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1. INTRODUCTION

Monitoring and control of dynamical systems are fun-
damental and well-studied problems. Many emerging ap-
plications involve performing these tasks over communica-
tion networks. Examples include: sensing for IoT, control
of robot swarms, real-time surveillance, and environmental
monitoring by sensor networks. Such systems typically in-
volve multiple agents collecting and sending information to
a central entity where data is stored, aggregated, analyzed,
and then possibly used to send back control commands. Due
to the dramatic improvements both in on-device and edge
computing, and in wireless communication over the past two
decades, there has been a rapid growth in the size and scale
of such networked systems.

The central focus of my thesis [1] is understanding how
to optimize the flow of information in networks, in order to
achieve real-time monitoring and control. We make contri-
butions in three directions.

First, we consider the optimization of general cost func-
tions of Age of Information (Aol). Here, we develop com-
putationally efficient scheduling algorithms for optimizing
information freshness in both single-hop and multi-hop wire-
less networks. We further develop an online learning formu-
lation when the cost functions of Aol are unknown and pro-
pose a new online learning algorithm for this setting called
Follow-the-Perturbed-Whittle-Index.

Second, we consider weighted-sum Aol minimization. In
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this setting, we study how correlation impacts information
freshness. We also propose a near-optimal distributed schedul-
ing protocol called Fresh-CSMA for Aol minimization, that
has provable performance guarantees.

Third, we apply our theoretical results to problems in
multi-agent robotics and monitoring — both via simulations
and practical system implementations. We use simulations
to demonstrate significant performance improvements in the
collection of time-varying occupancy grid maps using mul-
tiple robots via the Whittle Index framework. Further, to
demonstrate the benefits of our theoretical contributions, we
build a real system (WiSwarm) for mobility tracking using
a swarm of UAVs, communicating with a central controller
over WiFi. Our experimental results show that, when com-
pared to the standard IEEE 802.11 MAC layer + TCP/UDP,
our system can reduce Aol by a factor of 109x/48x and im-
prove tracking accuracy by a factor of 4x/6x, respectively.

1.1 Age of Information

In multi-agent robotics applications, such as tracking in ad-
versarial environments or search-and-rescue missions, robots
often need to exchange high fidelity data in real-time. This
is the main motivation behind our work. Traditional wire-
less networking solutions optimize for standard performance
metrics such as throughput and delay. However, these tend
to perform poorly when used out-of-the-box for applications
that require real-time performance. A metric called the Age
of Information (Aol), that measures information freshness
of general systems [2, 3, 4], has gained popularity in the net-
working community over the last decade.
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Figure 1: Illustration of the Aol evolution for sample gener-
ation and delivery processes. The first update is generated
at the source at time ¢1 and is delivered to the destination
at time ¢;. The destination now has information about the
source that is t] — t1 old, so Aol drops to A(t]) =t} — t1.

Age-of-Information (Aol) is an end-to-end metric that
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characterizes how old the information is from the perspec-
tive of the destination. Consider a destination receiving
time-stamped updates from a source over a network. Let
7(t) be the time-stamp of the latest update received at the
destination by time ¢t. The Aol associated with this source-
destination pair is then defined as A(t) :=t — 7(t). The Aol
increases linearly with time when no updates are delivered,
representing the information getting older. At the moment
a fresher update from the source is received at the desti-
nation, the value of 7(¢) increases and the Aol reduces to
the delay of the received update. This evolution of the Aol
metric with time is illustrated in Fig. 1.

Typically, Aol represents a measure of distortion between
the state of the system that is expected at the monitor based
on past updates and the actual current state of the sys-
tem. Thus, a larger age corresponds to the monitor having
a higher uncertainty about the current state of the system
being observed. This, in turn, means that ensuring a low av-
erage Aol can lead to higher monitoring accuracy or better
control performance.

While Aol is a proxy for measuring the cost of having out-
of-date information, it may not properly reflect the impact of
stale information on system performance. It turns out that
even for simple monitoring and control applications linear
Aol can be an inaccurate metric to track accuracy or overall
system performance. This has motivated interest in using
general, possibly non-linear cost functions of Aol that reflect
the cost of delayed information more accurately.

1.2 Relation to Monitoring and Control

Through a simple example, we establish why non-linear func-
tions of Aol are key to performing monitoring tasks over
wireless networks.

Consider a linear dynamical system that is being observed
over a costly wireless channel (see Fig. 2). The source to be
monitored evolves as follows:

z(t+1) = Ge(t) + w(t), (1)

where G describes the source dynamics and w(t) ~ N (0, %)
is i.i.d. Gaussian noise in every time-slot.
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Figure 2: Single source monitoring over a wireless channel.

The monitor can, in every time-slot, decided to observe
the state of the source exactly and pay an observation cost
C or estimate the current state of the source based on prior
observations. The goal of the monitor is to minimize the
sum of the monitoring error and observation cost, averaged
over time.

Now consider a scheduling policy 7 that specifies whether
the monitor should sample the source at time-slot ¢ or not,
for every time-slot. This decision is represented by the indi-
cator variable u(t). The optimization problem faced by the
monitor can then be formulated as:
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Figure 3: N sources transmitting updates to a base station
over a wireless channel, with different reliabilities.

In our work, we show that this problem can be converted
to an equivalent problem of the form

arg mgn (lim sup % Z <f(A(t)) + Cu(t)) > , 3)
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where A(t) is the Aol at the monitor of information regard-
ing the source and f(-) is a monotone increasing function

h
given by f(h) = > TT(GkTGkE)
k=0

2. THESIS OVERVIEW

Next, we provide a high-level overview of the technical
contributions of the works that make up [1].

2.1 Real-Time Monitoring and Control

In [5, 6], we utilize the equivalence between optimizing mon-
itoring error/control cost and functions of Aol to formulate
a general model involving multiple sources, where only one
source can send updates at any given time due to interfer-
ence constraints (see Fig. 3). We measure monitoring and
control performance using general nonlinear functions of Aol
fi(A;(t)) and formulate the following optimization problem
over the space of wireless feasible scheduling policies.
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We develop a novel scheduling policy based on the Whit-
tle Index approach that solves this problem and is close to
optimal.

Our work [5] is the first to look at general Aol cost func-
tions and their scheduling with multiple sources. We were
also the first to show that the Whittle Index approach can
be exactly optimal for a finite size asymmetric scheduling
problem.

2.2 Online Learning in Wireless Networks

Continuing along this line of work, we ask a natural question
- what if the cost functions of Aol that we want to optimize
are unknown, time-varying and possible adversarial. This
question is motivated by settings where we do not know
the dynamics of the systems to be monitored or controlled
beforehand, and where the underlying dynamics can also
change over time. A typical example is mobility tracking,
where target positions and velocities can be unknown, time-
varying and adversarial.

Now, not only do we need to optimize scheduling, but



Mobility Tracking Problem: Conceptualization
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Figure 4: WiSwarm: From conceptualization to multi-UAV flight experiments

also learn and adapt to changes in the wireless network. In
[7], we formulate an online learning framework that answers
this question. We develop a novel algorithm called Follow
the Perturbed Whittle Index which incorporates the Whittle
Index into an online learning scheme while providing strong
regret guarantees. This was an especially challenging prob-
lem since online learning for the class of optimization prob-
lems we were interested in had not been looked at before
in literature. We were the first to develop a computationally
efficient way to perform online learning for this general class
of problems, called Restless Multi-Armed Bandits (RMABs).

2.3 Routing and Scheduling in General Net-
work Topologies

A second natural question arose from our work in [5] - how
does one optimize information freshness in general network
topologies, i.e. multi-hop networks?

Solving multi-hop Aol optimization has been one of the
major challenges in the field, similar to multi-hop delay op-
timization. It requires the design of both scheduling and
routing schemes, and techniques and insights from single-
hop optimization do not tend to work well in the multi-hop
context. Our work on Age-Debt [8, 9], inspired by classi-
cal Lyapunov control, is currently the best known general
purpose policy for multi-hop networks. It can handle uni-
cast, multicast or broadcast flows; general cost functions;
and arbitrary network topologies. Our work was the first
to handle the problem in its full generality and our proposed
algorithms currently match or outperforms all prior methods
in numerical experiments.

2.4 Multi-Agent Robotics

Encouraged by our theoretical and numerical results, we
wanted to go back to our original motivations and answer
the following question - do the theoretical insights and frame-

works developed above apply to real-world multi-agent robotic
systems?

To answer this, we first used simulations. In [10], we look
at two problems - multi-agent occupancy grid mapping and
multi-agent ride-sharing. We apply the Aol Whittle Index
framework to these settings, and show that our approach
can a) deliver significantly higher quality and fresher maps
in the first problem and b) shorter wait times for riders in the
second problem [11]. This was the first work to directly apply
ideas from information freshness to problems in robotics and
demonstrate the performance benefits of utilizing networks
tailored to application-specific needs.

Parallel to this, we designed and implemented a new kind
of wireless system for multi-agent robotics [12]. Fig. 4 de-
scribed how we formulated a multi-agent mobility tracking
problem, designed hardware and software systems using the
theoretical insights from our prior work, and then conducted
multi-UAV flight experiments using these systems.

Our system, WiSwarm, outperforms standard network-
ing solutions by an order of magnitude for the multi-UAV
mobility tracking task in real flight experiments [13]. This
verified that our theoretical insights can lead to significant
impact in practical applications.

2.5 Correlated Sources & Distributed Proto-
cols

During our collaborations and discussions with roboticists,
we further realized there were two crucial gaps in the Aol
literature. First, we didn’t know how to handle the moni-
toring or control of sources that are coupled or send corre-
lated updates. Second, we don’t have distributed wireless
scheduling policies (which are much easier to implement in
practice, and also a part of standards like IEEE 802.11WiFi)
with strong information freshness guarantees. Our recent
work has directly addressed these open gaps. Our work [14]



on information freshness with correlated sources (which won
the Best Paper Runner-Up Award at MobiHoc 2022) is the
first work to provide scheduling policies that take correlation
into account. and answers how correlation affects informa-
tion freshness and how it should be utilized for scheduling.
Our algorithm Fresh-CSMA [15], motivated by Carrier Sense
Multiple Access (CSMA) style protocols, has the strongest
known guarantees for distributed protocols in the Aol liter-
ature.

3. FUTURE DIRECTIONS

Multi-Agent Robotics and Computational Offload-
ing: We plan to continue working on the development of
networking systems for multi-agent robotics, along the lines
of [10, 12]. There are recent trends towards computational
offloading to create more efficient and scalable robotics sys-
tems. However, computation offloading, whether at the edge
or the cloud, requires high throughput, low delay and reli-
able wireless networks to ensure that robots can continue to
perform safely and as intended, in real-time, without losing
control. How can we design networking solutions for multi-
agent applications such as search-and-rescue in deep sub-
terranean cave networks, large industrial warehouses, and
fleets of autonomous vehicles while ensuring safe operation
and efficient communication?

Software Defined Networking (for cloud infrastruc-
ture): A large part of traffic engineering, routing and topol-
ogy optimization for modern data centers happens via Soft-
ware Defined Networking (SDN), where centralized controllers
make decisions to optimize performance based on monitor-
ing data that they receive from the entire network. Herein
lies a dilemma. Fresh and accurate monitoring causes huge
overheads, but is necessary to deliver good performance. In-
terestingly, this is the same resource optimization vs. in-
formation freshness dilemma that we have discussed above.
Applying our techniques can provide a very fruitful direc-
tion for research, and avenues for collaboration between
academia and industry.

Federated Learning: Performing federated learning over
resource-constrained wireless networks has received signifi-
cant interest in the networking community over the past few
years. The central question here is also one of resource op-
timization - obtaining gradient information from all users in
the network is too involved and time-consuming, so the cen-
tral aggregator needs to sample gradients from small batches
of users at any given time. How should one go about picking
users to guarantee better performance? What happens when
the underlying learning tasks and datasets change over time?
We plan to use tools from information freshness and online
learning to answer these questions, building on [7].
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