD 600 values. All assays were performed in biological duplicates.

Bacterial time-kill assays

For MSSA RN4220, cells were diluted 1:10,000 from an overnight culture into fresh LB and plated into 96-well flat-bottom clear plates 

using 99 μL working volumes. Plates were then sealed with breathable membranes, and cells were grown to early exponential phase, 

OD 600 ∼ 0.01 (corresponding to ∼10 6 CFU/mL) in a 37 ◦ C incubator with shaking at 300 rpm. One μL of compound in two-fold serial 

dilutions in DMSO was then added to each well to the final concentrations indicated, and bacterial cell cultures were sealed and re-

incubated at 37 ◦ C with shaking at 300 rpm. At indicated times, cells were removed from incubation, serially diluted in room-temper-

ature LB, and spotted on LB agar (Becton Dickinson 244520) in rectangular plates. Plated cells on LB agar were allowed to dry at 

room temperature before stationary incubation at 37 ◦ C overnight (18-24 hours). CFUs counts were manually determined. For 

N. gonorrhoeae, time-kill assays were performed as previously described. 74 Specifically, a 0.5 McFarland suspension was prepared 

in sterile PBS using individual colonies picked from chocolate agar plates that had been grown for 18-20 hours at 37 ◦ C in a humid 5% 

CO 2 -enriched atmosphere. The suspension was diluted 1:500 in pre-warmed (37 ◦ C) GW media and 90 μL was added to each well in a 

round-bottom 96-well plate. The plate was pre-incubated for 4 hours with shaking at 150 rpm in a 35 ◦ C, 5% CO 2 -enriched incubator. 

At time 0, 10 μL of PBS (growth control) or antimicrobial (to achieve a final concentration of 0.5×, 1×, 2×, or 4× MIC, where the MIC of 

NG1 was 0.5 μg/mL and azithromycin MIC was 0.25 μg/mL) was added to each well of pre-incubated bacteria in duplicate, with a 

separate row for each time point. At indicated times, the corresponding row of cells was removed from incubation, serially diluted 

in PBS, and spotted on GC agar in rectangular plates. After drying at room temperature, plates were incubated overnight (18-24 

hours) without shaking and CFU counts were manually determined.

Cytotoxicity assay and CC 50 determination

A resazurin-based assay, which quantifies the number of live cells in a sample, was used to monitor human cell viability in the pres-

ence of a compound. For CC 50 determination, 99 μL cells were plated into 96-well clear flat-bottom black tissue-culture-treated 

plates (Corning 3603) at a density of 10 4 cells/well and incubated at 37 ◦ C with 5% CO 2 . Twenty-four hours after plating, each well 

received 1 μL of two-fold serially-diluted test compound. Additional wells were treated with 1 μL of DMSO as a negative control 

and Triton X-100 (0.1% final concentration) as a positive control. Cells treated with the compound were re-incubated for 24 hours, 

after which 0.15 mM resazurin (Millipore Sigma R7017) was added to each well. After an additional 24 hours of incubation, the fluo-

rescence was read at excitation/emission at 550/590 nm using a SpectraMax M3 plate reader. CC 50 values were calculated by 

normalizing the fluorescence values based on the positive and negative controls and performing a nonlinear fit with the [Inhibitor] 

vs. response – Variable slope function in GraphPad Prism (v.10.1.0). HepG2 and HEK293 CC 50 values for BRD1 and BRD2 were 

determined as above, except in 384-well plates seeded with 4500 viable cells/well, where cells were treated with 1 μL (for 

HepG2) or 500 nL (for HEK293) of compound that were transferred using an acoustic dispenser (Labcyte Echo 555). All experiments 

were performed in biological duplicate.

Spontaneous mutant generation and frequency of resistance experiments

N. gonorrhoeae. Isolated colonies of N. gonorrhoeae ATCC 49226 were picked from an overnight plate to make a heavy suspension in 

PBS. The suspension was serially diluted and plated on chocolate agar to determine the initial inoculum, and 500 μL of the suspen-

sion was added to each GC agar plate containing 0, 1×, 2×, 4×, or 8× MIC of NG1. The suspension was spread and allowed to dry 

before stationary incubation at 37 ◦ C in a 5% CO 2 incubator for 3 days. Colonies that emerged on each plate were individually picked 

and the elevated NG1 MIC was confirmed using both agar dilution and broth microdilution methods in parallel with the parental strain 

for comparison. The frequency of resistance was calculated as the total number of colonies counted divided by the total number of 

bacteria inoculated on each plate.
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S. aureus. MSSA RN4220 was picked from single colonies and grown overnight in 2 mL of fresh LB. OD 600 was measured and the 

suspension was serially diluted and plated on solid agar (with no compound) to determine the initial inoculum. One mL of the same 

overnight culture (∼10 9 CFU) was aliquoted and centrifuged at 3700 × g for 5 min. The cell pellet was resuspended to a final volume of 

500 μL in fresh LB, then pipetted onto the surface of LB agar plates containing 1×, 2×, 4× or 8× agar MIC of DN1 (4 μg/mL). Cells 

were then spread using a bent, sterile inoculating loop, and plates were dried and inverted before stationary overnight incubation at 

37 ◦ C. The next day, plates were removed from incubation, and colonies that grew on each plate were counted to calculate the fre-

quency of resistance as above.

DiSC 3 (5) fluorescence

Individual colonies of S. aureus RN4220 were picked and grown in 2 mL liquid LB overnight at 37 ◦ C with shaking at 300 rpm. Cells 

were diluted 1:100 from the overnight cultures into liquid LB and grown to mid-log phase, OD 600 ∼0.5, at 37 ◦ C with shaking at 

300 rpm. For N. gonorrhoeae, multiple colonies from the overnight CAP were resuspended in prewarmed Graver Wade media to 

achieve OD 600 ∼0.5. DiSC 3 (5) (Invitrogen D306) was dissolved in DMSO and added to liquid cultures at a final concentration of

1 μM. After additional incubation in the presence of DiSC 3 (5) for 1 to 2 h, cells were plated in 200 μL working volumes in black, opaque 

flat-bottom 96-well plates, after which fluorescence was measured every 30 seconds for 5 minutes at an excitation/emission of 622/ 

670 nm using a SpectraMax M3 plate reader. Cells were either untreated or treated with DMSO (1%), NG1, DN1, and DN1 analogs at 

a final concentration of 10 μg/mL (10× MIC). Other control antibiotics were also tested at 10× MIC. Fluorescence was measured 

immediately following treatment according to the same specifications as above.

Laurdan membrane fluidity assay

An OD 600 of 0.5 cell suspension of either N. gonorrhoeae ATCC 49226 in Graver Wade media or S. aureus RN4220 in LB was pre-

pared. As previously described, 6 a solution of 1 mM Laurdan (Sigma-Aldrich 40227) was prepared in 100% DMF (Sigma-Aldrich 

PHR1553) and stored in the dark at -20 ◦ C. Then, 100 μL of the 1 mM Laurdan stock was added to the cell suspension and incubated 

for 10 minutes at 37 ◦ C with shaking at 300 rpm while covered with aluminum foil. The cells were then centrifuged at 4,000 rpm for

5 minutes and washed three times in 10 mL of PBS with 0.2% (w/v) glucose. Cells were then resuspended in 10 mL of the same so-

lution and distributed into a single 96-well opaque flat-bottom plate (Costar Black Polystyrene Plate, 266) with 100 μL per well and 

198 μL in column 1. Two μL of NG1, NG1 analog, or DN1, starting at 128 μg/mL, was added to column 1, and serially diluted across 

columns 2-12 to obtain a final total volume of 100 μL in each well. To the control wells, Tween-20 (Sigma-Aldrich 655204), a known 

membrane fluidizer 75 starting at a concentration of 0.5% was added. Untreated or DMSO treated (1%) cells served as the negative 

control and triclosan (starting at 62.5 μg/mL) and azithromycin (starting at 250 μg/mL) were included as positive or neutral antibiotic 

controls. A kinetic read was taken every 45 seconds at 37 ◦ C using a SpectraMax M3 plate reader, exciting the plate at 330 nm and 

taking two emission readings at 460 nm and 500 nm. The Laurdan generalized polarization (GP) was calculated with the formula: GP = 

(I 460 - I 500 )/(I 460 + I 500 ), where I 460 indicates the fluorescence intensity at 460 nm and I 500 indicates the fluorescence intensity at 500 nm. 

All fluidity measurements were performed in biological duplicate.

NPN assay

Ten mL of an OD 600 of 1 cell suspension of N. gonorrhoeae ATCC 49226 was prepared in Graver Wade media. As previously 

described, 6 the cell suspension was spun at 4,000 rpm, 4 ◦ C for 15 minutes, washed twice in 5 mM HEPES buffer (Sigma-Aldrich 

SRE0065) with 20 mM glucose, and resuspended in an equal volume of the 20 μM NPN (Sigma-Aldrich 104043) in HEPES buffer. 

A 96-well opaque flat-bottom plate (Costar Black Polystyrene Plate, 266) was prepared with 100 μL of cells in 20 μM NPN in 

HEPES buffer added to columns 2-12. In column 1, 198 μL of 20 μM NPN in HEPES buffer was added, followed by 2 μL of NG1 

or NG1 analog (starting concentration of 128 μg/mL). One hundred μL from column 1 was serially diluted across columns 2-12 to 

obtain a final total volume of 100 μL in each well. DMSO (1%) treated cells served as the negative control. Plates were then incubated 

at room temperature for 1 hour with no shaking and the fluorescence at 355/420 nm (excitation/emission) was read using a 

SpectraMax M3 plate reader with readings taken from the top. All measurements were normalized to corresponding values from 

the untreated control and performed in biological duplicates.

SYTOX Green assay

Ten mL of an OD 600 of 0.5 cell suspension of N. gonorrhoeae ATCC 49226 was prepared in Graver Wade media. Ninety eight μL of cell 

suspension was added to a 96-well opaque flat-bottom plate (Costar Black Polystyrene Plate, 266), with 198 μL of cells to column 1. 

Two μL of NG1 or NG1 analog (starting concentration of 128 μg/mL) was added to column 1 and 100 μL from column 1 was serially 

diluted across columns 2-12 to obtain a final total volume of 100 μL in each well. One μL of SYTOX Green Nucleic Acid Stain (5mM, 

S7020, Invitrogen, Carlsbad, CA), a DNA intercalating dye, was then added to each well at a final concentration of 5 μM. DMSO (1%) 

treated cells served as the negative control, and Triton X-100 served as positive control, resulting in fully compromised membranes. 

At selected time points (0, 2 and 4 hours post-treatment), fluorescence at 504/523 nm (excitation/emission) was read with a 

SpectraMax M3 plate reader. All measurements were normalized to the untreated control and performed in biological duplicate.

Proteomics-based target identification with PISA

Sample preparation

Colonies from an overnight plate culture of N. gonorrhoeae FA 1090 (ATCC 700825) were resuspended in 650 mL of GC 

medium (Proteose Peptone No. 3, corn starch, dipotassium phosphate, monopotassium phosphate and sodium chloride; pH 

adjusted at 7.2 and autoclaved). The medium was supplemented with IsoVitalex 1% v/V final (BD 211876). The bacteria were cultured
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at 37 ◦ C with 5% CO 2 and grown to an OD 600 of approximately 0.3. Both bacterial cultures and lysates were treated in four replicates 

with 10 μM of each antibiotics for 20 min at 37 ◦ C.

The protocols for preparing bacterial cultures and lysates were adapted from Modaresi et al. 76 For each condition, 20 mL of bac-

terial culture was used (4 conditions × 4 replicates × 2 antibiotics). The bacteria cells were washed with 37 ◦ C PBS. To prepare the 

native cell lysate, pelleted bacteria were resuspended in 2 mL lysis buffer (PBS + Halt protease inhibitor) in Eppendorf tubes. The 

bacteria were subjected to five freeze-thaw cycles in liquid nitrogen to extract proteins. Then the samples were centrifuged at 

7000g for 5 min at RT to remove debris. The supernatant was then collected and treated with the antibiotic or DMSO for 20 min 

at 37 ◦ C. Each replicate was then aliquoted into 12-wells in a 96-well PCR plate (40 μL per well). The samples were then exposed 

to a temperature gradient from 46-70 ◦ C in the Biometra T-GRADIENT thermocycler for 3 min followed by an additional 3 min at 

RT and then snap frozen. The 12 samples for each replicate were then pooled into a single tube, transferred to polypropylene ultra-

centrifuge tubes and centrifuged at 100,000g for 20 min at 4 ◦ C. The supernatant was collected for proteomics analysis.

Briefly, as previously published, 77–79 30 μg of each sample was reduced with 10 mM DTT, alkylated with 50 mM IAA in the dark and 

subjected to methanol chloroform precipitation. Samples were resuspended in 20 mM EPPS buffer, 8 M urea, pH 8.0, and then 

diluted down to 1.6 M urea and digested with trypsin (1:60 trypsin:protein). Each digest was labeled using TMTpro 16-plex reagents 

(Thermo Fischer), and the samples were pooled and cleaned using a Sep-Pack C18 column (Waters).

NanoLC-MS/MS analysis

The pooled sample was fractionated off-line by capillary reversed phase chromatography at pH 10 into 12 fractions and dried. 

NanoLC-MS/MS analyses were performed on an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific). The instrument 

was equipped with an EASY ElectroSpray source and connected online to an Ultimate 3000 nanoflow UPLC system. The samples 

were pre-concentrated and desalted online using a PepMap C18 nano-trap column (length - 2 cm; inner diameter - 75 μm; particle

size - 3 μm; pore size - 100 A ˚ ; Thermo Fisher Scientific) with a flow rate of 3 μL/min for 5 min. Peptide separation was performed on an

EASY-Spray C18 reversed- phase nano-LC column (Acclaim PepMap RSLC; length - 50 cm; inner diameter - 2 μm; particle size -

2 μm; pore size – 100 A ˚ ; Thermo Scientific) at 55 ◦ C and a flow rate of 300 nL/min. Peptides were separated using a binary solvent

system consisting of 0.1% (v/v) FA, 2% (v/v) ACN (solvent A) and 98% ACN (v/v), 0.1% (v/v) FA (solvent B). They were eluted with 

a gradient of 3–26% B in 97 min, and 26–95% B in 9 min. Subsequently, the analytical column was washed with 95% B for 5 min 

before re-equilibration with 3% B. The mass spectrometer was operated in a data-dependent acquisition mode. A survey mass spec-

trum (from m/z 375 to 1500) was acquired in the Orbitrap analyzer at a nominal resolution of 120,000. The automatic gain control 

(AGC) target was set as 100% standard, with the maximum injection time of 50 ms. The most abundant ions in charge states 2 + 

to 7 + were isolated in a 3-second cycle, fragmented using HCD MS/MS with 33% normalized collision energy, and detected in 

the Orbitrap analyzer at a nominal mass resolution of 50,000. The AGC target for MS/MS was set as 250% standard with a maximum 

injection time of 120 ms, whereas dynamic exclusion was set to 45 seconds with a 10-ppm mass window.

Data processing

Proteome Discoverer 3.2 software (Thermo Scientific) was utilized for the database search and quantification against the UniProt 

N. gonorrhoeae (UP000000535; 2106 entries) protein database, downloaded on 28 February 2025. Cysteine carbamidomethylation 

was set as a fixed modification, along with TMT-related modifications, methionine oxidation, deamidation of arginine and asparagine 

as variable modifications. Enzyme specificity was defined as trypsin with a maximum of two missed cleavages. A 1% false discovery 

rate was employed as a filter at both the protein and peptide levels. Contaminants were removed, and proteins with missing values 

were eliminated. The quantified abundance of each protein in each sample (labeled with a different TMT) was normalized to the total 

intensity of all proteins in that sample. For each protein, the average normalized protein abundance in the antibiotic-treated replicates 

was divided by the average normalized abundance of that protein in the vehicle-treated replicates. The average ratio across repli-

cates of each compound compared to the vehicle control was calculated, and the Log2 values of these ratios were determined. A 

two-tailed student’s t-test was employed to calculate the p-value.

Checkerboard assays

The broth microdilution MICs of NG1, ceftriaxone, fosfomycin, CCCP, and PMB were determined to be 0.5, 0.008, 31.25, and 1 μg/ 

mL, respectively, for ATCC 49226. The broth dilution MICs for NG1 and polymyxin B were found to be 8 and 187.5 μg/mL, respec-

tively, for CDC-FDA ARB #0187. Two-fold serial dilutions of each compound were made to achieve 10× to 0.156× MIC final concen-

trations. The bacterial inoculum was made with a 1:200 dilution of an N. gonorrhoeae OD 600 0.08 suspension in Graver Wade media. 

Each well of a 96-well round-bottom clear plate (Corning 3799) received 98 μL of the bacterial suspension and 1 μL each of two-fold 

serially diluted compound at 100× final concentration, keeping the final DMSO concentration ≤1%. The plates were incubated over-

night at 37 ◦ C with 5% CO 2 in a humidity-controlled incubator without shaking. After overnight incubation, OD 600 was measured and 

then 10 μL of PrestoBlue™ Cell Viability Reagent (Invitrogen, A13261) was added to each well to obtain quantitative cell viability mea-

surements. Four hours post-incubation at 37 ◦ C, fluorescence was read at an excitation/emission of 550/590 nm using a SpectraMax 

M3 plate reader. MICs were determined as the minimum inhibitory concentration that leads to at least 50% growth inhibition 

(compared to the untreated control), and the fractional inhibitory concentration index (FICi) for drug combinations was determined. 

FICi was calculated as follows:

FICi = 
MIC AB

MIC A
+ 

MIC BA

MIC B
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where MIC A and MIC B are the MIC of each antibiotic when administered individually. MIC AB is the MIC of antibiotic A in combination 

with antibiotic B, and MIC BA is the MIC of antibiotic B in combination with antibiotic A. FICi of <0.5 indicates synergy, values between 

0.5-4 indicate indifference, and >4 indicates antagonism.

RNAseq

N. gonorrhoeae FA1090 (ATCC 700825) was grown to mid-log phase in Graver Wade medium (OD 600 ∼0.3). Compounds were added 

at 4× final MIC, and an equivalent volume of DMSO was added to control cultures. Following treatment, cultures were returned to the 

incubator and 1 mL aliquots were collected at specified time points: 0, 15, 30, and 60 minutes. Each condition was tested in triplicate. 

All samples were immediately centrifuged after collection at 15,000 × g for 1 minute to pellet cells. Supernatants were removed and 

pellets were resuspended in pre-warmed TRIzol reagent (65 ◦ C; ThermoFisher, Cat# 15596026), vortexed, and placed on wet ice for

5 minutes. To all samples, chloroform (Sigma-Aldrich, Cat# C2432) was added, mixed, and centrifuged at 12,000 × g for 15 minutes 

at 4 ◦ C. The aqueous layer was mixed with 100% ethanol, incubated at room temperature for 5 minutes, and the RNA was purified 

using the Direct-zol RNA Miniprep Plus Kit (Zymo Research, Cat# R2070) according to the manufacturer’s protocol. RNA was eluted 

in 100 μL nuclease-free water following a 5-minute incubation. RNA concentration was measured using a Qubit 4 Fluorometer 

(ThermoFisher) per manufacturer guidelines.

Library preparation was carried out using the Illumina® Stranded Total RNA Prep, Ligation with Ribo-Zero Plus kit with 10 bp 

unique dual indices. Prepared libraries were sequenced on a NovaSeq X Plus platform (Illumina), generating paired-end 150 bp 

reads. FASTQ files were generated using Illumina’s BCL Convert (v4.2.4). Reads were aligned to the N. gonorrhoeae FA1090 refer-

ence genome (NCBI: GCF_000006845.1). Gene-level annotations were used to quantify expression levels. Gene read counts were 

analyzed using the edgeR package in R (verson 4.4.2). Differential expression was calculated using a generalized linear model (GLM) 

approach. Genes with a false discovery rate (FDR) < 0.05 were considered significantly differentially expressed. KEGG pathway anal-

ysis was performed using gene set enrichment analysis in the clusterProfiler R package (v4.10.0).

Bacterial cytological profiling

Bacterial strain and culture conditions

All cytological profiling experiments were performed using Bacillus subtilis strain 168 in biological duplicates. Cultures were grown 

overnight in tryptic soy broth (TSB) at 37 ◦ C with shaking at 220 rpm. Overnight cultures were diluted from an OD 600 of 0.7 into fresh 

TSB and seeded into poly-D-lysine–coated black-wall, clear-bottom 96-well plates (Millipore Sigma, CLS3842) for imaging.

Drug treatment and fixation

Cells were incubated at 37 ◦ C with orbital shaking (50 rpm) for 30 minutes post-seeding before treatment with either vehicle control or 

antibiotics. Drug exposure was carried out for 1.5 hours. Following treatment, cells were fixed with 4% paraformaldehyde (PFA) in 

phosphate-buffered saline (PBS) for 15 minutes at room temperature and washed twice with PBS prior to staining.

Staining and imaging

Fixed cells were stained using FM4-64 (membrane; Thermo Fisher, T13320) and DAPI (nuclei; Thermo Fisher, D1306) according to 

the manufacturer’s instructions. Imaging was performed using an Opera Phenix 2 high-content confocal microscope (PerkinElmer) 

equipped with a 63× water-immersion objective. Confocal z-stacks were acquired with five planes spaced 1 μm apart. Brightfield 

images were acquired in parallel.

Image analysis and feature extraction

Raw images were processed using Harmony (PerkinElmer) and Signal Image Artist. Bacterial segmentation and morphometric 

feature extraction were performed using Omnipose. Objects were filtered to remove background and artifacts using built-in heuris-

tics, and single cell areas (in μm 2 ) were extracted. Feature distributions were aggregated across fields of view and exported for down-

stream analysis. Summary statistics were computed using custom Python scripts. Group comparisons were evaluated using 

nonparametric Mann-Whitney U tests.

Cryo-TEM analysis of bacterial morphology

Sampling

Neisseria gonorrhoeae (ATCC 49226) and Staphylococcus aureus (RN4220) was grown overnight in stationary cultures. Cells were 

harvested by transferring the culture to a 5 mL tube and centrifuging at 2000 rpm for 1 minutes. The supernatant was discarded, and 

the cell pellets were washed twice by resuspending in 3 mL of phosphate-buffered saline (PBS; Sigma-Aldrich) and centrifuging un-

der the same conditions. After the final wash, the cells were resuspended in 99 μL of LB and 1 μL of the drug (NG1 or DN1 at 4× MIC). 

The samples were incubated at 37 ◦ C for 2 hours. The final cell suspension was centrifuged again, adjusted to an optical density at 

600 nm (OD 600 ) of 0.3 and fixed in 2.5% glutaraldehyde at 4 ◦ C for 1 hour. Following fixation, the cells were washed three times with 

deionized water. 3 μL of the cell suspension was applied to glow-discharged carbon-coated grids. The grids were vitrified in liquid 

ethane using a Gatan Cryoplunge system and the imaging was carried out using a JEOL 2100F transmission electron microscope.
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Image processing and segmentation

Raw cryo-TEM images of S. aureus and N. gonorrhoeae were manually segmented to delineate the cell boundary and, when visible, 

the cytosolic region. Segmented binary masks of cryo-TEM images were analyzed using a custom Python pipeline built with OpenCV, 

scikit-image, and SciPy. For each object, region properties including area, perimeter, major and minor axis lengths were extracted. 

Elongation was defined as the ratio of major to minor axis length, and roundness as its inverse. Objects with an area less than 50 

pixels were excluded. Image-specific scale factors (μm/pixel), retrieved from a CSV calibration file, were applied to convert all mea-

surements to physical units. When inner membrane masks were available, membrane thickness was estimated by computing the 

Euclidean distance transform between outer and inner membrane masks. The average distance was doubled to approximate mem-

brane thickness.

Per-cell measurements were aggregated across images and saved as.csv files. Summary statistics (mean ± standard deviation) 

were computed for each group. Group comparisons (e.g., DN1-treated vs. untreated) were evaluated using two-sided Mann-Whitney 

U tests (ranksum), appropriate for non-normally distributed data.

Toxicity studies

Hemolysis and modified Ames genotoxicity studies were performed as described previously. 7 To test the systemic toxicity of DN1, 

healthy female C57BL/6J mice were given a single 100 mg/kg dose of DN1, which three out of three mice tolerated. An additional 

three mice were given four doses of 50 mg/kg every 6 hours, which they all also tolerated. To test the systemic toxicity of NG1, healthy 

female BALB/c mice were given increasing doses of NG1, up to 100 mg/kg. Both compounds were formulated in a 10% compound in 

DMSO:45% PEG300:45% water solution and administered as a 200 μL intraperitoneal injection. Mice were observed for at least 24 

hours for typical signs of toxicity, including impaired movement, lethality, and irritation. Results were representative of at least three 

mice per dose of each compound.

Mouse S. aureus topical wound infection model

Female C57BL/6J mice were given over a week to acclimate and then rendered neutropenic with cyclophosphamide (Cytoxan) on 

Day -4 (150 mg/kg, I.P.) and Day -1 (100 mg/kg I.P.). On Day 0, a fresh suspension of S. aureus BAA1556 was prepared in tryptic soy 

broth and titered via serial dilution and plating. Mice were given buprenorphine for anesthesia and kept sedated under isoflurane va-

pors (3%) during the infection procedure. A ∼1.5 cm 2 patch of skin was prepared on each mouse’s dorsal surface by shaving the fur, 

sterilizing the underlying skin with iodine and ethanol swabs thrice, allowing the skin to dry completely, and abrading the skin until 

visibly damaged (reddening and glistening) but not bleeding. Five μL of the S. aureus suspension, corresponding to an inoculum 

of 1.5 × 10 5 CFU, was pipetted onto the skin to initiate the bacterial infection. Treatments were administered at 1, 4, 8, 16, 21, 

and 24 hours post-infection by pipetting 40 μL of formulation topically onto the infected skin and allowing to dry. Treatments groups 

consisted of n = 6 mice receiving DN1 (1% final concentration, prepared as described above), n = 6 mice receiving vehicle control 

(DMSO:PEG300:water at 10%:45%:45%), and n = 6 mice receiving the fusidic acid positive control (0.25% final concentration in 

DMSO:PEG300:water at 10%:45%:45%) At 25 hours post-infection (∼1 hour following the last topical treatment), all mice were 

euthanized by CO 2 asphyxiation, and wounds were wiped with an alcohol pad, excised, weighed, and homogenized in 2 mL of sterile 

PBS using a Polytron PT10-35 with a 12 mm aggregate that was cleaned with ethanol and water between samples. Homogenized 

wounds were serially diluted and plated onto BHI agar to determine bacterial titers (CFU/g tissue).

Mouse N. gonorrhoeae vaginal infection model

Female ovariectomized BALB/cJ mice were given over a week to acclimate prior to handling. As described previously, 80 two days 

prior to infection (Day -2), vaginal lavage was performed for estrous staging and monitoring of the vaginal microbiota via culture on 

MacConkey and Brain Heart Infusion agar plates. To increase susceptibility to infection, each mouse received a dose of 17B-estra-

diol (0.23 mg, I.P.) on Day -2 and Day 0. To reduce the overgrowth of commensal bacteria that occurs with estradiol treatment, mice 

were given streptomycin (1.2 mg, I.P.) and vancomycin (0.6 mg, I.P.) (1 dose on Day -2, two doses at least 5 hours apart on Day -1, 

and one dose Day 0) as well as trimethoprim (0.4 g/L) in the drinking water (refreshed on Day 0). On Day 0, the inoculum was prepared 

by collecting isolated colonies of N. gonorrhoeae ATCC 49226 from an overnight chocolate agar plate in sterile PBS to achieve an 

OD 600 0.2. Within one hour of preparation, the vagina was first rinsed with 30 μL of 50 mM HEPES (pH 7.4) and then 20 μL of the bac-

terial suspension (∼3 × 10 6 CFU per mouse) was pipetted intravaginally while the mouse was held by the tail with paws grasping the 

wire cage for at least 1 minute. Serial dilutions of the bacterial suspension were plated onto chocolate agar to determine the initial 

inoculum. Treatments were administered at 2, 6, 10, 18, and 24 hours after infection by pipetting 20 μL of test compound NG1 

(1% final concentration in 10% DMSO, 45% PEG300, 45% water), ceftriaxone (0.1% w/v in water), or vehicle control (10% 

DMSO, 45% PEG300, 45% water) intravaginally; mice were suspended by the tail for 1 minute before being released into the 

cage. At 24 hours after infection, mice were euthanized by CO 2 asphyxiation and vaginal lavage was performed using 50 μL of Graver 

Wade media with 0.05% saponin. N. gonorrhoeae burden was determined by plating 30 μL of neat lavage and 10-fold serial dilutions 

in PBS onto Thayer Martin Agar Improved (Thermo Fisher); colonies were counted after 18-24 hours of incubation at 37 ◦ C with 

5% CO 2 .

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using Python scripts and/or GraphPad Prism (version 10.1.0). Details of the statistical tests 

used, the exact value of n, what n represents, as well as measures of central tendency (mean or median) and dispersion (e.g.,
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standard deviation) are provided in the figure legends and STAR Methods section. For each analysis, the choice of statistical test 

(e.g., student’s t-test or non-parametric tests, such as the Mann-Whitney U or Kolmogorov-Smirnov test) was based on the data 

type and experimental design. For mouse experiments, sample sizes were determined by power calculations in GraphPad Prism 

to detect a 1-2 log-fold change in effect size and mouse availability. Group allocation was determined by cage, where each cage 

contained 3-5 mice that all received the same treatment. No data were excluded from the analyses in the study. The data were 

assumed to be non-normal; thus, a two-sided Mann-Whitney test was performed using GraphPad Prism. Statistical details can 

be found in the figure legends.
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Figure S1. Computational analyses of the predictive capabilities of Chemprop models, related to Figure 1

(A) Known fragments (pictured above) were scored and compared with known antibiotics containing these fragments (n, number of antibiotics scored). Scores 

were generated by separate N. gonorrhoeae and S. aureus growth inhibitory activity-predicting ensembles of Chemprop models.

(B) Kolmogorov-Smirnov (K-S) statistic showing the predictive capabilities of the Chemprop models for both N. gonorrhoeae and S. aureus. It is a non-parametric 

test and quantifies the maximum distance between their cumulative distribution functions, capturing where the two distributions (‘‘active’’ and ‘‘inactive’’ pre-

dictions) diverge the most. K-S statistic of 0 indicates perfect agreement, while values closer to 1 reflect greater divergence. Smaller p values (typically below 

0.05) suggest that the data are likely coming from different distributions.

(C) Shapley additive explanations (SHAP) analysis to assess feature importance from both N. gonorrhoeae and S. aureus Chemprop models. Shown are the top 

10 features that modestly contribute to the models’ performance.

(D) Species specificity of the N. gonorrhoeae and S. aureus models by comparing the mean predicted scores generated by each model for compounds that were 

empirically tested against both bacterial species.

(E) Histograms showing the different thresholds used for the down selection of the fragments: RAscore, antibacterial prediction scores by N. gonorrhoeae and 

S. aureus Chemprop models, cytotoxicity prediction scores against hepatocellular carcinoma (HepG2), human skeletal muscle cells (HSkMCs), and human lung 

fibroblasts (IMR-90), and Tanimoto similarity to known antibiotics.

(F) Histograms showing the different thresholds used for the down selection of fragment-based (F1 and F2) generated compounds: antibacterial prediction scores 

by N. gonorrhoeae and S. aureus Chemprop models, cytotoxicity prediction scores against hepatocellular carcinoma (HepG2), and Tanimoto similarity to known 

antibiotics.
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Figure S2. Mechanistic insights and toxicological properties of NG1, related to Figures 2 and 3

(A) MICs of NG1-resistant isolates from spontaneous generation experiments to known antibiotics: azithromycin, ceftriaxone, and ciprofloxacin.

(B) Checkerboard assays to assess synergistic or antagonistic effects of NG1 with cell-wall-targeting antibiotics (ceftriaxone and fosfomycin) and a membrane 

PMF-targeting compound (CCCP), indicating indifference to each combination.

(C) DiSC 3 (5) traces of N. gonorrhoeae cells treated with NG1, indicating a lack of effect on either component of the PMF. Results are representative of two 

biological replicates.

(D) Quantification of morphological changes observed in the area, perimeter, roundness, and elongation of NG1-treated N. gonorrhoeae from cryo-TEM images.

(E) Representative image of an elongated cell (treated with NG1) compared with the wild-type untreated condition.

(F) Gene expression analysis showing LOS biosynthesis-related genes that are significantly differentially expressed in NG1-treated conditions relative to the 

untreated control.

(G) Fractional hemolysis measurements of human red blood cells (RBCs) treated with NG1 at the indicated final concentrations. Vehicle (1% DMSO) was used as 

a negative control, and Triton X-100, a detergent, was used as a positive control. Points represent values from two biological replicates.

(H) Ames mutagenesis test measurements of the fractions of revertant S. typhimurium TA100 cultures treated with NG1 at the indicated final concentrations. 

Vehicle (1% DMSO) was used as a negative control, and 5 μg/mL sodium azide was used as a positive control. Points represent values from two biological 

replicates.
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Figure S3. Designed and tested analogs of NG1 and mechanistic characterization of NG1 analog, related to Figure 3

(A) Hits from 74 analogs of fragment F1 tested with modifications in functional groups R1 and R2.

(B) Structures of the eight active analogs with MIC ≤ 32 μg/mL. All other analogs were inactive with MICs > 64 μg/mL.

(C) MIC and CC 50 values of human cells treated with the active analogs.

(D) MIC and CC 50 values of NG1 analog, the most potent active analog of NG1. Points represent two biological replicates.

(E) Membrane rigidification of N. gonorrhoeae cells treated with NG1 analog (at 64 μg/mL) and Tween 20 (membrane fluidizer) with the Laurdan membrane fluidity 

assay. Shown is the generalized polarization (GP) observed in two biological replicates.

(legend continued on next page)
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(F) Loss of membrane integrity of N. gonorrhoeae cells treated with NG1 analog (at 64 μg/mL), as measured by the uptake of the hydrophobic fluorescent probe, 

1-N-phenylnaphthylamine (NPN). Shown is the fluorescence measurement, normalized to the untreated control, observed in two biological replicates.

(G) Lysis of N. gonorrhoeae cells treated with NG1 analog or Triton X-100 (positive control), as seen by an increase in SYTOX green fluorescence signal with time, 

measured at 0, 2, and 4 h post-treatment. Data represent the fluorescence, normalized to the untreated control, observed in two biological replicates.
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Figure S4. Structures and properties of molecules related to EN1, related to Figure 4

(A) Physiochemical properties of F2 and F2 ′ molecules generated by F-CReM and F-VAE.

(B) Structures of all tested compounds containing F2 and F2 ′ . Active molecules with MIC ≤ 128 μg/mL are highlighted in blue, indicating that preservation of the 

fragment is important for antibacterial activity.
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Figure S5. Thresholds used to down-select JT-VAE molecules and their predicted synthesizability via ASKCOS, related to Figure 5

(A) Predicted retrosynthesis success rate as determined by ASKCOS for de novo molecules generated by both CReM and JT-VAE.

(B) Histograms showing the different thresholds used for the down selection of de novo-generated compounds by JT-VAE: antibacterial prediction scores by 

N. gonorrhoeae and S. aureus Chemprop models, cytotoxicity prediction scores against hepatocellular carcinoma (HepG2), and Tanimoto similarity to known 

antibiotics.
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Figure S6. Bacterial morphological changes induced by DN1–DN6 treatment, related to Figure 6

(A) Morphological changes observed in B. subtilis 168 treated for 2 h with DN1–DN6 entirely de novo molecules at 1× MIC.

(B) Quantification of different parameters from cryo-TEM images of S. aureus RN4220 untreated or treated with DN1. ‘‘n’’ indicates the number of cells used for 

the quantification, and comparisons were evaluated using a two-sided Mann-Whitney U test. Each data point represents a single cell. Related to Figure 6G.

(C) Representative cryo-TEM images of N. gonorrhoeae ATCC 49226 untreated or treated with DN1, showing membrane dislodgement and swelling of the cells.

(D) Quantification of the different parameters based on several cryo-TEM images of N. gonorrhoeae ATCC 49226 untreated or treated with DN1. ‘‘n’’ indicates the 

number of cells used for the quantification, and comparisons were evaluated using a two-sided Mann-Whitney U test. Each data point represents a single cell.
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Figure S7. Designed and tested analogs of DN1 and their mechanistic characterization, related to Figure 7

(A) Six active analogs of DN1 with MICs ≤ 32 μg/mL. MIC and CC 50 values of the compounds tested against MSSA RN4220 and three different human cell lines 

are shown, along with their chemical structures. Details of all analogs tested are in Data S2.

(B) MICs of the DN1 analogs against drug-resistant S. aureus isolates with vancomycin-intermediate (VISA) resistance, aminoglycoside/tetracycline resistance 

(ATR), and tedizolid/linezolid (oxazolidinone) resistance (TLZD) from the CDC-FDA ARB.

(C) MIC of DN1–164 against antibiotic-resistant strains of N. gonorrhoeae.

(D) DiSC 3 (5) of S. aureus cells treated with DN1 analogs. Results are representative of two biological replicates.

ll
Article


	CELL14100_proof.pdf
	A generative deep learning approach to de novo antibiotic design
	Introduction
	Results
	Applying GNN models to large fragment spaces
	Fragment-based generative design of antibacterial compounds
	Synthesis and experimental validation of fragment-based designed compounds
	Mechanism of action, toxicology, and in vivo efficacy of NG1
	Synthesis and analysis of structural analogs of NG1
	Design of compounds with activity against S. aureus
	Generation, synthesis, and experimental validation of de novo designed compounds
	Resistance and in vivo efficacy of DN1
	Synthesis and analysis of structural analogs of DN1

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Cell culture
	Bacterial cell culture
	Mouse models

	Method details
	Computational methods
	Machine learning models

	SHAP analysis of molecular feature importance
	Model setup and background data
	SHAP feature attribution for antibacterial activity models
	Species specificity of Chemprop models
	Fragment and compound libraries
	Identification and selection of fragments and compounds associated with antibiotic activity

	De novo design of compounds with generative models
	CReM: chemically reasonable mutations framework
	Fragment-based Variational Autoencoder (F-VAE)
	Junction Tree Variational Autoencoder (JT-VAE)
	Down-selection of generated compounds for synthesis and testing
	Visualization with t-SNE
	ASKCOS retrosynthesis planning tool

	Experimental methods
	Chemical compounds
	MIC, MBC, and bacterial growth inhibition assays
	Bacterial time-kill assays
	Cytotoxicity assay and CC50 determination
	Spontaneous mutant generation and frequency of resistance experiments
	DiSC3(5) fluorescence
	Laurdan membrane fluidity assay
	NPN assay
	SYTOX Green assay

	Proteomics-based target identification with PISA
	Sample preparation
	NanoLC-MS/MS analysis
	Data processing
	Checkerboard assays
	RNAseq

	Bacterial cytological profiling
	Bacterial strain and culture conditions
	Drug treatment and fixation
	Staining and imaging
	Image analysis and feature extraction

	Cryo-TEM analysis of bacterial morphology
	Sampling
	Image processing and segmentation
	Toxicity studies
	Mouse S. aureus topical wound infection model
	Mouse N. gonorrhoeae vaginal infection model


	Quantification and statistical analysis




