
Dynamic Covariance Estimation under Structural Assumptions
via a Joint Optimization Approach

Wenyu Chen
1
, Riade Benbaki

1
, Yada Zhu

2
, Rahul Mazumder

1

1
Massachusetts Institute of Technology

2
MIT-IBM Watson AI Lab, IBM Research, USA

wenyu@mit.edu, rbenbaki@mit.edu, yzhu@us.ibm.com, rahulmaz@mit.edu

ABSTRACT
Dynamic covariance estimation is a problem of fundamental im-

portance in statistics, econometrics, with important applications

in finance, especially portfolio optimization. While there is a large

body of work on static covariance estimation, the current liter-

ature on dynamic covariance estimation is somewhat limited in

comparison.We propose a flexible optimization framework to simul-

taneously learn covariance matrices across different time periods

under suitable structural assumptions on the period-specific covari-

ance matrices and time-varying regularizers. We propose a novel

efficient joint optimization algorithm to learn the covariance matri-

ces simultaneously. Our numerical experiments demonstrate the

computation improvements of our algorithm over both off-the-shelf

solvers and other dynamic covariance estimation methods. We also

see notable gains in terms of test MSE and downstream portfolio

optimization tasks on both synthetic and real datasets.

CCS CONCEPTS
•Mathematics of computing→Multivariate statistics;Math-
ematical optimization; Time series analysis; Dimensionality re-
duction; • Applied computing→ Economics.

KEYWORDS
dynamic covariance matrix, joint optimization, time varying, factor

model, sparsity, portfolio optimization

ACM Reference Format:
Wenyu Chen

1
, Riade Benbaki

1
, Yada Zhu

2
, Rahul Mazumder

1
. 2022. Dy-

namic Covariance Estimation under Structural Assumptions via a Joint

Optimization Approach. In KDDMLF 2022, August 15, 2022. ACM, New York,

NY, USA, 9 pages.

1 INTRODUCTION
Covariance matrix estimation is a fundamental problem in statistics

with wide applications in various domains, ranging from economics

and finance to biology, social networks, and health sciences [21].

In financial applications, for example, covariance matrices play

a key role in understanding the relationship between different

market entities, which is essential to build a diversified portfolio of

assets [21, 37].
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Covariance estimation and portfolio optimization. There is a large
body of exciting work on estimating large static covariance ma-

trices, as well as their applications in portfolio optimization; see

[22] for a comprehensive review. Such static approaches are of-

ten reduced to using a small sample size in contexts where the

dynamics can change through time, in order to capture the most

recent correlations, as is the case of financial asset correlations for

example. This can result in significantly underestimated portfolio

risk compared to approaches that model the dynamics of these

correlations.

Dynamic covariance estimation. For multivariate time-series data,

there is an impressive literature on dynamic covariance estimation

techniques using either parametric GARCH-based methods [4, 13,

15, 16, 37, 39] or non-/semi-parametric kernel approaches [8–10].

Parametric methods usually make use of stylized and somewhat

restricted models. For non-/semi-parametric models, a common ap-

proach is to use kernel-smoothing approaches to learn covariance

matrices, and it could be difficult to enforce additional structural

assumptions on (a) individual covariance matrices and/or (b) the

manner in which they evolve over time. To this end, we present a

new optimization framework that overcomes both shortcomings

— it is capable of incorporating minimal structural assumptions

without assuming any specific dynamics. Our experiments show

the relaxed assumptions lead to the benefits compared to the ex-

isting methods. The training processes of many current methods

for dynamic covariance estimation [16, 39] are usually quite in-

volved: they employ EM algorithms, multi-stage separate learning

or Bayesian type MCMC approaches, and could be slow (as our

experiments show) when the dimension of the covariance matrices

is large. On the contrary, our proposed framework uses a joint opti-

mization criterion to simultaneously learn the covariance matrices

across time. By proposing specialized algorithms, we show that

the learning can be done quite efficiently, 100 times faster than

off-the-shelf solver.

Structural assumptions. A major challenge in static covariance

matrix estimation is the limited sample sizes in high-dimensional

settings. This issue becomes even more severe for the dynamic co-

variance estimation, because there are more parameters to estimate

in the time-varying model. To address the issue in static settings,

researchers have proposed different regularization approaches [22];

two of the most common assumptions are low-rank factor mod-

els [18, 20] and (conditional) sparsity [1, 24], or a combination of

both [6, 23]. In this paper we propose a general framework to esti-

mate time-varying covariance matrices under different structural

assumptions (e.g., low-rank, sparsity, and their combination). In

addition to the low-rank and sparsity assumptions imposed on the

covariances themselves, we also make simple structural assump-

tions on how the covariance matrices evolve, to avoid specifying
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over-complicated, rare dynamics. To achieve this, we generalize the

idea of earlier work on fused Lasso problem [49] to impose different

types of regularization on the difference of covariances to enforce

slow/sparse varying pattern across covariances.

Joint optimization framework. Solving such large-scale optimiza-

tion problems can be computationally challenging for off-the-shelf

optimization solvers, necessitating the development of specialized

scalable algorithms. We propose a block-coordinate descent type

method [51] to simultaneously learn all these components. Our ap-

proach results in significant improvements over the current meth-

ods, in terms of computational efficiency, estimation accuracy, as

well as downstream portfolio quality.

Contributions. The key contributions of our work can be sum-

marized as follows: (1) We propose a new optimization framework

that learns the covariance matrix of time series for each period

simultaneously under minimal structural assumptions of low-rank

factor model and sparse idiosyncratic risks. (2) We propose three

regularizers to cater to three different assumptions on the evolu-

tion pattern of low-rank and sparse parts of covariance matrices.

(3) We propose to use a block-coordinate descent-type method to

address the computational challenges of joint training and provide

computational guarantees for the algorithm. Extensive experiments

demonstrate that our method is 100 times faster than off-the-shelf

SCS solver for 2 out of 3 of our models. (4) Finally we show that our

proposed framework is not only more efficient but also provides a

better covariance estimator, in terms of both estimation errors and

downstream portfolio optimization tasks which demonstrates the

benefits of using the relaxed structural assumptions compared to

the existing methods.

2 RELATEDWORK
Among the rich literature in dynamic covariance estimation in sta-

tistics/econometrics, one line of literature considers GARCH-type

dynamic models, extending univariate ARCH and GARCH mod-

els [3, 14] to the multivariate case, such as VEC-GARCH model [4],

BEKK [15]. Usually those papers make very specific assumptions

on the dynamics of how the time series and covariance matrices

evolve over time, and recent work extends and generalizes these

models; see [16, 37, 39, 41] and references therein. Since these mod-

els are parametrized in a sophisicated way, joint learning of the

model parameters could be very difficult, even through the EM

algorithm [11]. Instead, the parameters are learned separately via

multi-stage procedures or through Bayesian-type estimation ap-

proaches (e.g., simulation-based approaches [26]). Another line

of literature focuses on nonparametric and semi-parametric esti-

mation approaches, such as kernel smoothing estimations [8, 10].

Incorporating structural assumptions (e.g, sparsity) within these

procedures is challenging. Our approach differs: we learn the covari-

ances directly and simultaneously (instead of multi-stage separate

learning), with minimal structural assumptions (instead of assum-

ing specific dynamics on the time series).

In the context of dynamic covariance models, factor models are

commonly used; see [15, 17, 52]. Another line of work includes

Dynamic Factor Models (DFM [27])—see [48] for a nice review.

Another line of work [33, 36]—known as Stochastic Volatility (SV)

model—models the covariance process in a stochastic manner.

Not surprisingly, there is a larger body of work on estimating

static covariance matrices compared to dynamic covariance es-

timation. To address the low-sample high-dimensional settings,

researchers have proposed various approaches and techniques to

consistently estimate large covariance matrices. For example, the

Ledoit-Wolfe shrinkage estimator [40] is a well-known method

that is commonly used as benchmark in literature. [23] proposes

the POET estimator that uses PCA followed by thresholding to

learn the low-rank-plus-sparse structure in the covariance space.

Optimization-based procedures have been developed for latent-

variable Graphical Lasso [6] and robust PCA [5]. However, to our

knowledge, extensions of these models in to the dynamic time-

series context have not yet been explored.

A special case of our framework is the fused lasso estimator [49]

where one performs signal estimation under an ℓ1 constraint on

the successive differences. Since the original work [49], several

generalizations and extensions have been proposed [2, 28, 47, 53]

in different settings. We further extend these models into dynamic

covariance estimation settings. In addition to a fused lasso-type

penalty, we also use other smooth regularizers, with different oper-

ational characteristics.

Our framework is most related to [36] and [52]. Both works

use the same low-rank-plus-sparse decomposition assumption on

covariances as we do, but all three frameworks utilize different ap-

proaches to model and learn the dynamics. [52] extends the POET

estimator [23] to the dynamic setting using a two-stage nonparamet-

ric approach—local PCA followed by local generalized shrinkage.

[36] proposes a latent-factor SV model that assumes specific dy-

namics of covariances, and estimation and inference are based on

Bayesian MCMC. Our work differs from these two works in that (i)

we have minimal structural assumptions on the dynamics which

is more general than [36], while [52] has no assumption on the

dynamics; (ii) we propose an efficient algorithm for joint training

across different time-blocks, while [52] uses a two-stage separate

learning procedure. Comparisons with [36] show that our proposal

leads to at least a 30-fold runtime improvement and significant

gains in MSE performance (75% improvement) on synthetic data.

In this paper, we illustrate the performance of our proposed co-

variance matrix estimation procedure in the context of portfolio

optimization [40, 42]. In portfolio optimization, using the sample

covariance estimator to find the optimal weights, leads to an un-

derestimated out-of-sample risk [38]. A great amount of work has

therefore been done in order to reduce the amount of noise in

estimating the covariance structures specifically to enhance the

performance of optimal portfolios obtained using these correlation

structures, e.g. [38, 40, 50]. Section 6 presents an in-depth empirical

investigation on this topic.

3 PROBLEM SETUP AND ASSUMPTIONS
In this section, we present notations used in this paper, as well as the

problem setup and model assumptions for the dynamic covariance

matrix estimation.

Notations. We use R𝑑 to denote the set of all 𝑑-dimensional

vectors, and use R𝑑×𝑝 to denote the set of all 𝑑 × 𝑝 matrices. S𝑝

and S
𝑝
+ denote the set of all symmetric matrices and all positive-

semidefinite (PSD) matrices in R𝑝×𝑝 , respectively. We denote by
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[𝑁 ] = {1, 2, . . . , 𝑁 }. For a matrix 𝑋 = [𝑥𝑖 𝑗 ]𝑖, 𝑗 ∈ R𝑑×𝑝 , its frobenius
norm is defined as ∥𝑋 ∥𝐹 =

√∑
𝑖, 𝑗 𝑥

2

𝑖 𝑗
. For a square matrix 𝑋 =

[𝑥𝑖 𝑗 ]𝑝𝑖,𝑗=1
∈ R𝑝×𝑝 , the trace of 𝑋 is defined as tr(𝑋 ) = ∑𝑝

𝑖=1
𝑥𝑖𝑖 ;

∥𝑋 ∥
1,off is defined as

∑𝑝

𝑖=1

∑
𝑗≠𝑖 |𝑥𝑖 𝑗 |. For a set𝐴, 1{𝐴} is a function

such that if 𝑥 ∈ 𝐴, 1{𝐴}(𝑥) = 0; otherwise, 1{𝐴}(𝑥) = +∞.
Problem setup.We consider a multivariate time series {𝑦𝑡 }𝑇

1
with

𝑚 periods and 𝑇 time steps in total. Each period 𝑘 ∈ [𝑚] contains
𝑇𝑘 consecutive time steps indexed by I𝑘 . At each time step 𝑡 , we

observe the variables of interest 𝑦𝑡 ∈ R𝑝 of 𝑝 different entities. We

assume that within the same period 𝑘 , 𝑦𝑡 shares the same covari-

ance matrix Σ𝑘 , i.e. Cov(𝑦𝑡 , 𝑦𝑡 ) = Σ𝑘 for 𝑡 ∈ I𝑘 ; across different
periods, covariance matrices Σ𝑘 are smoothly changing. The goal

is to estimate the dynamically changing covariance matrix from

the observed time series.

Structural assumptions on covariances. It is well-known that when
the dimension is large, the sample covariance matrix is singular and

it can lead to large estimation error due to limited sample sizes [22].

Therefore, for statistically meaningful inference, additional struc-

tural assumptions need to be imposed on the covariance matrix.

A common assumption is that the different entities depend on a

small subset of factors. For example, stock returns depend on global

macro-economic factors and sector-specific factors [18, 19] that

influence all stocks. In addition, each stock has its own individual

idiosyncratic component, most of which are uncorrelated from each

other, with some exceptions that can be due to mergers, acquisi-

tions, competition or some local/domestic common events that is

not captured by the global factors. Based on these observations,

we consider the financial factor models [19, 20]. Specifically in our

setting, for each period 𝑘 , we assume that 𝑦𝑡 = 𝐵𝑘 𝑓𝑡 + 𝑢𝑡 for a few
common (latent) factors 𝑓𝑡 ∈ R𝑟 and a coefficient matrix 𝐵𝑘 ∈ R𝑝×𝑟
and a residual 𝑢𝑡 that is uncorrelated with the common factors 𝑓𝑡 .

Here, each component of the common factor 𝑓𝑡 can be considered

as one source of systematic risks, while each component of the

residual 𝑢𝑡 can be regarded as idiosyncratic risk of each entity. This

factor model leads to the following decomposition of the covari-

ance matrix: Σ𝑘 = 𝐵𝑘Σ𝑓 ,𝑘𝐵
⊤
𝑘
+Σ𝑢,𝑘 , of which the first part has rank

of 𝑟 ≪ 𝑝 . We further assume that Σ𝑢,𝑘 is sparse, indicating that

there are only a few strong connections between the idiosyncratic

risks of different entities. In the rest of paper, we will use 𝐿𝑘 to

denote the low rank component 𝐵𝑘Σ𝑓 ,𝑘𝐵
⊤
𝑘
and use 𝑅𝑘 to denote

the sparse component Σ𝑢,𝑘 , which leads to the following low-rank-

plus-sparse decomposition Σ𝑘 = 𝐿𝑘 + 𝑅𝑘 . Such decomposition is

very common in both financial econometrics and high-dimensional

statistics literature [22, 23, 32].

Structural assumptions on evolution pattern. In addition to impos-

ing a low-rank-plus sparse structure on the covariance matrices,

we also make structural assumptions on the way these covariance

matrices evolve over time (e.g slow/sparse evolving). To this end,

we use different regularizations on the matrix differences between

successive periods, which we present in more details in Section

4. Instead of learning each period separately, the joint learning

framework allows us to make full use of all observations during

the training phase, while also allowing the covariance structures to

change over time. As discussed previously, there is a trade-off when

deciding on the amount of observations for learning a covariance

matrix. More observations allow for a more accurate and robust

estimation, while limiting the observations to a more recent pe-

riod allows estimating the most recent covariances in a potentially

changing dynamic. Our estimator, through the regularization over

the evolution pattern, offers more flexibility to deal with this issue,

and through out our experiments, we show that this flexibility of-

fers significant gains, both in terms of estimation error on future

unseen observations, as well as improved portfolio selection when

used in for portfolio optimization.

Organization of paper. In what follows, we present our joint

modeling framework in Section 4. In Section 5, we propose an

efficient joint optimization algorithm to solve the modeling frame-

work, provide some convergence properties for our algorithm, and

present extensive numerical results to demonstrate the efficiency

of our algorithm, compared to an off-the-shelf optimization solver.

In Section 6, we present numerical experiments that showcase

the improvements of our proposed framework over the baseline

methods on both synthetic and real datasets, in terms of different

performance metrics.

4 MODELING
We start our exposition with the single-period problem under the

low-rank-plus-sparse structure to learn the (static) covariance ma-

trix, and then extend the estimator to the multi-period setting.

4.1 Single-period problem—static estimation
We first consider the static covariance matrix problem with the

low-rank-plus-sparse structure. There are two general approaches:

two-stage approach and joint learning approach. The two-stage

approach (e.g., [20, 23]) learns the latent factors 𝑓𝑡 by principal

component analysis (PCA), and then learns the covariance matrix

of the residual 𝑢𝑡 by shrinkage or thresholding estimators (e.g.,

[1, 40]). However, the two-stage approach cannot be easily adapted

to the dynamic setting where slow/sparse varying patterns are

considered.

The alternative joint learning approach learns the low-rank part

𝐿 and the sparse part 𝑅 in the decomposition Σ = 𝐿 + 𝑅 simultane-

ously, via the following optimization problem

min

𝐿,𝑅
𝑓 (𝐿, 𝑅; 𝑆𝑘 ) =

1

2

∥𝐿 + 𝑅 − 𝑆𝑘 ∥2𝐹 + 𝜌𝐿 (𝐿) + 𝜌𝑅 (𝑅). (1)

Above, the penalty function 𝜌𝐿 induces a low-rank and 𝜌𝑅 induces

sparsity. Here, 𝑆𝑘 ∈ R𝑝×𝑝 denotes the sample covariance matrix

of the time-series in period 𝑘 . Assume that (�̂�𝑘 , 𝑅𝑘 ) is the optimal

solution to the optimization problem (1), the (static) covariance

estimation for the single period 𝑘 is given by Σ̂𝑘 = �̂�𝑘 + 𝑅𝑘 .
To obtain a low-rank matrix 𝐿, a natural choice is to directly con-

strain its rank with 𝜌𝐿 being the corresponding indicator function.

One can also use a convex penalty function—a common approach is

to take 𝜌𝐿 as the nuclear norm of a matrix (i.e., the sum of singular

values). Note that for a PSD matrix 𝐿, the nuclear norm becomes

the trace tr(𝐿). Here, we combine these two penalties to get a more

general regularizer

𝜌𝐿 (𝐿) = 𝛼 tr(𝐿) + 1{𝐿 ∈ S𝑝+, rank(𝐿) ≤ 𝑟 }. (2)



KDD MLF 2022, August 15, 2022, Chen and Benbaki, et al.

It can be easily verified that the aforementioned two penalties are

special cases of (2). Note that this penalty is essentially an ℓ0-ℓ1
type penalty [45], which is shown to help prevent overfitting in the

regime of low-signal-to-noise ratios in sparse regression.

To enforce sparsity, we use an ℓ1-type regularization on the

off-diagonal entries of 𝑅 with a symmetry constraint on 𝑅, i.e.

𝜌𝑅 (𝑅) = 𝛽 ∥𝑅∥
1,off + 1{𝑅 ∈ S𝑝 }. (3)

We do not penalize the diagonals of 𝑅 because they correspond to

the variances of 𝑢𝑡 , not the covariances between different entities.

Also, we drop the PSD constraint on 𝑅 for faster computations. In

numerical experiments, we observe that the optimal 𝑅 is still PSD
1
.

We note that the latent variable graphical lasso [6] has a similar

formulation to (1), but it is based on the log-likelihood loss in the

inverse covariance space. Here, we are interested in modeling the

covariance matrix directly, and the square loss is computationally

tractable. Besides, (1) is closely related to the well-known robust

PCA problem [5].

4.2 Multi-period problem—dynamic estimation
To extend the single-period setting to the dynamic setting, based

on the objective for the single period 𝑘 , we consider the following

optimization problem

min

𝐿𝑘 ,𝑅𝑘 ,𝑘∈[𝑚]

𝑚∑
𝑘=1

𝑓 (𝐿𝑘 , 𝑅𝑘 ; 𝑆𝑘 ) +
𝑚−1∑
𝑘=1

D((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )), (4)

with some discrepancy metric D(·, ·) penalizing the distance be-

tween the estimates across two successive periods. Intuitively, in

addition to looking at the loss 𝑓 (𝐿𝑘 , 𝑅𝑘 ; 𝑆𝑘 ) for each single-period

𝑘 , the objective in (4) ensures that the estimates from (𝑘 + 1)-th
period cannot be too far away from the estimates from 𝑘-th period.

Depending on the nature of evolution, we can choose different

discrepancy metrics. Specifically, we consider the following three

different discrepancy metrics that correspond to the structural as-

sumptions mentioned in Section 3:
2

D1 ((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )) =
𝛾

2

∥𝐿𝑘+1 + 𝑅𝑘+1 − 𝐿𝑘 − 𝑅𝑘 ∥2𝐹 (WLR)

D2 ((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )) =
𝛾

2

∥𝐿𝑘+1 − 𝐿𝑘 ∥2𝐹 +
𝜌

2

∥𝑅𝑘+1 − 𝑅𝑘 ∥2𝐹
(WLWR)

D3 ((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )) =
𝛾

2

∥𝐿𝑘+1 − 𝐿𝑘 ∥2𝐹 + 𝜌 ∥𝑅𝑘+1 − 𝑅𝑘 ∥1,off
(WLPR)

where, 𝛾, 𝜌 ≥ 0 are regularization parameters. In these formula-

tions, we use square Frobenius norms on the differences to en-

force the smooth changes between either covariances or their low-

rank/sparse components; we use ℓ1 norms on the differences to

enforce the sparse changes between the sparse components of

covariances. These regularizers are inspired by the fused lasso

problem [49] and its extensions [47, 53]. Such total variation-type

penalty functions are commonly used in time-varying regression

problems, but to our knowledge, estimator (4) has not been studied

earlier. We note that a similar penalty is also used in time-varying

network inference in the context of the so-called time-varying

1
If not, we apply a PSD projection step on the final estimate

2
Here, W denotes sloWly varying, and 𝑃 denote sParsely varying

graphical lasso estimator [28]. This estimator however, operates on

the inverse covariance matrices Θ𝑘 ’s, and uses the log-likelihood

loss with penalties of the form 𝜓 (Θ𝑘+1 − Θ𝑘 ). However, the PSD
constraints on Θ𝑘 ’s potentially make the computations intractable.

[28] do not consider a low-rank and sparsity structure in their Θ,
and hence do not have separate penalties over the changes in 𝐿𝑘
and 𝑅𝑘 .

With all these three different types of regularization, our final

objective function for the matrix estimation problem with respect

to L = {𝐿𝑘 }𝑚1 and R = {𝑅𝑘 }𝑚1 is:

min

L,R
𝐹 (L,R) :=

1

2

𝑚∑
𝑘=1

∥𝐿𝑘 + 𝑅𝑘 − 𝑆𝑘 ∥2𝐹 + 𝛼
𝑚∑
𝑘=1

tr(𝐿𝑘 )

+ 𝛽
𝑚∑
𝑘=1

∥𝑅𝑘 ∥1,off +
𝑚−1∑
𝑘=1

D((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )),

s.t. 𝐿𝑘 ∈ S
𝑝
+, rank(𝐿𝑘 ) ≤ 𝑟, 𝑅𝑘 ∈ S𝑝 .

(5)

Notice that when taking 𝑟 = 𝑝 , the rank constraint is redundant,

and the problem (5) becomes convex. The problem (5) has 𝑂 (𝑚𝑝2)
variables and 4 hyper-parameters (𝛼, 𝛽,𝛾, 𝑟 ). This means that for

one set of hyperparameters, we need to solve a problem with about

𝑂 (10
4) −𝑂 (10

6) variables if we consider hundreds or thousands of
companies (i.e., 𝑝 ∼ 𝑂 (10

2) −𝑂 (10
3)). Fine-tuning over thousands

of hyperparameter requires therefore a scalable algorithm to solve

the problem in a few seconds. In what follows, we introduce our

efficient algorithm to solve this large-scale optimization problem.

5 JOINT OPTIMIZATION ALGORITHM
In this section, we present an efficient joint training algorithm

for our optimization framework. Our algorithm is based on the

well-known block coordinate descent (BCD) method. In Section 5.1,

we provide a brief introduction to the block coordinate descent.

In Section 5.2, we present details on how to apply BCD to our

optimization framework (5), as well as the convergence properties

of our algorithm. In Section 5.3, we compare our algorithm with

the off-the-shelf solver SCS [46] and demonstrate the significant

speedups of our algorithm.

5.1 Block Coordinate Descent
We apply a cyclic block coordinate descent (BCD) type method [51]

for (5). Cyclic BCD is used to minimize a function of the form

Φ(𝑥1, . . . , 𝑥𝑑 ) = 𝜑 (𝑥1, . . . , 𝑥𝑑 ) +
𝑑∑
𝑖=1

ℎ𝑖 (𝑥𝑖 ), (6)

where 𝜑 is a smooth function and ℎ𝑖 can be potentially nondifferen-

tiable
3
. In brief, the BCD algorithm updates 𝑥𝑖 (keeping other 𝑥 𝑗 ’s

fixed), by minimizing over it. Formally,

𝑥𝑖 ← arg min

𝑦
Φ(𝑥<𝑖 , 𝑦, 𝑥>𝑖 }), for 𝑖 = 1, . . . , 𝑑, (7)

where 𝑥<𝑖 and 𝑥>𝑖 are the collections of 𝑥 𝑗 ’s with 𝑗 < 𝑖 and 𝑗 > 𝑖 ,

respectively. It updates the coordinates in a cyclic fashion.

BCD-type methods are widely used for solving huge-scale opti-

mization problems in statistical learning, especially those problems

3
Note that the separability of the nonsmooth part (ℎ𝑖 ’s) is a key to the global conver-

gence given the convexity of the objective function.
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with sparsity structure, due to their inexpensive iteration updates

and capability of exploiting problem structure. For example, they

have been used to solve the lasso problem [25], the support vector

machines [7], and the graphical lasso [43], and other problems with

structured sparsity [29], etc. The convergence guarantees of BCD

applied to (6) can be found in [30, 51].

5.2 Algorithm Details

Algorithm 1 Algorithm for optimizing (5)

Input: Data 𝑆𝑘 , 𝑘 ∈ [𝑚]. Hyperparameters 𝛼, 𝛽,𝛾, 𝑟 ; Initialization:

𝐿𝑘 = 𝐿
(0)
𝑘

, 𝑅𝑘 = 𝑅
(0)
𝑘

for all 𝑘

1: for ℓ = 0, 1, 2, . . . do
2: for 𝑘 = 0, 1 . . . ,𝑚 do
3: 𝐿𝑘 ← arg min𝑋 𝐹 ({L<𝑘 , 𝑋,L>𝑘 },R})
4: 𝑅𝑘 ← arg min𝑋 𝐹 (L, {R<𝑘 , 𝑋,R>𝑘 }) ((WLR) and

(WLWR) only)

5: end for
6: R ← arg minX 𝐹 (L,X) ((WLPR) only)

7: end for

We first present the BCD algorithm for solving (5) in Algorithm 1,

and show how we can treat (5) with 3 different metrics (WLR),

(WLWR) and (WLPR) as special cases of (6)—we also discuss com-

putation of (7) resulting in Algorithm 1. We discuss efficient ways

to compute the updates in lines 3, 4 and 6 in Algorithm 1. Finally,

we provide the convergence property of our algorithm.

5.2.1 Algorithm. The formal algorithm to solve (5) is presented in

Algorithm 1. Note that the update in line 4 is for (WLR) and (WLWR)

exclusively; while the update in line 6 is for (WLPR) exclusively.

For (5) with (WLR) and (WLWR), the corresponding discrepancy

metrics D1 and D2 are smooth wrt 𝐿𝑘 and 𝑅𝑘 . We can view (5)

as an instance of (6) with 𝐿1, 𝑅1, . . . , 𝐿𝑚, 𝑅𝑚 as 2𝑚 blocks. Here,

𝜑 (L,R) = 1

2

∑𝑚
𝑘=1
∥𝐿𝑘+𝑅𝑘−𝑆𝑘 ∥2𝐹+

∑𝑚−1

𝑘=1
D((𝐿𝑘+1, 𝑅𝑘+1), (𝐿𝑘 , 𝑅𝑘 )),

ℎ𝐿,𝑘 (𝐿𝑘 ) = 𝜌𝐿 (𝐿𝑘 ), and ℎ𝑅,𝑘 (𝑅𝑘 ) = 𝜌𝑅 (𝑅𝑘 ). Applying (7) yields the
updates in lines 3 and 4 of Algorithm 1.

For (WLPR), the discrepancy metric D3 is smooth wrt 𝐿𝑘 , but

nonsmooth wrt 𝑅𝑘 , so we need to treat R as a whole block, i.e.

(5) is a special case of (6) with 𝐿1, . . . , 𝐿𝑚,R as𝑚 + 1 blocks. Here,

𝜑 (L,R) = 1

2

∑𝑚
𝑘=1
∥𝐿𝑘+𝑅𝑘−𝑆𝑘 ∥2𝐹+

𝛾
2

∑𝑚−1

𝑘=1
∥𝐿𝑘+1−𝐿𝑘 ∥2𝐹 ,ℎ𝐿,𝑘 (𝐿𝑘 ) =

𝜌𝐿 (𝐿𝑘 ) and ℎR (R) =
∑𝑚
𝑘=1

𝜌𝑅 (𝑅𝑘 ) + 𝜌
∑𝑚−1

𝑘=1
∥𝑅𝑘+1 − 𝑅𝑘 ∥1,off. Ap-

plying (7) results in the updates in lines 3 and 6 of Algorithm 1.

5.2.2 Coordinate updates. It turns out that all the minimization

subproblems in lines 3, 4 and 6 of Algorithm 1 can be solved very

efficiently by either closed-form expressions or dynamic program-

ming. To this end, we first introduce two optimization problems

with closed-form expressions, and then show how updates in lines

3 and 4 can be reduced to these two operators.

The first one is the well-known soft-thresholding operator [12]:

T1 (𝑥 ; _) := arg min

𝑦

1

2

(𝑦 − 𝑥)2 + _ |𝑦 | = sign(𝑥) ( |𝑥 | − _)+ . (8)

The other operator T∗ (�̃� ; _, 𝑟 ) : S𝑝 → S𝑝+ is defined as

T∗ (�̃� ; _, 𝑟 ) := arg min

𝑌 ∈S𝑝+

1

2

∥𝑌 − �̃� ∥2𝐹 +_ tr(𝑌 ), s.t. rank(𝑌 ) ≤ 𝑟 . (9)

Given the eigenvalue decomposition of �̃� = 𝑈 �̃�𝑈⊤, where 𝐷 =

diag( ˜𝑑1, . . . , ˜𝑑𝑝 ) with ˜𝑑1 ≥ . . . ≥ ˜𝑑𝑝 , the solution to (9) is given

by T∗ (�̃� ; _, 𝑟 ) = 𝑈𝐷∗𝑈⊤, where 𝐷∗ = diag(𝑑∗
1
, . . . , 𝑑∗𝑝 ) with 𝑑∗

𝑖
=

( ˜𝑑𝑖 − _)+, ∀𝑖 ≤ 𝑟 and 𝑑∗
𝑖
= 0, ∀𝑖 > 𝑟 . The derivation of this closed-

form solution can be found in [44].

Now we show how to use these two operators to obtain the

updates in lines 3 and 4. For simplicity, we will look into the updates

for (WLWR) and 𝑘 ∉ {0,𝑚}. In this case, by simple linear algebra,

it is easy to see that the update in line 3 is equivalent to

𝐿𝑘 = arg min

𝑋 ⪰0

1 + 2𝛾

2

∥𝑋 − �̃�𝑘 ∥2𝐹 + 𝛼 tr(𝑋 ), s.t. rank(𝑋 ) ≤ 𝑟

= T∗ (�̃�𝑘 ;

𝛼

1 + 2𝛾
, 𝑟 ), (10)

where �̃�𝑘 = 1

1+2𝛾

[
(𝑆𝑘 − 𝑅𝑘 ) + 𝛾𝐿𝑘+1 + 𝛾𝐿𝑘−1

]
. The update in line 4

is equivalent to

𝑅𝑘 = arg min

𝑋 ∈S𝑝
1 + 2𝛾

2

∥𝑋 − �̃�𝑘 ∥2𝐹 + 𝛽 ∥𝑋 ∥1,off, (11)

where �̃�𝑘 = 1

1+2𝛾

[
(𝑆𝑘 −𝐿𝑘 ) +𝛾𝑅𝑘+1 +𝛾𝑅𝑘−1

]
. Since ∥𝑋 ∥

1,off is sepa-

rable wrt each component of 𝑋 , the minimization problem (11) can

be solved separately over each component, and each subproblem is

in the form of (8). Thus, the solution to (11) is given by 𝑋 ∗, with

𝑋 ∗𝑖 𝑗 = 𝑋 ∗𝑗𝑖 = T1 (�̃�𝑘,𝑖 𝑗 ;
𝛽

1 + 2𝛾
), ∀𝑖 < 𝑗 ; 𝑋 ∗𝑖𝑖 = �̃�𝑘,𝑖𝑖 , ∀𝑖 ∈ [𝑝] .

For special cases where 𝑘 ∈ {0,𝑚} as well as (WLR), the updates

are similar with simple modifications. For the implementation of

(WLR), it is helpful to keep track of the “residuals” 𝐸𝑘 = 𝐿𝑘 +
𝑅𝑘 − 𝑆𝑘 and 𝐷𝑘 = 𝐿𝑘+1 + 𝑅𝑘+1 − 𝐿𝑘 − 𝑅𝑘—this can help reduce the

computational cost in each update and improve efficiency.

For (WLPR), the update in line 3 is same as that for (WLR); the

update in line 6 is equivalent to

R = arg min

X
1

2

𝑚∑
𝑘=1

∥𝑋𝑘 + 𝐿𝑘 − 𝑆𝑘 ∥2𝐹 +
𝑚∑
𝑘=1

𝛽 ∥𝑋𝑘 ∥1,off

+
𝑚−1∑
𝑘=1

𝜌 ∥𝑋𝑘+1 − 𝑋𝑘 ∥1,off . (12)

For 𝑖 ≤ 𝑗 and any {𝑌𝑘 }𝑚1 , let 𝑌·,𝑖 𝑗 denote the vector of {𝑌𝑘,𝑖 𝑗 }𝑚𝑘=1
,

then the objective of (12) can be written as∑𝑝

𝑖=1
𝑔𝑖𝑖 (𝑋 ·,𝑖𝑖 ) + 2

∑
𝑖< 𝑗 𝑔𝑖 𝑗 (𝑋 ·,𝑖 𝑗 ), where

𝑔𝑖𝑖 (𝑥) =
1

2

∥𝑥 + 𝐿 ·,𝑖𝑖 − 𝑆 ·,𝑖𝑖 ∥2 (13)

𝑔𝑖 𝑗 (𝑥) =
1

2

∥𝑥 + 𝐿 ·,𝑖 𝑗 − 𝑆 ·,𝑖 𝑗 ∥2 + 𝛽 ∥𝑥 ∥1 + 𝜌
𝑚−1∑
𝑘=1

|𝑥𝑘+1 − 𝑥𝑘 |, (14)

which can be solved separately. Solving (13) is straightforward; (14)

is a fused lasso type problem [49] that can be solved efficiently in

𝑂 (𝑚) by dynamic programming [34].

5.2.3 Convergence property. The following theorem states the con-

vergence property of Algorithm 1:
4

4
The proof is omitted here due to the space limit.
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Figure 1: Mean runtime, in seconds, for 𝑚 = 5. For every di-

mension value, we sample 20 random subsets of companies and

hyper-parameters. Y-axis in log scale.

Theorem 5.1. Let (L (ℓ) ,R (ℓ) ) be the ℓ-th iterate of (L,R) given
by Algorithm 1, then we have 𝐹 (L (ℓ+1) ,R (ℓ+1) ) ≤ 𝐹 (L (ℓ) ,R (ℓ) ).
When 𝑟 = 𝑝 , i.e. there is no rank constraint, then the problem be-
comes convex, and the following holds: (i) any limiting point of
{(L (ℓ) ,R (ℓ) )}∞

1
is a global minimizer of the problem; (ii) there ex-

ists a constant 𝐶 > 0, such that 𝐹 (L (ℓ) ,R (ℓ) ) − 𝐹 ∗ ≤ 𝐶
ℓ , where

𝐹 ∗ is the optimal value of (5). All the statements above hold for all
regularizers (WLR), (WLWR) and (WLPR).

5.3 Comparison with off-the-shelf solver
Since our optimization framework is new, there is no existing spe-

cialized algorithm to solve it. Therefore, we compare our algorithm

with state-of-the-art conic optimization solver SCS (Splitting Conic

Solver, [46]). SCS utilizes the homogeneous self-dual reformulation

and solves the embedding with operator splitting methods and it

is a widely used optimization package to solve large-scale convex

quadratic cone problems
5
.

We run both algorithms on a returns dataset of companies in

S&P500 with various sizes 20 ≤ 𝑝 ≤ 100 and a fixed number of

periods𝑚 = 5; see Section 6.1 for more details on the return dataset.

For each regularizer and value of 𝑝 , we draw a random subset of

S&P500 companies, construct the sample covariance of their returns

for 5 consecutive quarters, and run both algorithms on a random set

of hyperparameters. We repeat this procedure 20 times and report

the mean runtime in Figure 1. We run both algorithms with the

same convergence tolerance and the same maximum number of

iterations
6
. All computations were carried out on MIT’s Engaging

Cluster on an Intel Xeon 2.30GHz machine, with two CPUs and

8GB of RAM. Our implementation can potentially be further sped

up by using parallel computing within each coordinate update.

As Figure 1 shows, our algorithm is significantly faster than

SCS, specially for large problem sizes. In addition, our algorithm

can address the optimization problem with rank constraints, which

makes the problem non-convex and therefore out-of-reach of off-

the-shelf convex solvers.

6 NUMERICAL EXPERIMENTS
In this section, we present a few numerical experiments to show the

strength of our joint optimization framework compared to some

existing covariance estimation methods. In Section 6.1, we compare

5
Since the SCS requires the problem to be convex, we consider the special case where

the rank restriction is abundant (𝑟 = 𝑝).
6
We use the dynamic programming algorithm for Fused Lasso in [34] as implemented

in https://www.stat.cmu.edu/~ryantibs/convexopt-F13/homeworks/prox_R.cpp for

updating R in Algorithm 1

the estimation errors of our estimators with those from a latent-

factor stochastic-volatility (SV) model [36] (with implementation in

[31]) on both synthetic and real datasets. In Section 6.2, we look into

a specific downstream task—portfolio optimization. We compare

portfolios obtained using our estimators with those obtained using

the sample covariance matrix, as well as the well-known Ledoit-

Wolfe shrinkage estimator [40].

6.1 Estimation errors
We start by looking at estimation errors of differentmethods on both

synthetic and real datasets. We specifically compare our estimators

to those obtained from a latent-factor SV model (proposed in [36]

and implemented in [31])
7
, using global-local shrinkage prior on

factor loading coefficients as proposed in [35], as well as a standard

Gaussian prior. Row-wise NG (resp. Col-wise NG) refers to a row-

wise (resp. col-wise) Normal-Gamma prior on the factor loading

matrix. For each prior, we compare two versions, one where we

assume time-varying variances for factors and idiosyncratic errors

(SV) and one where we assume these variances to be constant.

Datasets. We run our comparisons on both synthetic and real

datasets: The synthetic dataset is made of randomly generated time

series from a stochastic volatility model using random factors and

loading parameters
8
. For different values of the number of factors

and the number of variables in the time series, we generate 100 such

time series with 1300 observations (roughly 5 years of financial

data). The real dataset is composed of stock returns of companies

that are part of the S&P500 between 2013 to 2019, which results in a

time series of 453 variables. We randomly choose 100 starting dates

from this period and take the first 1300 observations following each

starting date.

Performance metric. We split each dataset into two parts with 650

observations each. The first part is used to find the best hyperparam-

eters for our model by training the algorithm on the first 520 obser-

vations and measuring the mean-square-error (MSE) between our

last estimated covariance matrix and the target covariance matrix

for the next 130. After finding the best set of hyper-parameters for

this first MSE, we use the second part to evaluate the performances

of each estimator by training again on the first 520 observations

and taking the MSE relative to the target matrix. This somewhat

involved procedure is necessary to predict the covariance matrix

on a period that immediately follows the training one.

For a predicted matrix Σ̂ and a target matrix Σ̄, we measure the

MSE as ∥Σ̂ − Σ̄∥2
𝐹
/𝑝2

. The target covariance matrix is computed

from the original factor model on synthetic datasets, whereas on

the real dataset, is taken to be the sample covariance matrix on

out-of-sample test observations.

Results. As shown in Tables 1 and 2, the MSE of our estimators is

slightly bigger than that of the best SV model for a small number of

variables and factors, but as those two numbers grow, our models

exhibit a better prediction with a smaller MSE. Looking at the

runtime figures (Table 1 and Figure 2), we also see that our models

are significantly faster and more accurate than the SV ones. These

7
The SV model generates multiple covariance matrices at each time point from the

estimated distribution. To obtain a single covariance matrix, we average out the

estimators obtained for the last observation of the time series across 1000 draws

8
We use the function fsvsim in [31] with default arguments for this

https://www.stat.cmu.edu/~ryantibs/convexopt-F13/homeworks/prox_R.cpp
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MSE Runtime
Estimator/ # variables 10 30 100 300 10 30 100 300

Col-wise NG 0.214 0.151 0.161 0.262 10.104 21.103 64.909 266.13

Col-wise NG (SV) 0.454 0.197 0.226 0.306 19.011 45.03 146.258 510.541

Row-wise NG 0.217 0.149 0.161 0.262 10.156 20.39 66.788 268.46

Row-wise NG (SV) 0.462 0.205 0.233 0.299 18.762 44.983 147.553 522.967

Standard Gaussian 0.476 0.566 0.709 0.806 10.621 20.337 68.237 263.249

Standard Gaussian (SV) 0.693 0.413 0.455 0.287 17.273 43.063 153.165 520.162

WLPR (this paper) 0.246 0.196 0.138 0.168 0.615 0.895 7.176 87.952

WLWR (this paper) 0.244 0.196 0.135 0.17 0.09 0.521 2.745 16.412

Table 1: Mean MSE and runtime (in seconds) of different
covariance estimators with synthetic data generated with 3 factors.

The smallest value for each metric in highlighted in bold.

Number of Factors/Variables 10 30 60 100 300

3 0.44 0.43 0.46 0.62 0.76
5 0.38 0.36 0.44 0.63 0.89
10 0.40 0.41 0.51 0.51 1.00

Table 2: Percentage of trials where WLWR has a smaller MSE than
Col-wise NG across 100 randomly generated synthetic time series.

The 50% threshold point is highlighted in bold.
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Figure 2: Runtime distributions of WLWR and Col-wise NG
across 100 randomly generated synthetic time series with 10

factors.

differences are also present when applied to real financial data

(Figure 3).

6.2 Application to portfolio optimization
Portfolio optimization refers to a classical asset management prob-

lem in which the practitioner constructs a portfolio that optimizes

some objective value, usually combining two goals: maximizing

expected returns and minimizing their variance. The framework

was first introduced by Markowitz [42] and has since then become

a topic of many studies. To measure the quality of our estimated

covariance matrices, we focus on the minimum variance portfolio

problem, because it does not require estimating the expected re-

turns, a problem beyond the scope of this paper. Specifically, we

are interested in the following optimization problem:

min

𝑤
𝑤⊤Σ̂𝑤, s.t. 1

⊤𝑤 = 1, 𝑤 ≥ 0, (15)

where Σ̂ is an estimate of the covariance of returns. Using the

sample covariance matrix as Σ̂ may be the most obvious choice,

but this has a lot of drawbacks in terms of the actual performance

of the selected portfolio [40, 50]. There has been therefore a great

amount of work to improve the estimation of the covariance matrix,

and specifically for the use case of portfolio optimization. In the

following, we compare portfolios obtained by our algorithms to the

ones obtained using the sample covariance matrix, as well as other

sophisticated covariance matrix estimators.

Metrics. We use two metrics to measure the quality of a portfolio

𝑤 , both used in [50] and both based on the predicted volatility

in-sample 𝜎2 [𝑤] = 𝑤⊤𝑆𝑡𝑟𝑎𝑖𝑛𝑤 and the realized volatility out-of-

sample �̂�2 [𝑤] = 𝑤⊤𝑆𝑡𝑒𝑠𝑡𝑤 (𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑆𝑡𝑒𝑠𝑡 are the sample covari-

ance matrices on the training period and testing period, and𝑤 is

built based on 𝑆𝑡𝑟𝑎𝑖𝑛 alone).

The first metric 𝑅𝜎 , defined as |𝜎 [𝑤] −�̂� [𝑤] |/𝜎 [𝑤], measures the

reliability of the portfolio in predicting the true realized volatility

out-of-sample from the predicted volatility in-sample. A small 𝑅𝜎
value means that the portfolio’s out-of-sample risk is close to its

in-sample risk. The second metric we use is simply the realized

volatility �̂� [𝑤] out-of-sample, which is a direct measure of the

portfolio’s risk and is the metric that the optimization problem is

trying to minimize.

Here, we illustrate these two metrics using the efficient frontier

in Figure 4, which plots the volatility-return curve for different

values of targeted expected return 𝑟 . This amounts to solving the

optimization problem (15) with the extra constraint

∑𝑝

𝑖=1
`𝑖𝑤𝑖 ≥ 𝑟 .

As Figure 4 shows, there is a distance between the risk-return

curve estimated in-sample, and the one the portfolio is subject to

out-of-sample. 𝑅𝜎 is a measure of how close the in-sample and

out-of-sample curves are. In Figure 4, we see that while the in-

sample volatility of the sample covariance estimator is smaller, our

estimator ((WLPR) in this case) achieves a better reliability as the

in-sample and out-of-sample curves are closer, as well as better

out-of-sample volatility (the dashed green curve is higher than the

black one).

This difference between the estimated volatility in sample and

that realized out-of-sample can be explained by at least two factors.

The first one is due to the statistical uncertainty and the presence of

noise, specially when using a small number of observations. In order

to mitigate this effect, one possible solution is to simply increase

the sample size and use more observations. And while this is not

always possible, it also assumes that the correlation structures are

stationary. Our estimators try to find a balance between these two

effects: Use regularization to mitigate noise (and low-sample sizes),

and allow for correlation structures to change through time.

Datasets and baselines. We run our comparisons on two types of

datasets: Stock returns of the S&P500, which we already introduced

in Section 6.1 and currency rates (from 2013 to 2020) with 𝑝 = 151
9
.

We compare our 3 models to the sample covariance matrix as

well as the Ledoit-Wolf shrinkage estimator [40]. This estimator

has been shown to offer enhanced performance both in terms of

realized volatility and reliability. Moreover, for each of these two

baselines, we compute 2 covariancematrices: one using only the last

training period (𝑆𝐴𝑀𝑃𝐿𝐸 and 𝐿𝐷𝑊 𝐹 ) and one using data from all

4 periods (𝑆𝐴𝑀𝑃𝐿𝐸_𝐴𝑃 and 𝐿𝐷𝑊 𝐹_𝐴𝑃 ). In the following, we drop

the SV model as it is expensive to compute and delivers point-wise

estimates.

9
Data obtained from https://openexchangerates.org/

https://openexchangerates.org/
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Figure 3: MSE and runtime distributions of different covariance estimators on real finacial data.
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Figure 4: Efficient frontier for the S&P500 during the last quarter of

2015. Returns and volatility values are annualized. We assume that the

expected returns do not change.

Table 3: Reliability and volatility statistics for the different
estimators on 2 datasets. The smallest value for each metric is

highlighted in bold.

Stock returns Currency rates
Estimator Reliability Volatility Reliability Volatility

SAMPLE 1.318 (±0.358) 10.417 (±0.752) 6.315 (±2.678) 0.089 (±0.033)

SAMPLE_AP 0.475 (±0.152) 9.44 (±0.627) 4.355 (±2.027) 0.068 (±0.027)

LDWF 1.043 (±0.28) 10.113 (±0.77) 4.817 (±2.043) 0.091 (±0.034)

LDWF_AP 0.475 (±0.152) 9.401 (±0.632) 3.74 (±1.725) 0.084 (±0.029)

WLR 0.417 (±0.1) 11.54 (±0.805) 1.018 (±0.421) 0.086 (±0.031)

WLWR 0.316 (±0.084) 9.42 (±0.645) 0.423 (±0.1) 0.025 (±0.005)

WLPR 0.304 (±0.078) 9.397 (±0.634) 6.262 (±2.749) 0.018 (±0.003)

Evaluation procedure. For both datasets, we use 4 quarters to build
each estimator and use the next one to test the estimated portfolios

(so the portfolios are rebalanced every quarter). Our models learn

4 covariance matrices, one for each quarter, but only the last one

is used to build the minimum variance portfolio. Using a sliding

window on the quarters, we obtain 24 data points for the returns

dataset and 28 on the currency rates one. In order to find the best

hyperparameters
10

for our estimators, we use the first 3 windows as

validation set and take, for each metric, the set of hyperparameters

with the best average score across these 3 windows.

Results. For the stock returns, as shown in Tables 3 and 4, our

estimators offer better portfolios both in terms of reliability and

realized volatility. In addition, both𝑊𝐿𝑊𝑅 and𝑊𝐿𝑃𝑅 out-perform

10
We fix 𝛼 = 0 and use a grid of 20 values in [10

−3, 10
4 ]⋃{0,∞} for 𝛾, 𝛽, 𝜌 and 7

values in [2,15] for the rank of 𝐿𝑘

Table 4: Improvement in Reliability and volatility for our 3
estimators relative to each baseline. Reliability (resp. volatility)

measures the 𝑅𝜎 (resp. �̂�) differences between the baseline and our

estimator. The values presented are the mean (standard error)

Stock returns Currency rates
Model Baseline Reliability Volatility Reliability Volatility

WLWR SAMPLE 1.002 (± 0.288) 0.997 (± 0.224) 5.893 (± 2.693) 0.064 (± 0.032)

WLWR SAMPLE_AP 0.159 (± 0.08) 0.02 (± 0.092) 3.933 (± 2.046) 0.043 (± 0.025)

WLWR LDWF 0.727 (± 0.212) 0.693 (± 0.207) 4.394 (± 2.055) 0.066 (± 0.033)

WLWR LDWF_AP 0.159 (± 0.08) -0.019 (± 0.088) 3.317 (± 1.747) 0.059 (± 0.028)

WLPR SAMPLE 1.014 (± 0.296) 1.02 (± 0.243) 0.054 (± 2.602) 0.07 (± 0.033)

WLPR SAMPLE_AP 0.171 (± 0.085) 0.043 (± 0.068) -1.906 (± 3.221) 0.05 (± 0.027)

WLPR LDWF 0.739 (± 0.219) 0.716 (± 0.23) -1.445 (± 2.237) 0.073 (± 0.033)

WLPR LDWF_AP 0.171 (± 0.085) 0.004 (± 0.066) -2.522 (± 2.984) 0.065 (± 0.029)

WLR SAMPLE 0.901 (± 0.271) -1.123 (± 0.319) 5.298 (± 2.473) 0.003 (± 0.003)

WLR SAMPLE_AP 0.058 (± 0.079) -2.1 (± 0.309) 3.338 (± 2.091) -0.018 (± 0.018)

WLR LDWF 0.626 (± 0.195) -1.427 (± 0.285) 3.799 (± 1.795) 0.006 (± 0.003)

WLR LDWF_AP 0.058 (± 0.078) -2.139 (± 0.308) 2.722 (± 1.723) -0.002 (± 0.005)

all other estimators for specific datasets and metrics, which high-

lights the impact of the different discrepancy penalties in modelling

different behaviours.𝑊𝐿𝑃𝑅 out-performs all 4 baselines on the

returns dataset in 58% of the data points and an average reliability

that is reduced by 36% relative to the best baseline. In terms of real-

ized volatility,𝑊𝐿𝑊𝑅 has the best estimated portfolios in 33% of

the periods, which is the highest rate between all the estimators we

use (including baselines). 𝐿𝐷𝑊 𝐹_𝐴𝑃 has the closer performance

for realized volatility, with an average of 9.401 (9.397 for𝑊𝐿𝑊𝑅).

As for the currency rates, (WLWR) has the best reliability, and

out-performs the 4 baselines in 43% of the times, with an average

improvement of 3.317 relative to the best baseline.

In terms of realized volatility �̂� , (WLPR) provides the least risky

portfolio in 44% of the cases, with both (WLWR) and (WLPR) show-

ing significant improvements compared to all baselines.

7 CONCLUSION
In summary, we propose a joint optimization framework for simul-

taneously learning covariance matrices over periods under minimal

structural assumptions on covariances and their evolution pattern.

The large-scale optimization problem can be efficiently solved by

our proposed BCD type algorithm. Based on empirical evidence,

our approach leads to smaller estimation errors, better downstream

portfolio optimization performances, reduced model complexity,

and computational efficiency.
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