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Novel Biobjective Clustering (BiGC) based on
Cooperative Game Theory

Vikas K. Garg, Y. Narahari, Fellow, IEEE, and M. Narasimha Murty

Abstract—We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games,
and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is
convex and this leads to an efficient biobjective clustering algorithm which we call BiGC. The algorithm yields high quality clustering
with respect to average point-to-center distance (potential) as well as average intra-cluster point-to-point distance (scatter). We
demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multi-objective
techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark datasets. We also show
that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.
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1 INTRODUCTION

Clustering is the unsupervised assignment of data points to
subsets such that points within a subset are more similar
to each other than points from other subsets. Clustering
is a very well studied problem in data mining, machine
learning, and related disciplines primarily because of its
wide applicability in domains so diverse as climate (Stein-
bach et. al [46]), microarray data analysis (Jiang et. al [25]),
data streams (Zhang et. al [56], Chen and Tu [10]), privacy
preserving mining (Kabir, Wang, and Bertino [26], Vaidya
and Clifton [48]), and subsequence mining (Wang et. al,
[51]), etc. Besides, clustering has also been used in solving
extremely large scale problems, see for example, Li et al.
[33]. Clustering also acts as a precursor to many data pro-
cessing tasks including classification (Jain, Murty and Flynn
[23]).

Typically, the different clustering techniques strive to
achieve optimal clusters with respect to some objective
function, for instance, the k-means based algorithms seek to
minimize the average squared distance between each point
and its closest cluster center. In this work, we focus on two
key objectives, potential and scatter, simultaneously: we seek
to minimize a) the average distance between each point
and its closest center (potential), and b) the average intra-
cluster point-to-point distance (scatter). We emphasize that
incorporating this gestalt or collective behavior of points
within each cluster is fundamental to the very notion of
clustering. Our work is strongly motivated by what has been
variously described in the literature as the context-sensitive
information or coherency (Bulo’ and Pelillo [4]): clustering
should be done not just on the basis of distance between
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a pair of points but also on their relationship to other data
points.

In this paper, we propose a promising new approach to
clustering based on cooperative game theory. Our idea is to
map cluster formation to coalition formation, using Shapley
value, in an appropriately defined convex game setting.
Shapley value is a fair solution concept in that it divides
the collective or total value of the game among the players
according to their marginal contributions in achieving that
collective value. We strive to make best use of this intrinsic
property of marginal contribution based fairness for efficient
clustering.

In his work on unification of clustering, [28], Kleinberg
considered three desirable properties (scale invariance, rich-
ness, and consistency) and proved an impossibility theorem,
showing that no clustering algorithm satisfies all of these
properties simultaneously. In this paper, we introduce order
independence as another desirable property, and provide
necessary and sufficient conditions for order independence.
Our algorithm for clustering, BiGC, satisfies scale invari-
ance, richness, and order independence.

1.1 Motivation

Clustering is the assignment of data points to subsets such
that points within a subset are more similar to each other than
points from other subsets. According to Backer and Jain [3],
“in cluster analysis, a group of objects is split into a number
of more or less homogeneous subgroups on the basis of an
often subjectively chosen measure of similarity (i.e., chosen
subjectively based on its ability to create “interesting” clus-
ters), such that the similarity between objects within a subgroup
is larger than the similarity between objects belonging to different
subgroups“. Similar views are echoed in other works on
clustering, e.g., Xu and Wunsch [52]. We believe that most of
the existing popular algorithms do not completely reflect the
intrinsic notion of a cluster, since they try to minimize the
distance of every point from its closest cluster representative
alone, while overlooking the importance of other points
in the same cluster. Although this approach succeeds in
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optimizing the average distance between a point and its
closest cluster center, it conspicuously fails to capture what
has been described by Michalski and others as the “context-
sensitive” information [36]: clustering should be done not
just on the basis of distance between a pair of points, A
and B, but also on the relationship of A and B to other
data points. Therefore, there is a need for an algorithm
that gives an optimal solution in keeping both the point-
to-center and point-to-point distances, within a cluster, to
a minimum. We emphasize that incorporating the gestalt
or collective behavior of points within the same cluster
is fundamental to the very notion of clustering, and this
provides the motivation for our work.

In addition, it is more intuitive to characterize similarity
between different points as compared to the distance be-
tween them since the distance measure may not necessarily
be scale invariant. Further, as described later, there are
certain intrinsic properties that are crucial in the context
of clustering. The Shapley value is an important solution
concept, from cooperative game theory, that satisfies these
properties and thereby captures key natural criteria for
clustering.

1.2 Related Work

The machine learning and pattern recognition literature
abounds in algorithms on clustering. The techniques such
as Partitioning Around Medoids (PAM) [27] are based on
vector quantization. The density estimation based models
such as Gaussian Mixture Density Decomposition (GMDD)
[57], information theory based models such as Bregman
Divergence based clustering [5], graph theory based models
such as Normalized Cut [35], [45] and Correlation Cluster-
ing [6], [30], neural networks based models such as Self-
Organizing Map (SOM) [29], kernel based models such as
Support Vector Clustering (SVC) ( [7], [53]) and Maximum
Margin Clustering [34] and data visualization based models
such as Principal Component Analysis (PCA) [22] have
received considerable attention from the research commu-
nity. Miscellaneous other techniques such as Evolutionary
Clustering [9], Projected Clustering ( [54], [37]), Subspace
Clustering [50], and Ensemble Clustering [17], etc. have also
been proposed. Some work has been done on clustering
using evolutionary games [31] and quantum games [32]. We
refer the reader to [52] and [23] for an extensive overview of
the different clustering methods.

Multi-objective Optimization based algorithms for clus-
tering (Handl and Knowles [20], Suresh et al. [47]) have
gained prominence recently. A game theoretic approach,
based on Nash equilibrium, has been proposed (Gupta and
Ranganathan [18]) to simultaneously optimize the com-
paction and equi-partitioning of spatial data.

The Leader algorithm [14] is a prototype incremental
algorithm that dynamically assigns each incoming point to
the nearest cluster. For a known value of k, the k-means
algorithm and its variants [2], [21], [39], based on vector
quantization are the most popular clustering algorithms.
For the rest of this paper, by k-means, unless specified
otherwise, we refer to a very specific and widely used k-
means implementation: the Lloyd’s algorithm [39], which
aims to find a clustering with a good k-means cost.

1.3 Contributions and Outline

In this paper, we make the following contributions:

• We formulate the problem of clustering as a trans-
ferable utility (TU) cooperative game among the data
points and show that the underlying characteristic
form game is convex.

• We propose a novel approach, BiGC, for clustering
the data points based on their Shapley values and
the convexity of the proposed game theoretic model.
BiGC provides high quality clustering with respect
to both the potential (average distance between each
point and its closest center) and the scatter (average
intra-cluster point-to-point distance). To the best of
our knowledge, this is the first approach to clustering
that considers these two objective functions simulta-
neously.

• We demonstrate the efficacy of our approach through
detailed experimentation. BiGC is compared with the
popular k-means (and its state-of-the-art variants, k-
means++ and HSI), Leader, Agglomerative Linkage,
and several Multi-objective Optimization algorithms;
the results of our experiments clearly show that BiGC
provides a superior quality of clustering.

• We also show that BiGC satisfies certain desirable
clustering properties such as scale invariance, order
independence, and richness.

The rest of this paper is organized as follows. In §2,
a succinct background encompassing important concepts
from cooperative game theory is provided. Our Shapley
value based clustering paradigm is presented in §3, along
with BiGC that computes a closed form expression for
Shapley value using the convexity of the underlying game.
A detailed analysis of the experimental results is carried out
in §4. We then characterize the ordering effects, and discuss
the satisfiability of key clustering properties such as scale
invariance, richness, and order independence by BiGC in
§5. Finally, we present a summary of our work and highlight
some directions for future work in §6.

2 PRELIMINARIES

A cooperative game with transferable utility (TU) [38] is
defined as the pair (N, v) where N = {1, 2, ..., n} is the set
of players and v : 2N → R is a mapping with v(φ) = 0. The
mapping v is called the characteristic function or the value
function. Given any subset S of N , v(S) is often called the
value or the worth of the coalition S and represents the
total transferable utility that can be achieved by the players
in S, without help from the players in N \ S. The set of
players N is called the grand coalition and v(N) is called
the value of the grand coalition. In the sequel, we use the
phrases cooperative game, coalitional game , and TU game
interchangeably.

A cooperative game can be analyzed using a solution
concept, which provides a method of dividing the total value
of the game among individual players. We describe below
two important solution concepts, namely the core and the
Shapley value.
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2.1 The Core
A payoff allocation x = (x1, x2, ..., xn) denotes a vector in
Rn with xi representing the utility of player i where i ∈ N .
The payoff allocation x is said to be coalitionally rational if∑
i∈C xi ≥ v(C), ∀C ⊆ N . Finally, the payoff allocation x

is said to be collectively rational if
∑
i∈N xi = v(N). The core

of a TU game (N, v) is the collection of all payoff allocations
that are coalitionally rational and collectively rational. It can
be shown that every payoff allocation lying in the core of a
game (N, v) is stable in the sense that no player will benefit
by unilaterally deviating from a given payoff allocation in
the core. The elements of the core are therefore potential
payoff allocations that could result when rational players
interact and negotiate among themselves.

2.2 The Shapley Value
The Shapley value is a solution concept that provides a
unique expected payoff allocation for a given coalitional
game (N, v). It describes an effective approach to the fair
allocation of gains obtained by cooperation among the
players of a cooperative game. Since some players may
contribute more to the total value than others, an important
requirement is to distribute the gains fairly among the
players. The concept of Shapley value, which was devel-
oped axiomatically by Lloyd Shapley, takes into account the
relative importance of each player to the game in deciding
the payoff to be allocated to the players. We denote by

φ(N, v) = (φ1(N, v), φ2(N, v), . . . , φn(N, v))

the Shapley value of the TU game (N, v). Mathematically,
the Shapley value, φi(N, v), of a player i, ∀v ∈ R2n−1, is
given by,

φi(N, v) =
∑

C⊆N−i

|C|!(n− |C| − 1)!

n!
{v(C ∪ {i})− v(C)}

where φi(N, v) is the expected payoff to player i and N − i
denotes N \ {i}.

The Shapley value is the unique mapping that satisfies
three key properties: linearity, symmetry, and carrier prop-
erty [38]. The Shapley value of a player accurately reflects
the bargaining power of the player and the marginal value
the player brings to the game.

2.3 Convex Games
A cooperative game (N, v) is a convex game [44] if

v(C) + v(D) ≤ v(C ∪D) + v(C ∩D), ∀C,D ⊆ N

Equivalently, a TU game (N, v) is said to be convex if
for every player i, the marginal contribution of i to larger
coalitions is larger. In other words,

v(C ∪ {i})− v(C) ≤ v(D ∪ {i})− v(D),
∀C ⊆ D ⊆ N − {i}, i ∈ N

where the marginal contribution m(S, j) of player j in a
coalition S is given by,

m(S, j) = v(S ∪ {j})− v(S), S ⊆ N, j ∈ N, j /∈ S.

A very important property is that if a TU game (N, v)
is convex, then the core of the game is non-empty and
moreover, the Shapley value belongs to the core.

2.4 Shapley Value of Convex Games
Consider a permutation π of players in the game. Then, for
any of a possible |N |! such permutations, the initial segments
of the ordering are given by

Tπ,r = {i ∈ N : π(i) ≤ r}, r ∈ {1, ..., |N |}

where Tπ,0 = {} and Tπ,|N | = N . Note that π(i) refers to the
position of the player i in the permutation π. To determine
the core for a particular ordering π, we solve the equations

xπi (Tπ,r) = v(Tπ,r), r ∈ {1, ..., |N |}.

The solution to these equations defines a payoff vector xπ

with elements given by

xπi = v(Tπ,π(i))− v(Tπ,π(i)−1), ∀i = 1, 2, ..., |N |.

In fact, the payoff vectors xπ precisely represent the extreme
points of the core in convex games. Moreover, it is known
[44] that the Shapley value for a convex game is the center
of gravity of xπ . Thus, if Π is the set of all permutations of
N , then the Shapley value of player i can be computed as

φi =
1

|N |!
∑
π∈Π

xπi (1)

3 SHAPLEY VALUE BASED CLUSTERING

A central idea of this work is to map cluster formation to
coalition formation in an appropriately defined TU game.
The usage of Shapley value for clustering is in many ways
natural as shown by the interpretation of the axioms of
Shapley value in the context of clustering:

• Symmetry (order independence): For a game (N, v)
and a permutation π on N , this axiom asserts that∑

i∈N
φi(N, v) = φπ(i)(N, πv)

Symmetry is extremely significant for achieving order
independence, another desirable clustering property.
Informally, we want the algorithms to yield the same
final clustering across different runs, irrespective of
the sequence in which data points are provided as
input.

• Preservation of Carrier (outlier detection): For any
game (N, v) such that v(S

⋃
{i}) = v(S) ∀S ⊆ N ,

this axiom asserts that φi(N, v) = 0. This property
implies that if a point does not contribute to the
overall worth of a cluster, then it gets no incentive to
become a member of that cluster. This takes care of
the density issues since the outliers or the points in
sparse regions are well separated from the points in
the high density regions.

• Additivity or Aggregation (scale invariance): For any
two games, (N, v) and (N,w),

φi(N, v + w) = φi(N, v) + φi(N,w), where

(v + w)(S) = v(S) + w(S)

Additivity implies the linearity property: if the payoff
function v is scaled by a real number α, then the
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Shapley value is also scaled by the same factor. That
is, φi(N,αv) = αφi(N, v). Linearity is essential for
achieving scale invariance with respect to the value
function.

• Pareto Optimality (gestalt behavior): For any game
(N, v),

∑
i∈N

φi(N, v) = v(N). As an implication of

this property, the overall worth that results because
of the presence of every point in the dataset is dis-
tributed entirely among all the data points, and this
characterizes the gestalt behavior.

In fact, Shapley value is the unique solution concept
that satisfies these axioms simultaneously [38], and hence
provides a well-motivated and compelling approach for
clustering.

3.1 Cooperative Game Model
Consider a datasetX = {x1, x2, ..., xn} of n input instances.
Given the dataset X , define a function, d : X × X →
<+∪{0}, where d(xi, xj) ∀xi, xj ∈ X indicates the distance
between xi and xj , with d(xi, xi) = 0; d can be any distance
metric such as the Euclidean distance, for instance, depend-
ing on the application domain. Let f

′
: <+∪{0} → [0, 1) be

a monotonically non-decreasing dissimilarity function over
d such that f

′
(0) = 0. Define a corresponding similarity

mapping, f : <+ ∪ {0} → (0, 1], such that f(a) = 1− f ′
(a).

The problem of clustering can be viewed as grouping to-
gether those points which are less dissimilar as given by f

′

or equivalently, more similar as indicated by f .
We set up a cooperative game (N, v) among the input

data points in the following way. In this setting, each of the
n points corresponds to a player in this game, thereby |N | =
n. Every player interacts with other players and tries to form
a coalition or cluster with them, in order to maximize its
value1. Now, we assign v({xi}) = 0, for all xi such that
xi is not a member of any coalition. Further, define for a
coalition T ,

v(T ) =
1

2

∑
xi,xj∈T
xi 6=xj

f(d(xi, xj)) (2)

We emphasize the relevance of defining the value function
v(.) for a coalition in this way. Our approach computes the
total worth of a coalition as the sum of pairwise similarities
between the points. Note that this formulation elegantly
captures the notion of clustering in its natural form: points
within a cluster are similar to each other.

3.2 Convexity of the Game
Theorem 1. Define the value of an individual point xi,
v({xi}) = 0 ∀i ∈ {1, 2, ..., n}, and that of a coalition T of

n data points, v(T ) =
1

2

∑
xi,xj∈T
xi 6=xj

f(d(xi, xj)), where f is a

1. Note that the grand coalition has the maximum overall worth of
all coalitions; however, Shapley value depends on the ”average increase
in worth” across all valid subsets rather than the overall worth. This is
important in order to ensure that an appropriate number of clusters is
obtained instead of just one.

similarity function. In this setting, the cooperative game (N, v) is
a convex game.

Proof. Consider any two coalitions C andD, C ⊆ D ⊆ X\{xp}, where
xp ∈ X . Then,
v(D ∪ {xp})− v(C ∪ {xp})

=
1

2

∑
xi,xj∈D
xi 6=xj

f(d(xi, xj)) +
∑
xi∈D

f(d(xi, xp)

−
1

2

∑
xi,xj∈C
xi 6=xj

f(d(xi, xj))−
∑
xi∈C

f(d(xi, xp))

=
1

2

∑
xi,xj∈D\C
xi 6=xj

f(d(xi, xj)) +
∑

xi∈D\C
xj∈C

f(d(xi, xj))

+
∑

xi∈D\C

f(d(xi, xp))

= v(D)− v(C) +
∑

xi∈D\C

f(d(xi, xp))

≥ v(D)− v(C) (since f : <+ ∪ {0} → (0, 1])

Next we show that the points which are close to each
other have nearly equal Shapley values.

Theorem 2. Any two points xi, xt, such that d(xi, xt) ≤ ε,
where ε → 0, in the convex game setting of §3.1 have almost
equal Shapley values.

Proof. As explained in §2.4, the Shapley value of a point xi is given by,

φi =
1

n!

∑
π∈Π

[
v(Tπ,π(i))− v(Tπ,π(i)−1)

]

=
1

n!

∑
π∈Π

[
∑

π(p)≤π(i)
π(q)<π(p)

f(d(xp, xq))−
∑

π(p)≤π(i)−1
π(q)<π(p)

f(d(xp, xq))]

=
1

n!

∑
π∈Π

∑
π(p)<π(i)

f(d(xi, xp))

=
1

n!

∑
π∈Π

∑
π(p)<π(i)

[1− f
′
(d(xi, xp))]

=
1

n!

∑
π∈Π

[π(i)− 1]−
1

n!

∑
π∈Π

∑
π(p)<π(i)

f
′
(d(xi, xp))

The first term on the right is a sum that is invariant for each point over
all permutations. The second term can be expressed as, D(i)

=
1

n!

∑
π∈Π

∑
π(p)<π(i)
d(xi,xp)≤ε

f
′
(d(xi, xp)) +

1

n!

∑
π∈Π

∑
π(p)<π(i)
d(xi,xp)>ε

f
′
(d(xi, xp))

It follows immediately using the definition of f
′

from §3.1, for xt,
t ∈ {1, 2, . . . , n}, t 6= i such that d(xi, xt) ≤ ε → 0, we have
f
′
(d(xi, xt)) → 0, and f

′
(d(xi, xp)) → f

′
(d(xt, xp)), thereby imply-

ing D(t)→ D(i).

Note that Theorem 2 does not say anything about points
that are far apart from each other. In particular, it does not
forbid points, away from each other, from having similar
Shapley value.
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3.3 The BiGC Algorithm
Algorithm 1 outlines our approach to clustering. BiGC takes
as input a threshold parameter of similarity, δ, in addition to
the dataset to be clustered. First, the Shapley value of each
player is computed. Then, the algorithm iteratively chooses,
from amongst the points not yet clustered, the point xt with
the current highest Shapley value as a new cluster center,
and assigns all those points that are at least δ-similar to xt,
to the same cluster as xt2. That is to say, we use δ as a
threshold to ensure a) that nearby points, which tend to have
almost equal Shapley value, are assigned to the same cluster,
and b) the different cluster centers are reasonably far apart
for input to the k-means algorithm. This ensures that the
initial cluster centers thus chosen, while still accounting for
the gestalt behavior, are well apart to provide an excellent
seeding for centroid based algorithms like k-means3, k-
medoids, ISODATA, Genetic k-means, and fuzzy c-means
[14].

For example, BiGC can be used in conjunction with
the k-medoid algorithm by using the initial cluster centers,
based on the Shapley value, as the initial medoids. Like-
wise, BiGC can be used with DBSCAN, a density based
clustering algorithm [8], by choosing the point with the
highest Shapley value as the initial ”core” point, and so
on. Each of the center based algorithms typically strives
to optimize a particular objective function; to be consistent
with the objectives of this work, we focus on the k-means
algorithm that minimizes potential or the average point-
to-center distance. Furthermore, we note that Algorithm 1
can be easily adapted to discard outliers by adding a step
wherein all those clusters that are assigned fewer points
than a minimum predefined number are discarded. The
working of BiGC can be easily understood by applying
Algorithm 1 to a simple one-dimensional data set of 10
points (see Fig. 1 and follow the step-by-step description
given therein).

3.4 Exact Computation of Shapley Value in Quadratic
Time
The exact computation of Shapley values for n players, in
general, is computationally a hard problem since it involves
taking the average over all the n! permutation orderings.
However, as mentioned earlier, the Shapley value for a
convex game is the center of gravity of the extreme points
of the non-empty core. For our choice of value function,
v(T ), we can efficiently compute the Shapley value using
the convexity result in Theorem 1, as shown next.

Theorem 3. The Shapley value, for each player xi in the convex
game setting of §3.1, is given by

φi =
1

2

∑
xj∈X
j 6=i

f(d(xi, xj))

2. The points with almost equal Shapley value can be conceptualized
as belonging to the same ”class” but not necessarily the same cluster.
Hence, taking a cue from Theorem 2, our heuristic ensures that only
sufficiently close points from each class (as determined by δ) are
clustered together.

3. If case of k-means, an example of a rather simplistic but bad
heuristic would be to feed the top k points, based on Shapley value, to
the algorithm since many points in close vicinity to each other would
be taken as cluster centers.

Algorithm 1 BiGC
Input: data X = {x1, x2, ..., xn} and threshold similarity
δ ∈ (0, 1]
Output: Set of clusters

for i = 1 to n do
φi =

1

2

∑
xj∈X
j 6=i

f(d(xi, xj));

end for
Initialize Q = X , K = ∅;
repeat
t = argmax

i:xi∈Q
φi;

K = K ∪ {xt};
Pt = {xi ∈ Q : f(d(xt, xi)) ≥ δ};
Q = Q \ Pt;

until Q = ∅;
Run any centroid based algorithm (such as the k-means)
with the cluster centers in K ;

Fig. 1. Illustration of BiGC using a simple example: (a) sample one-
dimensional data points (pluses), (b) initial cluster centers (circles)
based on Shapley value and δ, (c) final cluster centers (filled circles)
on running a center based algorithm (k-means here), and (d) two output
clusters (rectangles and diamonds).

Proof. Since the underlying game is convex, therefore, the Shapley
value of xi can be computed using (1) as

φi =
1

n!

∑
π∈Π

[
v(Tπ,π(i))− v(Tπ,π(i)−1)

]
which can be re-written, using (2), as

φi =
1

n!

∑
π∈Π

∑
π(j)<π(i)

f(d(xi, xj))

=
1

n!
[

∑
π(i)=1

π(j)<π(i)
π∈Π

f(d(xi, xj)) +
∑

π(i)=2
π(j)<π(i)
π∈Π

f(d(xi, xj))

+ . . .+
∑

π(i)=n
π(j)<π(i)
π∈Π

f(d(xi, xj))]

Now, the total number of permutations for a fixed index i is (n − 1)!;
and, therefore summing over all such permutations, every player other
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than xi occurs exactly
(n− 1)!

(n− 1)
times in each of the preceding positions,

{1, 2, . . . , (i− 1)}. Then, the result follows from

φi =
(n− 1)!

(n− 1)n!
[1 + 2 + . . .+ (n− 1)]

∑
xj∈X
j 6=i

f(d(xi, xj))]

We emphasize that this intuitively elegant closed form
expression for computing the Shapley value is a direct
consequence of the choice of our value function that BiGC
exploits, as shown in Algorithm 1, to compute the Shapley
value exactly in quadratic time.

3.5 Computing Shapley value Approximately in Linear
Time

BiGC computes exactly the Shapley value in O(n2) time.
The time complexity can be further reduced if we approxi-
mate the Shapley value by averaging marginal contributions
over only p random permutations, where p << n! (since
the Shapley value of a convex game is represented by the
center of gravity of the core). Then, the error resulting
from this approximation can be bounded according to the
concentration result proved in the following lemma.

Lemma 1. Let Φ(p) = (φ1(p), φ2(p), . . . , φn(p)) denote the
empirical Shapley values, of n data points, computed using p
permutations. Then, for some constants ε, c, and c1, such that
ε ≥ 0 and c, c1 > 0,

P (|Φ(p)− E(Φ(p))| ≥ ε) ≤ c1e−cpε
2

Proof. Define S =

p∑
i=1

Yi, where Y1, Y2, . . . , Yp denote p independent

random permutations of length n, corresponding to p n-dimensional
points, randomly chosen from the boundary of the convex polyhedron.
Clearly, S is a random variable. Now, applying Hoeffding-Chernoff’s
inequality, we can find constants c1, c2, and t, 0 ≤ t ≤ pE(S), and
c1, c2 > 0, such that

P (|S − E(S)| ≥ t) ≤ c1e
−
c2t2

pE(S)

⇒ P (|S − E(S)| ≥ pε) ≤ c1e
−
c2pε2

E(S)

(substituting t = pε)

⇒ P (
1

p
|S − E(S)| ≥ ε) ≤ c1e

−
c2pε2

E(S)

⇒ P (|Φ(p)− E(Φ(p))| ≥ ε) ≤ c1e
−
c2pε2

E(S)

⇒ P (|Φ(p)− E(Φ(p))| ≥ ε) ≤ c1e−cpε
2

(since Φ(p) =
S

p
)

4 EXPERIMENTAL RESULTS

We carried out extensive experimentation to compare BiGC
with state-of-the-art algorithms on several real benchmark
datasets. We present a detailed analysis of our results in this
section.

4.1 Evaluation Methodology

To be consistent with the objectives of this work, we mea-
sured the quality of clustering in terms of the following two
parameters,

• α =
1

n

∑
xi∈X

||xi−xk||2, where xk is the representative

of cluster, Ck ∈ C , to which xi is assigned.

• β =
1

|C|
∑

xi,xj∈Ck

Ck∈C

||xi − xj ||2

|Ck|(|Ck| − 1)

where C is the set of clusters to which xi ∈ X =
{x1, x2, . . . , xn} is assigned. The potential, α, quantifies the
deviation of data points from the representative element
while the scatter, β, captures the spread among different
elements assigned to the same cluster. Clearly, the lower
the values of α and β, the higher the quality of clustering.
Furthermore, β also satisfies the desirable loss conformity
requirement of a good clustering quality measure [1]. More-
over, we adopted the following standard cluster validity
criteria:

(A) Rand Statistic: The Rand Index (RI) [41] estimates
the quality of clustering with respect to the true
(known) classes of the data. It measures the per-
centage of correct decisions made by the algorithm.

Mathematically, RI =
TP + TN

TP + FP + FN + TN
,

where TP , FP , FN , and TN are the number of
true positives, false positives, false negatives, and
true negatives respectively.

(B) F-measure: RI weights false positives and false neg-
atives equally, which may be undesirable in cer-
tain applications. The F-measure [42]4 addresses
this issue by weighting recall using a parameter

W ≥ 0. Mathematically, FW =
(W 2 + 1)PR

W 2P +R
,

where the precision P =
TP

TP + FP
, and the recall

R =
TP

TP + FN
.

(C) Silhouette Width: The Silhouette Index (SI) [43] is a
validation technique, for model selection in cluster
analyses, that considers both intra-cluster and inter-
cluster distances to evaluate clustering. Mathemati-

cally, SI =
1

n

n∑
i=1

bi − ai
max(bi, ai)

, where ai denotes the

average distance between i and all other points in
the same cluster; bi denotes the average distance
between i and the points in the nearest other cluster.

The higher the values of RI, F-measure and SI, the better
the quality of clustering. Furthermore since social fairness is
the primary characteristic of a game theoretic optimization
methodology, we used the Jain’s Fairness Index (JFI) [24]

4. It is common in literature to consider just the case where W = 1,
when the F-measure is simply the harmonic mean of precision and
recall.
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to measure the fairness quantitatively. Mathematically, for
num objectives,

JFI =

(
num∑
i=1

zi

)2

num ∗
num∑
i=1

z2
i

,

where zi denotes the improvement in the ith objective. A
high JFI signifies that the algorithm optimizes the objectives
with almost equal priority [18].

We conducted an experimental study on a number of
real-world datasets: Wine, Iris, Spam, Cloud, and Intrusion5.
We implemented code in Matlab without any optimizations,
and averaged the results over 30 runs to account for statisti-
cal significance. We chose Euclidean distance as our distance
metric d, and set the dissimilarity between any two data

points xi and xj , f
′
(d(xi, xj)), to

d(xi, xj)

dmax + 1
where dmax de-

notes the maximum distance between any two data points.
We emphasize BiGC is generic in that any monotonically
non-decreasing dissimilarity function f

′
: <+∪{0} → [0, 1)

such that f
′
(0) = 0 can be used to define a correspond-

ing similarity mapping, f : <+ ∪ {0} → (0, 1], where
f(a) = 1− f ′

(a).

4.2 Comparison with Center based Algorithms
The Leader algorithm [14] dynamically assigns each incom-
ing point to the nearest cluster obeying the pre-specified
distance threshold. BiGC can be viewed as an optimal uni-
fication of the Leader and the center based algorithms since
the similarity threshold can be viewed as an extension of
the idea of the distance threshold. Furthermore, since BiGC
may be viewed as a technique to choose k suitable initial
cluster centers, for a fair evaluation, we also compared BiGC
with the the well-established heuristics, Hochbaum-Shmoys
initialization (HSI) [21] and the k-means++ algorithm [2].
Further, since the Leader algorithm does not take δ as an
input parameter, we executed the Leader algorithm for
different distance thresholds, across different orders, and
observed the number of clusters. Then, we modulated δ to
obtain almost the same number of clusters. Likewise, we
varied δ for adjusting the BiGC algorithm to the number of
clusters used in the k-means. Finally, we averaged the α and
β values for a fixed number of clusters.

Table 1 shows the α and β values resulting from the
different algorithms on the Spam dataset. BiGC clearly out-
performs all the other algorithms on both the parameters.
While the improvement in performance with respect to α
by itself is remarkable (Fig. 2), the gains in terms of β are
nothing short of spectacular, as evident from Fig. 3. Similar
results were obtained with the Intrusion dataset (Table 2). To
corroborate the efficacy of our approach, we also conducted
experiments wherein only one iteration of k-means in BiGC
was carried out on the initial centers obtained using Shapley
value and similarity threshold. We compared the α and β
values thus obtained with those of the k-means algorithm

5. These datasets are publicly available as online
archives at the UCI Machine Learning Repository:
http://archive.ics.uci.edu/ml/datasets/

allowed to proceed till convergence or a maximum of 100
iterations. As indicated by Fig. 8, BiGC still outperforms the
k-means algorithm. Further, to be sure that the initial cluster
centers derived from Shapley value play a crucial role, we
compared the average performance achieved using a single
iteration of k-means, on randomly chosen centers, with
that allowed the complete execution (Fig. 4). We observe
that there is a wide gap between the α and the β values
resulting from the two. This contrasts with BiGC where the
quality of clustering obtained does not vary significantly
with the number of iterations. Moreover, the observation
that choosing the initial cluster centers, taking into consider-
ation their ”global” suitability as captured using the Shapley
value, provides excellent clustering with respect to α as well
justifies our emphasis on gestalt clustering.

To firmly establish the efficacy of our approach, we
also compared BiGC with the state-of-the-art k-means++
initialization, which is guaranteed to find a solution that is
O(log k)-competitive to the optimal k-means solution with
respect to α [2]. We observe, from the results shown in [2],
that there is hardly anything to choose between BiGC and k-
means++ in terms of α; in particular, both produce excellent
quality of clustering. However, BiGC is a conspicuously
better algorithm in terms of β, e.g., Fig. 5(a) shows the
results of comparison on the cloud dataset. Similarly, as
shown in Fig. 5(b), BiGC registers an improvement to the
tune of 60-70% over k-means++ on Spam and Intrusion as
well. Moreover, as shown in Fig. 6, BiGC outperforms k-
means and k-means++ not only in terms of Rand Index but
also F -measure. This can be attributed to the fact that BiGC,
in general, has a much higher recall than these algorithms.
Thus, overall, BiGC is a decisively better algorithm than the
k-means++.

4.3 Comparison with Multi-objective Optimization Al-
gorithms
The center based algorithms are intrinsically designed to-
ward optimizing a single objective. To put things in a better
perspective, we also compared BiGC with the (complete)
Agglomerative Linkage algorithm [14], which takes into
account all pairs of distances while making a decision to
merge two clusters. In other words, one of the objectives
that complete linkage tries to optimize is similar to β. As a
result, the complete linkage algorithm performs better than
other variants like single linkage in terms of β, but worse
in terms of α6. This observation is corroborated by Fig. 9 ;
in particular, BiGC performs better than complete linkage
in terms of α, whereas, both algorithms have very close
values of β. This further endorses the motivation of this
work: BiGC bridges the gap in the quality of clustering with
respect to both α (like center based algorithms) and β (like
complete and average agglomerative linkage algorithms).

Finally, we also compared BiGC with MOCK [20] and
several other state-of-the-art Multi-objective Optimization
based techniques like PDE, MODE, DEMO, NSDE, and
NSGA-II [47]. Fig. 10 shows the results in terms of the Sil-
houette Index on the Iris and Wine datasets. We observe that
BiGC registers a much better value than the other algorithms

6. For brevity, we omit the results of our experiments using single
and average linkage algorithms.
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thereby implying correct clustering of a considerably greater
number of points.

4.4 Sensitivity Analysis
4.4.1 Selection of δ
We also verified experimentally the impact of varying the
similarity threshold δ on the number of clusters obtained
using BiGC. Fig. 7 (a) shows the results on the Spam dataset.
As expected, there is an increase in the number of clusters
with an increase in δ. We observe that beyond a certain value
of δ (close to 0.98 in case of Spam), there is a progressively
sharp increase in cluster count. Therefore, we can use this
”knee” of the δ-C curve as a heuristic to find a reasonable
number of clusters. In general, the exact δ-C curve obtained,
might depend on the particular dataset, and alternative
ways of determining the appropriate δ may have to be
devised, similar in spirit to the work done on k-means [19].

4.4.2 Execution Time
Finally, we analyze the time taken by the BiGC algorithm.
In our experiments, we also observed that although BiGC
is of complexity O(n2), in practice, the actual time it takes
is quite low since it tends to converge rapidly, due to an
appropriate selection of initial cluster centers. On Spam,
for instance, we observed that BiGC with one iteration
of k-means generally took less time than k-means (except
for the case where number of clusters was low), and this
effect was more pronounced as the number of clusters
was increased. This is understandable since computing the
pairwise similarities is the predominantly time consuming
step in BiGC, while the number of iterations has a marked
influence on the computational cost of k-means. Similar be-
havior was observed with other datasets (Intrusion, Cloud,
Wine), however for brevity, we omit a detailed analysis.
Thus, for practical purposes, a single iteration of k-means
on the initial centers obtained from BiGC yields excellent
clustering in a reasonable time. Further, we found that if
the similarity threshold (δ) is kept fixed, α does not increase
significantly with a decline in the number of permutations,
p (Wine dataset, Fig. 7 (b)), thereby supporting the result in
Lemma 1. Similar observations were made with respect to
β. This indicates we can further bring down the execution
time of BiGC at a slight expense of the quality of clustering.

4.4.3 Fairness
We observe, from Fig. 5(c) and Fig. 9(c), that BiGC has
a consistently high Jain’s Fairness Index, close to 1, that
exceeds those of agglomerative linkage and center based
algorithms. This reaffirms the fact that BiGC is not ”biased”
towards either objective, and that it optimizes both α and β
with almost equal priority. In summary, BiGC ensures social
fairness across a wide range of clusters, and this justifies the
usage of our game theoretic approach.

5 ADDITIONAL KEY PROPERTIES SATISFIED BY
BIGC
In his work on unification of clustering [28], Kleinberg
considered three properties: scale-invariance, richness, and
consistency and proved an impossibility result, showing

TABLE 1
Spam Dataset

algorithm Clusters Average α Average β
Leader 10 153974 250783
k-means 10 36850 5619527

HSI 10 20380 230563
BiGC 10 17820 215172

Leader 25 110673 170557
k-means 25 33281 2248452

HSI 25 8127 55315
BiGC 25 4822 44826

Leader 35 86139 33248
k-means 35 32711 1607324

HSI 35 7240 41176
BiGC 35 3380 20567

Leader 50 73901 23151
k-means 50 32626 1125174

HSI 50 4662 22706
BiGC 50 1850 11154

Leader 100 65443 12598
k-means 100 14085 251347

HSI 100 2643 8751
BiGC 100 677 2779

TABLE 2
Network Intrusion Dataset

algorithm Clusters Average α Average β
Leader 10 4.1139e+09 4.4772e+07
k-means 10 1.4836e+06 1.3116e+08

HSI 10 6.8091e+05 1.1371e+08
BiGC 10 7.2876e+05 3.5754e+07

Leader 25 4.1014e+09 5.8943e+06
k-means 25 8.9539e+05 3.1790e+07

HSI 25 1.9103e+05 2.6012e+07
BiGC 25 5.2724e+04 9.7346e+05

Leader 35 4.0931e+09 4.2186e+05
k-means 35 2.8318e+05 1.9058e+07

HSI 35 1.8785e+04 1.8581e+07
BiGC 35 2.0239e+04 2.7405e+05

Leader 50 4.0819e+09 3.1730e+05
k-means 50 2.2037e+05 1.3114e+07

HSI 50 1.5037e+04 1.1773e+07
BiGC 50 8.8181e+03 7.8463e+04

Leader 100 1.7105e+07 3.1332e+05
k-means 100 1.8994e+05 6.5027e+06

HSI 100 1.1770e+04 5.0348e+06
BiGC 100 1.7079e+03 1.7347e+04

that no clustering algorithm satisfies all of these properties
simultaneously. Informally, scale invariance imposes the
requirement that there be no built in length scale; richness
that all partitions be achievable; and consistency that there
be no change in partitions on reducing intra-cluster and
enlarging inter-cluster distances. In his influential work
[28], Kleinberg proved an impossibility theorem that no
clustering algorithm satisfies scale invariance, richness, and
consistency simultaneously. Subsequently, a working set of
axioms has been proposed to advance the work on unifi-
cation of clustering [55]. BiGC is optimal in that it satisfies
both scale invariance and richness, as explained below.

• Scale Invariance: The Leader algorithm does not
satisfy scale invariance since it decides the clusters
based on a distance threshold, and thus incurs a
fundamental distance scale. The k-means algorithm
satisfies scale invariance since it assigns clusters to
points depending only on their relative distances
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Fig. 2. α− C plot (Spam Dataset): (a) BiGC vs. Leader, (b) BiGC vs. k-means vs. HSI

Fig. 3. β − C plot (Spam Dataset): (a) BiGC vs. Leader vs. HSI, (b) BiGC vs. k-means

Fig. 4. (Spam) k-means vs. single iteration of k-means: (a) Potential (α), (b) Scatter (β)

to the k cluster centers, irrespective of the absolute
distances. BiGC consists of two phases. In the first
phase, clustering is done based on the similarity
values, which are again relative (e.g. consider a sim-

ilarity function f(d(xi, xj)) = 1 − d(xi, xj)

dτ
where

dτ > dmax, with dmax denoting the maximum dis-
tance between any two points in the dataset). In the
second phase, the k-means algorithm is used, which
is scale invariant, as already mentioned. Thus, BiGC
satisfies scale invariance.

• Richness: The Leader algorithm satisfies the richness
property since we can always adjust the distances
among points to generate any desired partition of the
input dataset. For example, one of the ways to obtain
a single cluster is to set all pairwise distances to
some value less than the distance threshold, whereas
to have each point assigned to a separate cluster,
every pairwise distance may be set to some value
greater than the distance threshold. The k-means

algorithm satisfies the richness condition only if the
value of k can be adjusted according to the desired
partitions. However, since in general, k is a constant
input provided to the k-means algorithm, we may
not partition the input dataset into any number of
clusters other than k, and this precludes the k-means
algorithm from satisfying richness. Note that this
restriction of k-means does not apply to the BiGC
algorithm, since the number of clusters, k, is not
provided as an input and is determined based on
the Shapley values of points and similarities among
them. Hence, BiGC satisfies the richness property.

• Consistency: The Leader and the k-means algo-
rithms do not satisfy the consistency requirement.
This follows directly from Kleinberg’s result in [28],
which states that there does not exist any centroid
based clustering function that satisfies the consis-
tency property. The k-means algorithm does not sat-
isfy the consistency property since it uses the (k, g)-
centroid clustering function: the underlying objective
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Fig. 5. (a) β − C plot (Cloud Dataset): BiGC vs. k-means++, (b) Performance Gain (= 1 −
BiGC β

k-means++ β
) on Spam and Intrusion, and (c) Jain’s

Fairness Index comparison on Spam

Fig. 6. Spam: BiGC (blue) vs. k-means (red) vs. k-means++ (yellow): (a)-(e) F -measure, (f) Rand statistic

Fig. 7. (a) δ − C plot (Spam) (b) α does not vary much with permutations for a fixed δ (Wine)
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Fig. 8. (Spam) k-means vs. BiGC with single iteration of k-means: (a) α, (b) β, (c) Time (in sec)

Fig. 9. (Spam) BiGC (blue) vs. Agglomerative Linkage (red): (a) α− C, (b) β − C, (c) Jain’s Fairness Index

Fig. 10. BiGC vs. Multi-objective Optimization techniques: Silhouette Index comparison on Iris and Wine

function in k-means clustering can be expressed as
g(d) = d2 ( [28], [55]). BiGC also does not satisfy
consistency as a consequence of Kleinberg’s impossi-
bility theorem.

Order Independence: Order independence is another
desirable fundamental property of clustering algorithms.
A learner is order sensitive or order dependent if given a set
of data objects, such an algorithm might return different
clusterings based on the order of presentation of these
objects. The objective of order independence in algorithms
is to produce the same final clustering across different runs,
irrespective of the sequence in which the input instances are
presented7. Formally, this property can be defined as,

7. Note that order independence is not redundant since one can con-
struct clustering functions that satisfy order independence but violate
at least one other property. For example, a clustering function that
computes the mean or average of a set of points does not satisfy scale
invariance; the k-means objective function does not satisfy richness;
and the clustering function used in BiGC does not satisfy consistency.

Order Independence. For any two permutation orderings
π, π

′ ∈ Π, distance function d, and number of clusters k, we
have for a partitioning function F 8,

F (d, k, π) = F (d, k, π
′
)

Similar concepts have previously been proposed in a
number of papers, under different names, for instance,
Ackerman and Ben-David discuss such an axiom in the
setting of clustering-quality measures under the name
isomorphism invariance [1]. Puzicha et al. introduced
permutation invariance in the setting of clustering objective
functions [40]. It is important to note that order independence
is significantly different from the order consistency axiom
proposed by Bosagh Zadeh and Ben-David in [55]. Order

8. Note that F takes three arguments here instead of two propounded
by Bosagh Zadeh and Ben-David in their highly influential work on
unification of clustering, [55]; we have chosen to add an additional
parameter, instead of introducing a radically different formalism, to be
consistent with the work in [55]. It is readily seen that the formalism
in [55] is directly amenable to the third parameter: π = π

′
renders

permutation immaterial.
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consistency, which is demonstrated by clustering techniques
such as the complete linkage algorithm, implies that for
a given number of clusters, if the two different distance
functions select the edges in the same order then the output
clustering should be identical in both the cases. Order
independence assumes great significance especially with a
tremendous spurt in stream applications recently, see for
instance, works by Cormode [11], Cao et. al [8], Guha et. al
[16], and Cormode and Garofalakis [12].

It can be shown [49] that any order independent incre-
mental algorithm must maintain a knowledge structure A
of abstractions together with an operator ∗ defined on it,
such that (A, ∗) is a commutative monoid. Further, let g
be a function defined as g : A × X → A, where X =
{x1, x2, ..., xn} represents the set of input data instances
and A represents the set of all valid memory structures.
Then, as elaborated in [49], presence of a dynamically complete
set X on (A, g) provides both a necessary and sufficient
condition for order independence in any algorithm that
takes X as an input and uses A and g. We refer the reader
to [49] for a detailed exposition on characterizing order
independence. It can be readily shown that BiGC is order
independent: for any permutation ordering on the input
instances, π ∈ Π, we may define an abstraction on i points,
Tπ,i =

∑
π(p)≤π(i)
π(q)<π(p)

f(d(xp, xq)), and a function g such that

g(Tπ,i, xi+1) = Tπ,i +
∑

π(p)≤π(i)

f(d(xi+1, xp)), where xi+1

is the incoming input instance.
The Leader algorithm is known to be susceptible to

ordering effects. On the other hand, the random selection of
initial cluster centers precludes the k-means algorithm from
being truly order-independent. We summarize the foregoing
discussion in Table 3. It is easy to infer that BiGC stands out,
since it satisfies three of the four properties. We emphasize
that no other clustering algorithm can perform better since
all the four properties can not be simultaneously satisfied,
as a consequence of the impossibility theorem.

TABLE 3
Comparison between Leader, k-means, and BiGC

Property Leader k-means BiGC
Scale Invariance X

√ √

Richness
√

X
√

Consistency X X X
Order Independence X X

√

Moreover, as Ackerman and Ben-David pointed out in
[1], “an impossibility result is not an inherent feature of
clustering, but rather, to a large extent, it is an artifact of
the specific formalism used”, thus, more properties need
be considered to enhance the understanding of the general
theory of clustering, and order independence is one such
property.

6 CONCLUSION AND FUTURE WORK

We proposed a novel approach BiGC, based on a coopera-
tive game theoretic framework, with a view of obtaining a
good clustering with respect to both the average point-to-
center and the average intra-cluster point-to-point distance.

BiGC elegantly captures the notion of gestalt or cohesive
clustering and satisfies desirable clustering properties like
scale invariance, order independence, and richness. Experi-
mental comparisons with respect to different cluster validity
criteria on several real benchmark datasets, with state-of-
the-art center based and multi-objective algorithms, further
substantiate the efficacy of BiGC.

In this work, we investigated the efficacy of BiGC using
a particular similarity function. It would be interesting to
analyze the impact of different dissimilarity measures on
the quality of clustering. We also intend to examine more
heuristics for determining a suitable similarity threshold δ
for a given dataset, similar in spirit to the work done on k-
means [19]. The extension of ideas presented in this work to
the supervised setting is another interesting direction.

REFERENCES

[1] M. Ackerman and S. Ben-David. Measures of Clustering Quality: A
Working Set of Axioms for Clustering. NIPS, 2008.

[2] D. Arthur and S. Vassilvitskii. k-means++: The Advantages of
Careful Seeding. SODA, pp. 1027–1035, 2007.

[3] E. Backer and A. Jain. A clustering performance measure based on
fuzzy set decomposition. PAMI, 3(1), pp. 66–75, 1981.

[4] S. R. Bulo’ and M. Pelillo. A Game-Theoretic Approach to Hyper-
graph Clustering. NIPS, pp. 1571–1579, 2009.

[5] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with
Bregman Divergences. JMLR, 6, pp. 1705–1749, 2005.

[6] N. Bansal, A. Blum, and S. Chawla. Correlation Clustering. Machine
Learning Journal (Special Issue on Theoretical Advances in Data
Clustering), 56(1), pp. 86–113, 2004.

[7] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik. Support vector
clustering. JMLR, 2, pp. 125–137, 2001.

[8] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering
over an evolving data stream with noise. SDM, pp. 328–339, 2006.

[9] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering.
KDD, pp. 554–560, 2006.

[10] Y. Chen and L. Tu. Density-based clustering for real-time stream
data. KDD, pp. 133–142, 2007.

[11] G. Cormode. Conquering the divide: Continuous clustering of
distributed data streams. ICDE, pp. 1036–1045, 2007.

[12] G. Cormode and M. Garofalakis. Sketching Probabilistic Data
Streams. SIGMOD’07, pp. 281–292, 2007.

[13] A. Cornuejols. Getting Order Independence in Incremental Learn-
ing. ECML, pp. 196–212, Springer-Verlag, 1993.

[14] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, John
Wiley and Sons, Second edition, 2000.

[15] D. Fisher, L. Xu, and N. Zard. Ordering effects in clustering. ICML,
pp. 163–168, 1992.

[16] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L.
O’Callaghan. Clustering Data Streams: Theory and Practice. TKDE,
15(3), pp. 515–528, 2003.

[17] F. Gullo, A. Tagarelli, and S. Greco. Diversity-based Weighting
Schemes for Clustering Ensembles. SDM, pp. 437–448, 2009.

[18] U. Gupta and N. Ranganathan. A Game Theoretic Approach for
Simultaneous Compaction and Equipartitioning of Spatial Data
Sets. TKDE, 22(4), pp. 465–478, 2010.

[19] G. Hamerly and C. Elkan. Learning the k in k-means. NIPS, pp.
281–288, 2003.

[20] J. Handl and J. Knowles. An evolutionary approach to multiobjec-
tive clustering. IEEE Transactions on Evolutionary Computation, 11(1),
pp. 56–76, 2007.

[21] D. S. Hochbaum and D. B. Shmoys. A Best Possible Heuristic for
the k-center Problem. Mathematics of Operations Research, 10(2), pp.
180–184, 1985.

[22] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A
review. PAMI, 22(1), pp. 4–37, 2000.

[23] A. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review.
ACM Computing Surveys, 31(3), pp. 264–323, 1999.

[24] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Computer
System. DEC-TR-301, Eastern Research Lab, Digital Equipment
Corporation, 1984.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

[25] D. Jiang, J. Pei, M. Ramanathan, C. Tang, and A. Zhang. Mining
coherent gene clusters from gene-sample-time microarray data.
KDD, pp. 430–439, 2004.

[26] M. E. Kabir, H. Wang, and E. Bertino. Efficient systematic cluster-
ing method for k-anonymization. Acta Informatica. 48(1), 2011.

[27] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Intro-
duction to Cluster Analysis, Wiley, 1990.

[28] J. Kleinberg. An Impossibility Theorem for Clustering. NIPS, 15,
pp. 463–470, 2002.

[29] T. Kohonen. The self-organizing map. Proc. of the IEEE, 78(9), pp.
1464–1480, 1990.
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