Information Freshness for Monitoring and Control Over Wireless Networks

Vishrant Tripathi

8th August, 2023

Outline

III. Online Learning

What happens when the functions of AoI are unknown, time-varying and possibly adversarial?

II. Functions of AoI

How to optimize general functions of AoI in single-hop and multi-hop wireless networks?

I. Introduction

1.What is Age of Information (AoI)?

2.How does it relate to monitoring and control?

> • Whittle AoI – Allerton, 2019

• Age Debt – Infocom, 2021 • Online Learning – MobiHoc, 2021

IV. Applications

l.Multi-Agent occupancy grid mapping - simulations

2.Multi-UAV mobility tracking - experiments

Tradeoffs – WiOpt, 2021
WiSwarm – Infocom, 2023

PART I INTRODUCTION

Age of Information (AoI)

Motivation: Why Study AoI?

Real-time applications

- sensing for IoT applications
- control of robot swarms
- vehicle-to-vehicle (V2V) communication
- surveillance and monitoring

Having the freshest available data is essential to system performance

AoI formalizes the notion of freshness

•Low AoI \Rightarrow fresh information \Rightarrow better performance

A Quick Tour

Of The AoI Map

http://webhome.auburn.edu/~yzs0078/AoI.html

PART II FUNCTIONS OF AGE

Warmup: Monitoring A Linear System

• LTI system

 $x_{t+1} = Ax_t + w_t$, where $w_t \sim \mathcal{N}(0, \Sigma)$

- Observing the source has a cost *C*
- Monitor maintains estimates \hat{x}_t
- **Goal**: Minimize monitoring error + sampling cost, i.e.

$$\min_{u_1,...,u_T} \sum_{t=1}^{I} \left(||x_t - \hat{x}_t||^2 + Cu_t \right)$$

Warmup: Monitoring A Linear System

• Key Observation: If last update was received τ timeslots ago, then

1

$$\mathbb{E}\big[||x_t - \hat{x}_t||^2\big] = f(\tau) = \sum_{k=0}^{\tau-1} Tr(A^{k^{\mathsf{T}}}A^k\Sigma)$$

• Monitoring error only depends on how long it has been since last update was received, i.e. **AoI**

 Minimizing error ⇔ Minimizing a function of AoI

Our Model

- N sources sending updates to a base station, only one can transmit at a time
- $A_i(t)$ measures how long it has been since the base station received an update about source *i*
- Cost function $f_i(A_i(t))$ maps AoI to monitoring or control performance
- **Assumption**: $f_i(\cdot)$ is monotonically increasing
- **Goal:** find a scheduling policy that solves

$$\min_{\pi} \left(\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \frac{f_i}{f_i} (A_i^{\pi}(t)) \right] \right)$$

The Whittle Index Approach

Whittle Index - low complexity heuristic with good performance for Restless Multi-Armed Bandit (RMAB) problems.

Steps

- 1. Formulate scheduling/allocation problem as a RMAB
- 2. Use a Lagrangian relaxation to formulate the decoupled problem (dcp)
- 3. Solve the *dcp* and establish *indexability*
- 4. Find an expression for the Whittle Index

Indexability and the Whittle Index

- Whittle (1980s) near-optimal policy can be computed efficiently, given special indexability property
- Indexability of Arm i: Given activation cost C > 0, the set of states for which it
 is optimal to activate the arm decreases monotonically as C increases
- Compute index functions $W_i: S_i \to \mathbb{R}$, which denote how "valuable" it is to activate arm *i* at state s_i

Whittle Index for AoI

- We establish that the functions of AoI problem is *indexable*
- Whittle Index expression for source *i* (given reliable channels)

h

$$W_i(h) = h f_i(h+1) - \sum_{j=1}^n f_i(j)$$

Whittle Index policy

$$\pi(t) = \arg\max_{i} \{W_i(A_i(t))\}$$

Performance Guarantees

- Typically, Whittle Index is **not optimal**
- Optimality results available for
 - symmetric systems using a coupling argument
 - In the limit as system sizes go to infinity via a fluid limit approach
- We establish optimality of the Whittle index for a **finite asymmetric system (N = 2)**
- We also show that **some** index policy is optimal for **N=3**
- Through simulations we observe
 - Whittle is not exactly, but very close to optimal for **N=4**
 - Whittle is **close to optimal** for large system sizes

A Recipe for Whittle Optimality

• Define **strong-switch-type policies**

$$\forall \vec{A} \text{ and } \vec{A'} \text{ such that } A_i \ge A'_i \text{ and } A_j \le A'_j \forall j \neq i$$

If $\pi(A_1, \dots, A_N) = i$, then $\pi(A'_1, \dots, A'_N) = i$

- Show that there exists an optimal policy of strong-switch-type
- Define **index policies** for any set of monotone functions F_1, \dots, F_N

$$\pi(A_1, \dots A_N) = \arg \max_i \{ F_i(A_i) \}$$

- Show that index policies are **equivalent** to strong-switch-type policies
- Show that Whittle Index is the best among index policies (N=2)

 A'_2

The Multi-Hop Problem

- General wireless network with unicast, multicast and broadcast flows, and functions of AoI
- Need to optimize both scheduling and routing decisions
- Age Debt A modified Lyapunov drift approach, similar to Proportional Integral control around a set point
- **Heuristic**, but best performing policy for all single-hop and multi-hop settings studied in literature until now

Age Debt: A Quick Primer

- Network admin provides **target average AoI** cost value α_i for each flow *i*
- Set up virtual queues (debt queues) of the form

$$egin{aligned} Q_i(t+1) &= \left[Q_i(t) + f_iig(A_i(t+1)ig) - lpha_i
ight]^+ \end{aligned}$$
Set up the Lyapunov function $L(t) &= \sum_{i=1}^N Q_i^2(t) \end{aligned}$

 Age Debt Policy (best known policy for multi-hop) - minimize the Lyapunov drift

PART III ONLINE LEARNING

The Cost of Stale Information

- **AoI** proxy for measuring the cost of out-of-date information
- Major Assumption: functions $f_i(\cdot)$ are
 - 1. known beforehand,
 - 2. remain fixed throughout,
 - 3. and are a good proxy for monitoring/control cost
- We ask: What if the AoI to cost mapping is
 - 1. not known in advance,
 - 2. time-varying,
 - 3. and possibly adversarial?

RMAB: An Online Learning Formulation

- Episodes of length *M*, each episode involves solving a new AoI problem
- AoI cost functions remain fixed within the episode
- **Cost functions change across episodes** in an unknown manner *while maintaining indexability*

RMAB: An Online Learning Formulation

- **Q:** Can we design a scheme that learns the best scheduling policy in an online manner?
- Answer:Yes!

Follow the Perturbed Leader

- Recall **learning from experts** and view scheduling policies as experts:
 - 1. Maintain the sum of rewards observed in the past
 - 2. Perturb i.i.d. the history of rewards for each scheduling policy
 - 3. Find the best policy using this perturbed history

• The number of policies scales exponentially in the length of the epoch $\Theta(N^M)$

Thus traditional online learning methods are infeasible

Follow the Perturbed Whittle Index

- **Key Idea 1:** Whittle Index acts like a low complexity optimization oracle for the RMAB problem, so incorporate it in FTPL
- **Key Idea 2:** Instead of perturbing the costs of policies, perturb the reward functions themselves
- **New Challenges** introduced:
 - 1. Create perturbations to **maintain indexability** structure
 - 2. Perturbations are **no longer i.i.d.** per expert/policy
 - 3. Whittle Index is an approximate but **not exact** maximizer
- **Our Contribution:** resolving these challenges!

Algorithm 2: Follow the Perturbed Whittle Leader **Input** : parameter $\epsilon > 0$ 1 Set $F_1^{(i)}(j) = j, \forall i \in \{1, ..., N\}, \forall j \in \{1, ..., M\}$ 2 while $t \in 1, ..., T$ do Set $A^{(1)}, ..., A^{(N)} = 1$ 3 Sample $\delta_t^{(i)}(j) \sim$ uniform in $[0, 1/\epsilon]$, i.i.d. $\forall i \in$ Monotone 4 $\{1, ..., N\}$ and $\forall j \in \{1, ..., M\}$ Perturbation Compute $\gamma_t^{(i)}(j) = \sum_{k=1}^j \delta_t^{(i)}(k), \forall i, j$ 5 Choose scheduling policy 6 $\pi_t = \text{Whittle} \Big(F_t^{(1)} + \gamma_t^{(1)}, ..., F_t^{(N)} + \gamma_t^{(N)} \Big)$ Whittle Index Scheduling Incur loss = $C_t(\pi_t)$ over epoch *t* and observe feedback 7 on $f_t^{(1)}, ..., f_t^{(N)}$ In case of bandit feedback, construct cost estimates 8 $\hat{f}_{t}^{(i)}, \forall i \in \{1, ..., N\}$ using linear interpolation Update 9 $F_{t+1}^{(i)} = \begin{cases} F_t^{(i)} + f_t^{(i)}, \forall i \in \{1, ..., N\}, \text{ if full feedback} \\ F_t^{(i)} + \hat{f}_t^{(i)}, \forall i \in \{1, ..., N\}, \text{ if bandit feedback.} \end{cases}$ Accumulate **Cost Functions** Online Learning, MobiHoc 2021

23

10 end

Regret of FPWL

Given N sources, T epochs, M time-slots per epoch and upper-bound D on cost

$$\mathbb{E}[\mathsf{Regret}_{T}(\mathsf{FPWL})] \leq \alpha T + 2D\sqrt{2MNT}$$

- α measures how close the Whittle-index solution is to optimality in the offline problem
- Specifically, for any two sets of cost functions f and g **assume**

$$C_g(Whittle(f)) - C_g(Opt(f)) \le \alpha$$

PART IV APPLICATIONS

- Multi-agent mapping over nine regions
- Resolution and area covered by map increases with local processing

Video at https://tinyurl.com/MultiAgentMapping

From Theory/Simulations to Implementation

- Significant theoretical progress in AoI optimization over the last decade
- AoI was motivated by real-world monitoring and control applications
- However, system implementations have been rare
- We built a system (WiSwarm) to address this gap

A Mobility Tracking Problem

Our Setup

- Drones with cameras and WiFi but very little computation (RPi Zeros)
- Mobile cars with identifying tags that need to be tracked
- Drones collect video and send to central node for processing
- Fresh information key to good tracking

WiSwarm: An Overview

Experimental Results

- Baseline system (FIFO + WiFi UDP) at most 2 targets at a time
 - Avg. AoI = 0.19 seconds
 - Avg. tracking error = **1.85 meters**
- WiSwarm (LIFO + Whittle UDP) at least 5 targets at a time
 - Avg. AoI = 0.16 seconds
 - Avg. tracking error = **0.36 meters**
- Large performance improvements despite being at application layer, a MAC layer scheduler could produce even larger gains

Video at http://tinyurl.com/WiSwarm-Video

Other Works: Correlated Sources and Aol

- **Observation 1:** Prior works assume decoupled sources
- What happens when sources are coupled or send correlated updates?
- **Partial Answer**: For a simplified model
 - 1. Characterize the benefit of correlation
 - 2. Find policies that take correlation into account
 - 3. Provide performance guarantees

Other Works: Distributed Scheduling

- **Observation 2:** Prior works propose centralized policies
- Can we provide performance guarantees for distributed policies?
- **Partial Answer**: For weighted sum AoI
 - 1. Standard CSMA uses i.i.d. exponential back-off timers
 - 2. Modify back-off timer timers to be dependent on AoI
 - 3. Provide near-optimal performance guarantees

$$Z_i(t) \sim \exp\left(\alpha^{w_i A_i^2(t)}\right)$$

PART V ACKNOWLEDGEMENTS

Questions?