
Online Markov Decoding: Lower Bounds and
Near-Optimal Approximation Algorithms

Vikas K. Garg
MIT

vgarg@csail.mit.edu

Tamar Pichkhadze
MIT

tamarp@alum.mit.edu

Abstract

We resolve the fundamental problem of online decoding with general nth order er-
godic Markov chain models. Specifically, we provide deterministic and randomized
algorithms whose performance is close to that of the optimal offline algorithm even
when latency is small. Our algorithms admit efficient implementation via dynamic
programs, and readily extend to (adversarial) non-stationary or time-varying set-
tings. We also establish lower bounds for online methods under latency constraints
in both deterministic and randomized settings, and show that no online algorithm
can perform significantly better than our algorithms. To our knowledge, our work
is the first to analyze general Markov chain decoding under hard constraints on
latency. We provide strong empirical evidence to illustrate the potential impact of
our work in applications such as gene sequencing.

1 Introduction

Markov models, in their various incarnations, have for long formed the backbone of diverse applica-
tions such as telecommunication [1], biological sequence analysis [2], protein structure prediction [3],
language modeling [4], automatic speech recognition [5], financial modeling [6], gesture recognition
[7], and traffic analysis [8, 9]. In a Markov chain model of order n, the conditional distribution of
next state at any time i depends only on the current state and the previous n− 1 states, i.e.,

P(yi|y1, . . . , yi−1) = P(yi|yi−n, . . . , yi−1) ∀i .
Often, the states are not directly accessible but need to be inferred or decoded from the observations,
i.e., a sequence of tokens emitted by the states. For instance, in tagging applications [10], each
state pertains to a part-of-speech tag (e.g. noun, adjective) and each word wi in an input sentence
w = (w1, . . . , wT) needs to be labeled with a probable tag yi that might have emitted the word.
Thus, it is natural to endow each state with a distribution over the tokens it may emit. For example,
nth order hidden Markov models (n-HMM) [11] and (n+ 1)-gram language models [4] assume the
joint distribution P(y,w) of states y = (y1, . . . , yT) and observations w factorizes as

P(y,w) =

T∏
i=1

P(yi|yi−n, . . . , yi−1) P(wi|yi) ,

where y−n+1, . . . , y0 are dummy states, and the transition distributions P(yi|yi−n, . . . , yi−1) and
the emission distributions P(wi|yi) are estimated from data. We call a Markov model ergodic if there
is a diameter ∆ such that any state can be reached from any other state in at most ∆ transitions. For
instance, a fully connected Markov chain pertains to ∆ = 1. Note that having ∆ > 1 is often natural,
e.g., two successive punctuation marks (such as semicolons) are unlikely in an English document.
When the transition distributions do not change with time i, the model is called time-homogeneous,
otherwise it is non-stationary, time-varying or non-homogeneous [12, 13, 14]. Given a sequence w
of T observations, the decoding problem is to infer a most probable sequence or path y∗ of T states

y∗ ∈ argmax
y

P(y,w) = argmax
y

logP(y,w) .

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Model Reward Ri(yi|y[i−n,i−1]) Model Reward Ri(yi|y[i−n,i−1])

(n+ 1)-GRAM log P(yi|yi−n, . . . , yi−1) + log P(wi|yi) 1-HMM log P(yi|yi−1) + log P(wi|yi)

n-MEMM log
exp(θ>φ(y[i−n,i−1], yi,w, i))∑
y′i

exp(θ>φ(y[i−n,i−1], y′i,w, i))
n-CRF θ>φ(y[i−n,i−1], yi,w, i)

Table 1: Standard Markov models in the reward form. We use y[i,j] to denote (yi, yi+1, . . . , yj).

Decoding is a key inference problem in other structured prediction settings [15, 16] as well, e.g.,
maximum entropy Markov models (MEMM) [17] and conditional random fields (CRF) [18, 19]
employ learnable parameters θ and define the conditional dependence of each state on the observations
through feature functions φ. The decoding task in all these models can be expressed in the form

y∗ ∈ argmax
y

T∑
i=1

Ri(yi|yi−n, . . . , yi−1) , (1)

where we have made the dependence on observationsw implicit in the reward functions Ri as shown
in Table 1. The Viterbi algorithm [1] is employed for solving problems of the form (1) exactly.
However, the algorithm cannot decode any observation until it has processed the entire observation
sequence, i.e., computed and stored for each state s a most probable sequence of T states that ends
in s. We say an algorithm has a hard latency L if L is the smallest B such that the algorithm needs
to access at most B + 1 observations wi, wi+1, . . . , wi+B to generate the label for observation wi

at any time i during the decoding process. Thus, the latency of Viterbi algorithm on a sequence of
length T is T − 1, which is prohibitive for large T , especially in memory impoverished systems such
as IoT devices [20, 21, 22, 23]. Besides, the algorithm is not suitable for critical scenarios such as
patient monitoring, intrusion detection, and credit card fraud monitoring where delay following the
onset of a suspicious activity might be detrimental [24]. Moreover, low latency is desirable for tasks
such as drug discovery that rely on detecting interleaved coding regions in massive gene sequences.

A lot of effort has been, and continues to be, invested into speeding up the Viterbi algorithm,
or reducing its memory footprint [25]. Some prominent recent approaches include fast matrix
multiplication [26], compression and storage reduction for HMM [27, 28, 29], and heuristics such as
beam search and simulated annealing [30, 31]. Several of these methods are based on the observation
that if all the candidate subsequences in the Viterbi algorithm converge at some point, then all
subsequent states will share a common subsequence up to that point [32, 33]. However, these
methods do not guarantee reduction in latency since, in the worst case, they still need to process
all the rewards before producing any output. [24] introduced Online Step Algorithm (OSA), with
provable guarantees, to handle soft latency requirements in first order models. However, OSA makes
a strong assumption that uncertainty in any state label decreases with latency. This assumption does
not hold for important applications such as genome data. Moreover, OSA does not provide a direct
control over latency (which needs to be tuned), and is limited to first order fully connected settings.
We draw inspiration from, and generalize, the work by [34] on online server allocation under what
we view as first order fully connected non-homogeneous setting (when the number of servers is one).

Our contributions

We investigate the problem of online decoding with Markov chain models under hard latency
constraints, and design almost optimal online deterministic and randomized algorithms for problems
of the form (1). Our bounds apply to general settings, e.g., when the rewards vary with time (non-
homogeneous settings), or even when they are presented in an adversarial or adaptive manner. Our
guarantees hold for finite latency (i.e. not only asymptotically), and improve with increase in latency.
Our algorithms are efficient dynamic programs that may not only be deployed in settings where
Viterbi algorithm is typically used but also, as we mentioned earlier, several others where it is
impractical. Thus, our work would potentially widen the scope of and expedite scientific discovery in
several fields that rely critically on efficient online Markov decoding.

We also provide the first results on the limits of online Markov decoding under latency constraints.
Specifically, we craft lower bounds for the online approximation of Viterbi algorithm in both deter-
ministic and randomized ergodic chain settings. Moreover, we establish that no online algorithm
can perform significantly better than our algorithms. In particular, our algorithms provide strong
guarantees even for low latency, and nearly match the lower bounds for sufficiently large latency.

2

LOWER BOUND UPPER BOUND (OUR ALGORITHMS)

DETERMINISTIC

(∆ = 1, n = 1) 1 +
1

L
+

1

L2 + 1
min

{(
1 +

1

L

)
L√L+ 1, 1 +

4

L− 7

}
RANDOMIZED 1 +

(1− ε)
L+ ε

1 +
1

L
(∆ = 1, n = 1, ε > 0)

DETERMINISTIC 1 +
∆̃

L

(
1 +

∆̃ + L− 1

(L− ∆̃− 1)2 + 4∆̃L− 3∆̃

)
1 + min

{
Θ

(
logL

L− ∆̃ + 1

)
,

Θ

(
1

L− 8∆̃ + 1

)}
RANDOMIZED (ε > 0) 1 +

(
2∆−1d1/εe − 1

)
n

2∆−1d1/εeL+ n
1 + Θ

(
1

L− ∆̃ + 1

)
Table 2: Summary of our results in terms of the competitive ratio ρ. Note that the effective diameter
∆̃ = ∆ + n − 1. To fit some results within the margins, we use the standard notation Θ(·) on
the growth of functions and summarize the performance of Peek Search asymptotically in L. The
non-asymptotic dependence on L is made precise in all cases in our theorem statements.

We introduce several novel ideas and analyses in the context of approximate Markov decoding.
For example, we approximate a non-discounted objective over horizon T by a sequence of smaller
discounted subproblems over horizon L+ 1, and track down the Viterbi algorithm by essentially fore-
going rewards on at most ∆̃ = ∆ + n− 1 steps in each smaller problem. Our design of constructions
toward proving lower bounds in a setting predicated on interplay of several heterogeneous variables,
namely L, n, and ∆, is another significant technical contribution. We believe our tools will foster
designing new online algorithms, and establishing combinatorial bounds for related settings such as
dynamic Bayesian networks, hidden semi-Markov models, and model based reinforcement learning.

2 Overview of our results

We introduce some notation. We define [a, b] , (a, a+ 1, . . . , b) and [N] , (1, 2, . . . , N). Likewise,
y[N] , (y1, . . . , yN) and y[a,b] , (ya, . . . , yb). We denote the last n states visited by the online
algorithm at time i by ŷ[i−n,i−1], and those by the optimal offline algorithm by y∗[i−n,i−1]. Defining
positive reward functions Ri = Ri + p by adding a sufficiently large positive number p to each
reward, we note from (1) that an optimal sequence of states for input observationsw of length T is

y∗[1,T] ∈ arg max
y1,...,yT

T∑
i=1

Ri(yi|y[i−n,i−1]) . (2)

We use OPT to denote the total reward accumulated by the optimal offline algorithm, and ON to
denote that received by the online algorithm. We evaluate the performance of any online algorithm in
terms of its competitive ratio ρ, which is defined as the ratio OPT/ON . That is,

ρ =

T∑
i=1

Ri(y
∗
i |y∗[i−n,i−1])

/ T∑
i=1

Ri(ŷi|ŷ[i−n,i−1]) .

Clearly, ρ ≥ 1. Our goal is to design online algorithms that have competitive ratio close to 1. For
randomized algorithms, we analyze the ratio obtained by taking expectation of the total online reward
over its internal randomness. The performance of any online algorithm depends on the order n,
latency L, and diameter ∆. Table 2 provides a summary of our results. Note that our algorithms are
asymptotically optimal in L. For the finite L case, we first consider the fully connected first order
models. Our randomized algorithm matches the lower bound even1 with L = 1 since we may set ε
arbitrarily close to 0. Note that just with L = 1, our deterministic algorithm achieves a competitive

1It is easy to construct examples where any algorithm with no latency may be made to incur an arbitrarily
high ρ. Thus, in the fully connected first order Markov setting, online learning is meaningful only for L ≥ 1.

3

ratio 4, and this ratio reduces further as L increases. Moreover our ratio rapidly approaches the lower
bound with increase in L. Finally, in the general setting, our algorithms are almost optimal when L
is sufficiently large compared to ∆̃ = ∆ + n− 1. We call ∆̃ the effective diameter since it nicely
encapsulates the roles of order n and diameter ∆ toward the quality of approximation.

The rest of the paper is organized as follows. We first introduce and analyze our deterministic Peek
Search algorithm for homogeneous settings in section 3. We then introduce the Randomized Peek
Search algorithm in section 4. In section 5, we propose the deterministic Peek Reset algorithm that
performs better than deterministic Peek Search for large L. We then present the lower bounds in
section 6, and demonstrate the merits of our approach via strong empirical evidence in section 7. We
analyze the non-homogeneous setting, and provide all the proofs in the supplementary material.

3 Peek Search

Our idea is to approximate the sum of rewards over T steps in (2) by a sequence of smaller problems
over L+ 1 steps. The Peek Search algorithm is so named since at each time i, besides the observation
wi, it peeks into the next L observations wi+1, . . . , wi+L. The algorithm then leverages the sub-
sequence w[i,i+L] to decide its next state ŷi. Let γ ∈ (0, 1) be a discount factor. Specifically, the
algorithm repeats the following procedure at each time i. First, it finds a path of length L + 1
emanating from the current state ŷi−1 that fetches maximum discounted reward. The discounted
reward on any path is computed by scaling down the `th edge, ` ∈ {0, . . . , L}, on the path by γ`.
Then, the algorithm moves to the first state of this path and repeats the procedure at time i+ 1. Note
that at time i+ 1, the algorithm need not continue with the second edge on the optimal discounted
path computed at previous time step i, and is free to choose an alternative path. Formally, at time
i, the algorithm computes ỹi , (ỹ0

i , ỹ
1
i , . . . , ỹ

L
i) that maximizes the following objective over valid

paths y = (yi, . . . , yi+L),

R(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1]) +

L∑
j=n

γjR(yi+j |y[i+j−n,i+j−1]) ,

sets the next state ŷi = ỹ0
i , and receives the reward R(ŷi|ŷ[i−n,i−1]). Note that we have dropped

the subscript i from Ri since in the homogeneous settings, the reward functions do not change with
time i. For any given L and ∆̃, we optimize to get the optimal γ. Intuitively, γ may be viewed as an
explore-exploit parameter that indicates the confidence of the online algorithm in the best discounted
path: γ grows as L increases, and thus a high value of γ indicates that the path computed at a time i
may be worth tracing at subsequent few steps as well. In contrast, the algorithm is uncertain for small
values of L. We have the following near-optimal result on the performance of Peek Search.

Theorem 1. The competitive ratio of Peek Search on Markov chain models of order n with diameter

∆ for L ≥ ∆ + n− 1 is ρ ≤ (γ∆+n−1 − γL+1)−1. Setting γ =
(L−∆−n+2)

√
∆ + n− 1

L+ 1
, we get

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L− ∆̃ + 1

)
.

Proof. (Sketch) We first consider the fully connected first order setting (i.e. n = 1,∆ = 1). Our
analysis hinges on two important facts. Since Peek Search chooses a path that maximizes the total
discounted reward over next (L + 1) steps, it is guaranteed to fetch all of the discounted reward
pertaining to the optimal path except that available on the first step of the optimal path (see Fig. 1 for
visual intuition). Alternatively, Peek Search could have persisted with the maximizing path computed
at the previous time step (recall that only first step of this path was taken to reach the current state).
We exploit the fact that this path is now worth 1/γ times its anticipated value at the previous step.

Now consider n > 1. The online algorithm may jump to any state on the optimal offline, i.e. Viterbi
path, in one step. However, the reward now depends on the previous n states, and so the online
algorithm may have to wait additional n− 1 steps before it could trace the subsequent optimal path.
Finally, as explained in Fig. 1, when ∆ > 1, the online algorithm may have to forfeit rewards on (at
most) ∆ steps, in addition to the n− 1 steps, in order to join the optimal path.

4

a

a

a

a

c

c

c

c

c

c

c

c

a

a

a

a

a

a

a

a

a

a

a

a

c

c

c

c

c

c

c

c

a

a

a

a

a

a

a

a

1

γ

γ2
γ3

1

γ γ2

γ3

Figure 1: Visual intuition for the setting n = 1. (Left) A trellis diagram obtained by unrolling a
fully connected Markov graph (i.e. diameter ∆ = 1). The states are shown along the rows, and time
along the columns. The system is currently in state 4 (shown in red), and has access to rewards and
observations (shown inside circles) for the next (L+ 1) steps. The unknown optimal path is shown
in blue, and the weights with which rewards are scaled are shown on the edges. One option available
with the online algorithm is to jump to state 1 (possibly fetching zero reward) and then follow the
optimal path for the subsequent L steps. Note that the online algorithm might choose a different path,
but it is guaranteed at least as much reward since it maximizes the discounted reward over L+ 1 steps.
γ approaches 1 with increase in L. This would ensure that the online algorithm makes nearly the
most of L steps every L+ 1 steps. (Right) If the graph is not fully connected, some of the transitions
may not be available (e.g. state 4 to state 1 in our case). Therefore, the online algorithm might not be
able to join the optimal path in one step, and thus may have to forgo additional rewards.

We show in the supplementary material that this guarantee on the performance of Peek Search
extends to the non-homogeneous settings, including those where the rewards may be adversarially
chosen. Note that naïvely computing a best path by enumerating all paths of length L + 1 would
be computationally prohibitive since the number of such paths is exponential in L. Fortunately, we
can design an efficient dynamic program for Peek Search. Specifically, we can show that for every
` ∈ {1, 2, . . . , L}, the reward on the optimal discounted path of length ` can be recursively computed
from an optimal path of length `-1 using O(|K|n) computations. We have the following result.

Theorem 2. Peek Search can compute a best γ-discounted path for the next L+ 1 steps, in nth order
Markov chain models, in time O(L|K|n), where K is the set of states.

We outline an efficient procedure, underlying Theorem 2, in the supplementary material. We now
introduce two algorithms that do not recompute the paths at each time step. These algorithms provide
even tighter (expected) approximation guarantees than Peek Search for larger values of the latency L.

4 Randomized Peek Search

We first introduce the Randomized Peek Search algorithm, which removes the asymptotic log factor
from the competitive ratio in Theorem 1. Unlike Peek Search, this method does not discount the
rewards on paths. Specifically, the algorithm first selects a reset point ` uniformly at random from
{1, 2, . . . , L+ 1}. This number is a private information for the online algorithm. The randomized
algorithm recomputes the optimal non-discounted path (which corresponds to γ = 1) of length
(L+1), once every L+1 steps, at each time i∗ (L+1)+ `, and follows this path for next L+1 steps
without any updates. We have the following result that underscores the benefits of randomization.
Theorem 3. Randomized Peek Search achieves, in expectation, on Markov chain models of order n
with diameter ∆ a competitive ratio

ρ ≤ 1 +
∆ + n− 1

L+ 1− (∆ + n− 1)
= 1 + Θ

(
1

L− ∆̃ + 1

)
.

Proof. (Sketch) Since it maximizes the non-discounted reward, for each random reset point `, the
online algorithm receives at least as much reward as the optimal offline algorithm minus the reward
on at most ∆̃ steps every L+ 1 steps. We show that, in expectation, Peek Reset misses on only (at
most) a ∆̃/(L+ 1) fraction of the optimal offline reward.

5

Theorem 2 is essentially tight since it nearly matches the lower bound as described previously in
section 2. We leverage insights from Randomized Peek Search to translate its almost optimal expected
performance to the deterministic setting. Specifically, we introduce the Peek Reset algorithm that may
be loosely viewed as a derandomization of Randomized Peek Search. The main trick is to conjure a
sequence of reset points, each over a variable number of steps. This allows the algorithm to make
adaptive decisions about when to forgo rewards. Both Randomized Peek Search and Peek Reset can
compute rewards on their paths efficiently by using the procedure for Peek Search as a subroutine.

5 Peek Reset

We now present the deterministic Peek Reset algorithm that performs better than Peek Search when
the latency L is sufficiently large. Like Randomized Peek Search, Peek Reset recomputes a best
non-discounted path and takes multiple steps on this path. However, the number of steps taken is
not fixed to L+ 1 but may vary in each phase. Specifically, let (i) denote the time at which phase i
begins. The algorithm follows, in phase i, a sequence of states ŷ(i) , (ŷ(i), ŷ(i)+1, . . . , ŷTi−1) that
maximizes the following objective over valid paths y = (y(i), . . . , yTi−1) :

f(y) , R(y(i)|ŷ[(i)−n,(i)−1]) +
n−1∑
j=1

R(y(i)+j |ŷ[(i)−n+j,(i)−1], y[(i),(i)+j−1])

+

Ti−(i)−1∑
j=n

R(y(i)+j |y[(i)+j−n,(i)+j−1]) ,

where Ti is chosen from the following set (breaking ties arbitrarily)
arg min

t∈[(i)+L/2+1,(i)+L]
max

(yt−n,...,yt)
R(yt|y[t−n,t−1]) .

Then, the next phase (i+ 1) begins at time Ti. We have the following result.
Theorem 4. The competitive ratio of Peek Reset on Markov chain models of order n with diameter
∆ for latency L is

ρ ≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 8(∆ + n− 1) + 1
= 1 + Θ

(
1

L− 8∆̃ + 1

)
.

Proof. (Sketch) The algorithm gives up reward on at most ∆̃ steps every L+ 1 steps, however these
steps are cleverly selected. Note that Ti is chosen from the interval [(i) + L/2 + 1, (i) + L], which
contains steps from both phases (i) and (i+ 1). Thus, the algorithm gets to peek into phase (i+ 1)
before deciding on the number of steps to be taken in phase (i).

A comparison of Theorem 4 with Theorem 1 reveals that Peek Reset provides better upper bounds on
the approximation quality than Peek Search for sufficiently large latency. In particular, for the fully
connected first order setting, i.e. ∆̃ = 1, the competitive ratio of Peek Reset is at most 1 + 4/(L− 7)
which is better than the corresponding worst case bound for Peek Search when L ≥ 50. Thus, Peek
Search is better suited for applications with severe latency constraints whereas Peek Reset may be
preferred in less critical scenarios. We now establish that no algorithm, whether deterministic or
randomized, can provide significantly better guarantees than our algorithms under latency constraints.

6 Lower Bounds

We now state our lower bounds on the performance of any deterministic and any randomized algorithm
in the general non-homogeneous ergodic Markov chain models. The proofs revolve around our novel
∆-dimensional prismatic polytope constructions, where each vertex corresponds to a state. We
disentangle the interplay between L, ∆, and n (see Fig. 2 for visual intuition).
Theorem 5. The competitive ratio of any deterministic online algorithm on nth order (time-varying)
Markov chain models with diameter ∆ for latency L is greater than

1 +
∆̃

L

(
1 +

∆̃ + L− 1

(∆̃ + L− 1)2 + ∆̃

)
.

6

A

B

C

C ′

A′ B′

a b

c

a′ b′

c′

(a) Deterministic setting (b) Randomized setting

Figure 2: Constructions for lower bounds with ∆ = 3. (Left) ABC and abc are opposite faces of
a triangular prism, and A′B′C ′ and a′b′c′ are their translations. The resulting prismatic polytope has
the property that distance between the farthest vertices is ∆. Different colors are used for edges on
different faces, and same color for translated faces to aid visualization (we have also omitted some
edges that connect faces to their translated faces, in order to avoid clutter). A priori the rewards for
the L + 1 steps are same across all vertices (i.e. states). Thus, due to symmetry of the polytope,
the online algorithm arbitrarily chooses some vertex (shown here in green). The states that can be
reached via shortest paths of same length from this vertex are displayed in same color (magenta, red,
or orange). The adversary reveals the rewards for an additional, i.e. (L+ 2)th, time step such that
states at distance d ∈ [∆] from the green state would fetch (n+ d− 1)α for some α, while the green
state would yield 0. Under the Markov dependency rule that a state yields reward only if it has been
visited n consecutive times, the online algorithm fails to obtain any reward in the (L + 2)th step
regardless of the state sequence it traces. The optimal algorithm, due to prescience, gets the maximum
possible reward (n+ ∆− 1)α for this step. (Right) In the randomized setting, all states fetch zero
reward at the final step except a randomly chosen state (shown in green) that yields reward n. The
probability that the randomized online algorithm correctly guesses the green state at the initial time
step is exponentially small in ∆. In all other cases, it must forgo this reward, and thus its expected
reward is low compared to the optimal algorithm for large ∆.

In particular, when n = 1, ∆ = 1, the ratio is larger than 1 +
1

L
+

1

L2 + 1
.

Theorem 6. For any ε > 0, the competitive ratio of any randomized online algorithm, that is allowed

latency L, on nth order (time-varying) Markov chain models with ∆ = 1 is at least 1 +
(1− ε)n
L+ εn

.

For a general diameter ∆, the competitive ratio is at least 1 +

(
2∆−1d1/εe − 1

)
n

2∆−1d1/εeL+ n
.

We now analyze the performance of our algorithms in the wake of these lower bounds. Note that when
∆̃ = 1, Randomized Peek Search (Theorem 3) matches the lower bound in Theorem 6 even with
L = 1, since we may set ε arbitrarily close to 0. Similarly, in the deterministic setting, Peek Search
achieves a competitive ratio of 4 with L = 1 (Theorem 1), which is within twice the theoretically
best possible performance (i.e. a ratio of 2.5) as specified by Theorem 5. Moreover, the performance
approaches the lower bound with increase in L as Peek Reset takes center stage (Theorem 4). In the
general setting, our algorithms are almost optimal when L is sufficiently large compared to ∆̃.

Note that we do not make any distributional assumptions on the rewards for any (L+ 1)-long peek
window. Thus, our algorithms accommodate various settings, including those where the rewards may
be revealed in an adaptive (e.g. non-stochastic, possibly adversarial) manner.

We now proceed to our experiments that accentuate the practical implications of our work.

7

1 3 5 7 9 11 13 15 17 19

−46

−45

−44

−43

−42

−41

−40

−39

Latency L

L
og

-p
ro

ba
bi

lit
y

(s
ca

le
10

00
0)

Log-probability

Viterbi
Peek Search
OSA
Randomized Peek Search
Peek Reset

1 3 5 7 9 11 13 15 17 19
0.5

0.6

0.7

0.8

0.9

1

Latency L

Fr
ac

tio
n

of
ag

re
em

en
t

Decoding agreement with Viterbi

Peek Search
OSA
Randomized Peek Search
Peek Reset

Figure 3: Evaluation of performance on genome sequence data. The data consists of 73385 sites,
each of which is to be labeled with one of the four states. The log-probability values on the right
have been scaled down by a factor of 104 to avoid clutter near the vertical axis. Peek Search achieves
almost optimal performance with a latency of only about 20, which is over three orders of magnitude
less than the optimal Viterbi algorithm. The corresponding predictions agreed with the Viterbi
algorithm on more than 95% of all sites. Peek Reset and Randomized Peek Search also performed
well especially for larger values of L. In contrast, OSA was found to be significantly suboptimal.

7 Experiments

We describe the results of our experiments on two real datasets. We first compare the performance of
our methods with the state-of-the-art Online Step Algorithm (OSA) [24] that also provides theoretical
guarantees for first order Markov decoding under latency constraints. OSA hinges on a strong
assumption that uncertainty in any state label decreases with increase in latency. We found that
this assumption does not hold in the context of an important application, namely, genome decoding.
In contrast, since our algorithms do not make any such assumptions, they achieve much better
performance as expected. Furthermore, unlike our algorithms, OSA does not provide a direct control
over the latency L. Specifically, OSA relies on a hyperparameter λ, that may require extensive tuning,
to achieve a good trade-off between latency and accuracy. Our empirical findings thus underscore
the promise of our algorithms toward expediting scientific progress in fields like drug discovery. We
then demonstrate that Peek Search performs exceptionally well on the task of part-of-speech tagging
on the Brown corpus data even for L = 1. We also provide evidence that heuristics such as Beam
Search can be adapted to approximate optimal discounted paths efficiently within peek windows of
length (L+ 1). This computational benefit, however, comes at the expense of theoretical guarantees.

7.1 Genome sequencing

We experimented with the Glycerol TraSH genome data [35] pertaining to M. tuberculosis transposon
mutants. Our task was to label each of the 73385 gene sites with one of the four states, namely
essential (ES), growth-defect (GD), non-essential (NE), and growth-advantage (GA). These states
represent different categories of gene essentiality depending on their read-counts (i.e. emissions), and
the labeling task is crucial toward identifying potential drug targets for antimicrobial treatment [35].
We used the parameter settings suggested by [35] for decoding with an HMM.

Note that for this problem, the Viterbi algorithm and heuristics such as beam search need to compute
the optimal paths of length equal to the number of sites, i.e. in excess of 73000, thereby incurring
very high latency. However, as Fig. 3 shows, Peek Search achieved near-optimal log-probability
(the Viterbi objective in (1)) with a latency of only about 20, which is less than that of Viterbi by
a factor in excess of 3500. Moreover, the state sequence output by Peek Search agreed with the
Viterbi labels on more than 95% of the sites. We observe that, barring downward blips from L = 1
to L = 3 and from L = 9 to L = 11, the performance improved with L. As expected, for all
L, including those featuring in the blips, the log-probability values were verified to be consistent
with our theoretical guarantees. On the other hand, we found OSA to be significantly suboptimal
in terms of both log-probability and label agreement. In particular, OSA agreed with the optimal
algorithm (Viterbi) on only 58.8% of predictions under both entropy and expected classification error

8

Latency Method Log-probability Tagging accuracy (%)
Viterbi -117.29 +/- .53 97.4 +/- .02

L = 1 Peek Search -117.40 +/- .54 97.0 +/- .01
L = 1 Approximate Peek Search (3 beams) -117.40 +/- .54 97.0 +/- .02

L = 2 Peek Search -117.34 +/- .54 97.2 +/- .01
L = 2 Approximate Peek Search (3 beams) -117.34 +/- .54 97.2 +/- .01

L = 3 Peek Search -117.33 +/- .54 97.3 +/- .02
L = 3 Approximate Peek Search (3 beams) -117.33 +/- .54 97.3 +/- .02

Table 3: Part-of-speech tagging on Brown data.

measures suggested in [24]. In contrast, just with L = 1, Peek Search matched with Viterbi on 77.4%
predictions thereby outperforming OSA by an overwhelming amount (over 30%). We varied the OSA
hyperparameter λ ∈ {10−4, 10−1, . . . , 104} under both the entropy and the expected classification
error measures suggested by [24] to tune for L (as noted in [24], large values of λ penalize latency).
However, the performance of OSA (as shown in Fig. 3) did not show any improvement.

Fig. 3 also shows the performance of Randomized Peek Search (averaged over 10 independent runs)
and Peek Reset. Since the guarantees of Peek Reset are meaningful for L large enough (exceeding
7), we show results with Peek Reset for L ≥ 9. Both these methods were found to be better than
OSA on the genome data. Moreover, as expected, the performance of Peek Reset improved with
increase in L. In particular, the scaled log-probabilities under Peek Reset for L = 50 and L = 100
were observed, respectively, to be -39.69 and -39.56. Moreover, the decoded sequences agreed with
Viterbi on 97.32% and 98.68% of the sites respectively. For smaller values of L, Peek Search turned
out to be better than both Peek Reset and Randomized Peek Search.

We also evaluated the performance of Beam Search. Note that despite efficient greedy path expansion,
Beam Search with k beams (BS-k) has high latency (same as Viterbi) since no labels can be generated
until the k-greedy paths are computed for entire sequence and backpointers are traced back to the
start. We found that BS-2 performed worse than Peek Search for L ≥ 5. Also, BS-3 recorded log
prob.-39.61 and decoding agreement 97.73% (worse than Peek Search with L = 50). BS-k matched
the Viterbi performance for k ≥ 4.

Finally, note that instead of choosing γ optimally, one could fix γ to some other value in Peek Search.
In particular, setting γ = 1 amounts to having Peek Search move one step on a path with maximum
non-discounted reward during each peek window. We found that Peek Search with γ = 1 obtained a
sub-optimal scaled log-probability of -45.86 (and 58.8% decoding match with Viterbi). However,
setting γ optimally did not make any difference for larger L.

7.2 Part-of-speech tagging

For our second task, we focused on the problem of decoding the part-of-speech (POS) tags for
sentences in the standard Brown corpus data. The corpus comprises 57340 sentences of different
lengths that have 1161192 tokens in total. The corpus is not divided into separate train and test sets.
Therefore, we formed 5 random partitions each having 80% train and 20% test sentences. The train
set was used to estimate the parameters of a first order HMM, and these parameters were then used
to predict the tags for tokens in the test sentences. For each test sentence that had all its tokens
observed in the train data, we computed its log-probability using its predicted tags (note that the
Viterbi algorithm maximizes this quantity in (1) exactly).

We computed the average log-probability over these test sentences for both the Viterbi algorithm,
and Peek Search for different values of latency L. We also computed the accuracy of tag predictions,
i.e. the fraction of test tokens whose predicted tags matched their ground truth labels. We report the
results (averaged over 5 independent train-test partitions) in Table 3. We observed that Peek Search
nearly matched the performance of Viterbi.2 Moreover, similar results were obtained when we used
3 beams to approximate the optimal γ-discounted reward within each (L + 1)-long peek window.
Thus, we can potentially design fast yet accurate heuristics for some low latency settings.

2We found that OSA also achieved almost optimal performance on the Brown corpus.

9

References
[1] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Trans. Information Theory, 13(2):260–269, 1967.

[2] O. Gotoh. Modeling one thousand intron length distributions with fitild. Bioinformatics,
34(19):3258–3264, 2018.

[3] W. Chu, Z. Ghahramani, and D. L. Wild. A graphical model for protein secondary structure
prediction. In International Conference on Machine Learning (ICML), 2004.

[4] K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn. Scalable modified kneser-ney language
model estimation. In Association for Computational Linguistics (ACL), pages 690–696, 2013.

[5] S. Bengio. An asynchronous hidden markov model for audio-visual speech recognition. In
Neural Information Processing Systems (NIPS), pages 1237–1244, 2003.

[6] J. Bulla and I. Bulla. Stylized facts of financial time series and hidden semi-markov models.
Comput. Stat. Data Anal., 51(4), 2006.

[7] S. B. Wang, A. Quattoni, L.-P. Morency, and D. Demirdjian. Hidden conditional random fields
for gesture recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1521–1527, 2006.

[8] P. F. Felzenszwalb, D. P. Huttenlocher, and J. M. Kleinberg. Fast algorithms for large-state-space
hmms with applications to web usage analysis. In Neural Information Processing Systems
(NIPS), pages 409–416, 2003.

[9] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and L. Girod. Accurate, low-
energy trajectory mapping for mobile devices. In Networked Systems Design and Implementation
(NSDI), pages 267–280, 2011.

[10] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. In
International Conference on Machine Learning (ICML). 2003.

[11] L. R. Rabiner. Readings in speech recognition. chapter A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition, pages 267–296. 1990.

[12] R. Ocana-Riola. Non-homogeneous markov processes for biomedical data analysis. Biometrical
Journal, 47:369–376, 2005.

[13] R. Perez-Ocon, J. E. Ruiz-Castro, and M. L. Gamiz-Perez. Non-homogeneous markov models
in the analysis of survival after breast cancer. Journal of the Royal Statistical Society, Series C,
50:111–124, 2001.

[14] B. Chenand and X.-H. Zhou. Non-homogeneous markov process models with informative
observations with an application to alzheimer’s disease. Biometrical Journal, 53(3):444–463,
2011.

[15] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Neural Information
Processing Systems (NIPS), pages 25–32, 2003.

[16] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In International Conference on Machine Learning
(ICML), 2004.

[17] A. McCallum, D. Freitag, and F. C. N. Pereira. Maximum entropy markov models for informa-
tion extraction and segmentation. In International Conference on Machine Learning (ICML),
2000.

[18] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference on Machine
Learning (ICML), pages 282–289, 2001.

[19] J. Peng, L. Bo, and J. Xu. Conditional neural fields. In Neural Information Processing Systems
(NIPS), pages 1419–1427. 2009.

[20] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape, A. Kumar, S. Goyal, R. Udupa,
M. Varma, and P. Jain. ProtoNN: compressed and accurate kNN for resource-scarce devices. In
International Conference on Machine Learning (ICML), pages 1331–1340, 2017.

10

[21] A. Kumar, S. Goyal, and M. Varma. Resource-efficient machine learning in 2 kb ram for the
internet of things. In International Conference on Machine Learning (ICML), pages 1935–1944,
2017.

[22] V. K. Garg, O. Dekel, and L. Xiao. Learning small predictors. In Neural Information Processing
Systems (NeurIPS), 2018.

[23] P. Zhu, D. A. E. Acar, N. Feng, P. Jain, and V. Saligrama. Cost aware inference for iot devices.
In Artificial Intelligence and Statistics (AISTATS), pages 2770–2779, 2019.

[24] M. Narasimhan, P. Viola, and M. Shilman. Online decoding of markov models under latency
constraints. In International Conference on Machine Learning (ICML), pages 657–664, 2006.

[25] A. Backurs and C. Tzamos. Improving viterbi is hard: Better runtimes imply faster clique
algorithms. In International Conference on Machine Learning (ICML), volume 70, pages
311–321, 2017.

[26] M. Cairo, G. Farina, and R. Rizzi. Decoding hidden markov models faster than viterbi via
online matrix-vector (max,+)-multiplication. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1484–1490, 2016.

[27] R. Šrámek, B. Brejová, and T. Vinař. On-line viterbi algorithm for analysis of long biological
sequences. In Algorithms in Bioinformatics, pages 240–251. Springer Berlin Heidelberg, 2007.

[28] A. Churbanov and S. Winters-Hilt. Implementing em and viterbi algorithms for hidden markov
model in linear memory. BMC Bioinformatics, 9(1):224, 2008.

[29] Y. Lifshits, S. Mozes, O. Weimann, and M. Ziv-Ukelson. Speeding up hmm decoding and
training by exploiting sequence repetitions. Algorithmica, 54(3):379–399, 2009.

[30] N. Kaji, Y. Fujiwara, N. Yoshinaga, and M. Kitsuregawa. Efficient staggered decoding for
sequence labeling. In Association for Computational Linguistics (ACL), pages 485–494, 2010.

[31] H. Daumé, III and D. Marcu. Learning as search optimization: Approximate large margin
methods for structured prediction. In International Conference on Machine Learning (ICML),
pages 169–176, 2005.

[32] J. Bloit and X. Rodet. Short-time viterbi for online HMM decoding: Evaluation on a real-time
phone recognition task. In ICASSP, pages 2121–2124. IEEE, 2008.

[33] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet. Online map-matching
based on hidden markov model for real-time traffic sensing applications. In IEEE Conference
on Intelligent Transportation Systems, 2012.

[34] T. S. Jayram, T. Kimbrel, R. Krauthgamer, B. Schieber, and M. Sviridenko. Online server
allocation in a server farm via benefit task systems. In Symposium on Theory of Computing
(STOC), pages 540–549, 2001.

[35] M. A. DeJesus and T. R. Ioerger. A hidden markov model for identifying essential and
growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC
Bioinformatics, 2013.

11

Supplementary Material

We now provide detailed proofs of all the theorems stated in the main text.

For improved readability, instead of proving Theorem 1 immediately, we start with two simpler
settings, namely, (a) first order fully connected,3 and (b) nth order fully connected. Together with
Theorem 1, these results will help segregate the effect of n from that of ∆ on the competitive ratio.

A First order chain models with ∆ = 1

Lemma 1. The competitive ratio of Peek Search on first order Markov chain models with ∆ = 1 for
L ≥ 1 is

ρ ≤
(

1 +
1

L

)
L√
L+ 1 .

Proof. Recall that at each time step i, our online algorithm solves the following optimization problem
over variables y , (yi, yi+1, . . . , yi+L) ∈ S(i, L), i.e. the set of valid paths of length L + 1 that
emanate from the state at time i:

Mi = arg max
y∈S(i,L)

R (yi|ŷi−1) +

L∑
j=1

γjR(yi+j |yi+j−1).

Note that the set Mi may have more than one path that maximizes the discounted sum. Breaking ties
arbitrarily, let the online algorithm choose ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) ∈Mi (and reach the state ŷi). Let

{y∗t | t ∈ [T]} be the optimal path over the entire horizon. Since ∆ = 1, one of the candidate paths
considered by the online algorithm is the optimal segment (y∗i , y

∗
i+1, . . . , y

∗
i+L). Since ỹi ∈Mi, we

must have

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥ R(y∗i |ŷi−1) +

L∑
j=1

γjR(y∗i+j |y∗i+j−1)

≥
L∑

j=1

γjR(y∗i+j |y∗i+j−1) , (3)

where the last inequality follows since all rewards are non-negative, and thus in particular,
R(y∗i |ŷi−1) ≥ 0.

An alternate path considered by the online algorithm is (ỹ1
i−1, . . . , ỹ

L
i−1, ȳ

L+1
i−1), where

(ỹ1
i−1, . . . , ỹ

L
i−1) are the last L steps of the path ỹi−1 ∈Mi−1 (i.e. the path chosen at time i− 1) and

ȳL+1
i−1 is an arbitrary valid transition from state ỹLi−1. Again since this transition fetches a non-negative

reward, we must have

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥ R(ỹ1
i−1|ŷi−1) +

L−1∑
j=1

γjR(ỹj+1
i−1 |ỹ

j
i−1) . (4)

3Note that for first order fully connected models, Peek Search recovers an algorithm introduced by [34] in the
context of their single server online allocation setting. Similarly, Peek Reset generalizes the Intermittent Reset
algorithm due to [34], while Randomized Peek Search generalizes a randomized algorithm from [34] to higher
order settings for ∆ ≥ 1. Our algorithms hinge on a novel adaptive optimization perspective. We therefore
emphasize the role of optimization in our analysis.

12

Multiplying (3) by 1− γ and (4) by γ, and adding the resulting inequalities, we get

R(ŷi|ŷi−1) + γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)

≥
L∑

j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) + R(ỹ1
i−1|ŷi−1) +

L−1∑
j=1

γj+1R(ỹj+1
i−1 |ỹ

j
i−1)

=

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) + γR(ỹ1
i−1|ŷi−1) +

L∑
k=2

γkR(ỹki−1|ỹk−1
i−1),

where the last inequality follows from a change of variable, namely, k = j + 1. Summing across all
time steps i,

∑
i

R(ŷi|ŷi−1) +
∑
i

γR(ỹ1
i |ŷi) +

L∑
j=2

γjR(ỹji |ỹ
j−1
i)


︸ ︷︷ ︸

DR1

≥
∑
i

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) +
∑
i

γR(ỹ1
i−1|ŷi−1) +

L∑
j=2

γjR(ỹji−1|ỹ
j−1
i−1)


︸ ︷︷ ︸

DR2

.

Without loss of generality, we can assume that all transitions between states in the first L+ 1 time
steps and the last L+ 1 steps fetch zero reward.4 Now note that both DR1 and DR2 consist of terms
that pertain to leftover discounted rewards on optimal (L+ 1)-paths computed by Peek Search (recall
we take only the first step on each such path). In fact, the terms are common to both sides except for
those that fall in (L + 1)-length windows at the beginning or the end. Since first and last (L + 1)
steps fetch zero reward, we can safely disregard these windows. Thus, by telescoping over i, we have

∑
i

R(ŷi|ŷi−1) ≥
∑
i

L∑
j=1

(1− γ)γjR(y∗i+j |y∗i+j−1) .

Defining a variable s = i+ j, and interchanging the two sums, we note that the right side becomes

(1− γ)

L∑
j=1

γj
∑
s

R(y∗s |y∗s−1).

That is, every reward subsequent to L+ 1 steps appears with discounts γ, γ2, . . . , γL. Summing the
geometric series, we note that the ratio of the total reward obtained by the optimal offline algorithm
to that by the online algorithm, i.e. the competitive ratio ρ is at most γ−1(1 − γL)−1. The result
follows by setting γ = L

√
1/(L+ 1).

B nth order chain models with ∆ = 1

Lemma 2. The competitive ratio of Peek Search on Markov chain models of order n with ∆ = 1 for
L ≥ n is

ρ ≤ L+ 1

L− n+ 1

(
L+ 1

n

)n/(L−n+1)

= 1 + Θ

(
logL

L− n+ 1

)
.

4One way to accomplish this is by adding a sequence of L+ 1 dummy tokens, that fetch only zero rewards,
at the beginning and another sequence at the end of the input to be decoded. Alternatively, we can introduce a
dummy start state that transitions to itself L times with zero reward and produces a fake output in each transition,
and then makes a zero reward transition into the true start state, whence actual decoding happens for T steps
followed by repeated transitions into a dummy end state that fetches a zero reward).

13

Proof. For n = 1, the result follows from Lemma 1. Therefore, we will assume n > 1. The online
algorithm finds, at time i, some ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) that maximizes the following objective over

valid paths y = (yi, . . . , yi+L):

f(y) , R(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjR(yi+j |y[i+j−n,i+j−1]) .

One candidate path for the online algorithm (a) makes a transition to y∗i worth R(y∗i |ŷ[i−n,i−1]) ≥ 0,
(b) then follows the sequence of n− 1 states y∗[i+1,i+n−1] where transition i+ j, j ∈ [n− 1] is worth

γjR(y∗i+j |ŷ[i−n+j,i−1], y
∗
[i,i+j−1]) ≥ 0 ,

and (c) finally follows a sequence of L − n + 1 states y∗[i+n,i+L] where transition i + j, j ∈
{n, n + 1, . . . , L} is worth γjR(y∗i+j |y∗[i+j−n,i+j−1]) . Since ỹi ∈ argmaxy f(y) and the rewards
in (a) and (b) are all non-negative, we must have

f(ỹi) ≥
L∑

j=n

γjR(y∗i+j |y∗[i+j−n,i+j−1]) . (5)

Another option available with the online algorithm is to continue following the path selected at
time i− 1 for L steps, and then make an additional arbitrary transition with a non-negative reward.
Therefore, we must also have

f(ỹi) ≥ R(ỹ1
i−1|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(ỹj+1
i−1 |ŷ[i−n+j,i−1], ỹ

[j]
i−1)

+

L−1∑
j=n

γjR(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) . (6)

Multiplying (5) by 1− γ and (6) by γ, and adding the resulting inequalities, we get

f(ỹi) ≥ (1− γ)

L∑
j=n

γjR(y∗i+j |y∗[i+j−n,i+j−1]) + γR(ỹ1
i−1|ŷ[i−n,i−1])

+

n∑
j=2

γjR(ỹji−1|ŷ[i−n+j−1,i−1], ỹ
[j−1]
i−1) +

L∑
j=n+1

γjR(ỹji−1|ỹ
[j−n,j−1]
i−1) . (7)

Expanding the terms of f(ỹi), we note

f(ỹi) = R(ŷi|ŷ[i−n,i−1]) + γR(ỹ1
i |ŷ[i−n+1,i])

+

n∑
j=2

γjR(ỹji |ŷ[i+j−n,i], ỹ
[j−1]
i) +

L∑
j=n+1

γjR(ỹji |ỹ
[j−n,j−1]
i) . (8)

Substituting f(ỹi) from (8) in (7), assuming zero padding as in the proof of Lemma 1, and summing
over all time steps i, we get the inequality∑

i

R(ŷi|ŷ[i−n,i−1]) ≥
∑
i

L∑
j=n

(1− γ)γjR(y∗i+j |y∗[i+j−n,i+j−1]) .

Defining s = i+ j and interchanging the two sums, we note that the right side simplifies to

(1− γ)

L∑
j=n

γj
∑
s

R(y∗s |y∗[s−n,s−1]) .

14

The sum of this geometric series is given by γn − γL+1, and thus setting

γ =

(
n

L+ 1

)1/(L−n+1)

,

we immediately conclude that the total reward obtained by the optimal offline algorithm exceeds that

of the online algorithm by at most Θ

(
logL

L− n+ 1

)
times the reward of the online algorithm, and

hence we have the following bound on the competitive ratio

ρ ≤ 1 + Θ

(
logL

L− n+ 1

)
.

We are now ready to prove Theorem 1.

C nth order chain models with diameter ∆

Theorem 1. The competitive ratio of Peek Search on Markov chain models of order n with diameter

∆ for L ≥ ∆ + n− 1 is ρ ≤ (γ∆+n−1 − γL+1)−1. Setting γ =
(L−∆−n+2)

√
∆ + n− 1

L+ 1
, we get

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L− ∆̃ + 1

)
.

Proof. For ∆ = 1, the result follows from Lemma 2. Therefore, we will assume ∆ > 1. As in the
proof of Theorem 2, the online algorithm finds at time i some ỹi , (ŷi, ỹ

1
i , . . . , ỹ

L
i) that maximizes

the following objective over valid paths y = (yi, . . . , yi+L):

f(y) , R(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjR(yi+j |y[i+j−n,i+j−1]) .

Since ∆ > 1, the online algorithm may not be able to jump to the desired state on the optimal
offline path in one step unlike in the setting of Lemma 2, and may require ∆ steps in the worst case.5
Therefore, let (ȳi, . . . , ȳi+∆−2) be an intermediate sequence of states before the online algorithm
could transition to the optimal offline path and then follow the optimal algorithm for the remaining
steps. Therefore, we have

f(ỹi) ≥ R(ȳi|ŷ[i−n,i−1]) +

∆−2∑
j=1

γjR(ȳi+j |ŷ[i−n+j,i−1], ȳ[i,i+j−1])

+ γ∆−1R(y∗i+∆−1|ȳ[i+∆−n−1,i+∆−2])

+

∆+n−2∑
j=∆

γjR(y∗i+j |ȳ[i+j−n−1,i+∆−2], y
∗
[i+∆−1,i+j−1])

+

L∑
j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1])

≥
L∑

j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1]) , (9)

5The online algorithm may require less than ∆ steps depending on its current state, however, we perform a
worst case analysis and therefore, our result holds even if fewer than ∆ steps may suffice to reach the optimal
path at some point during the execution of the online algorithm.

15

where we have leveraged the non-negativity of rewards to obtain the last inequality.

Another option available with the online algorithm is to continue following the path selected at
time i− 1 for L steps, and then make an additional arbitrary transition with a non-negative reward.
Therefore, we must also have

f(ỹi) ≥ R(ỹ1
i−1|ŷ[i−n,i−1]) +

n−1∑
j=1

γjR(ỹj+1
i−1 |ŷ[i−n+j,i−1], ỹ

[j]
i−1)

+

L−1∑
j=n

γjR(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) . (10)

Multiplying (9) by 1− γ and (10) by γ, and adding the resulting inequalities, we get

f(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjR(y∗i+j |y∗[i+j−n,i+j−1]) + γR(ỹ1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1R(ỹj+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1) +

L−1∑
j=n

γj+1R(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) .

Expanding f(ỹi), telescoping over i, and defining s = i + j as in Lemma 2, we get that the total
reward accumulated by the online algorithm is at least (γn+∆−1 − γL+1) times the total reward
collected by the optimal offline algorithm since

(1− γ)

L∑
j=∆+n−1

γj =

L∑
j=∆+n−1

(γj − γj+1)

= (γ∆+n−1 − γ∆+n) + (γ∆+n − γ∆+n+1) + . . .+ (γL−1 − γL) + (γL − γL+1)

= γ∆+n−1 − γL+1

We immediately obtain the optimal γ by setting the derivative with respect to γ to 0. The optimal
value turns out to be

γ =
(L−∆−n+2)

√
∆ + n− 1

L+ 1
,

which immediately yields

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L−∆− n+ 2

)
.

Note that Theorem 1 suggests that essentially n + ∆ − 1 steps are wasted every L + 1 steps by
the online algorithm in the sense that it may not receive any reward in these steps. However, the
remaining steps fetch nearly the same reward as the optimal offline algorithm. In particular, the
competitive ration ρ gets arbitrarily close to 1, as L is set sufficiently large compared to ∆ + n. That
is, the performance of the online algorithm is asymptotically optimal in the peek L.

We now show that the result extends to the non-homogeneous setting.

D Non-homogeneous Markov chain models

We note that there might be multiple transitions between a pair of states during any peek window.
Such transitions are considered distinct and may indeed have different rewards during the same

16

window. We only require that the non-discounted reward committed for every transition is “honored"
at all times during the window. We have the following result.

The competitive ratio of Peek Search on non-homogeneous (i.e. time-varying) Markov chain models
of order n with diameter ∆ for L ≥ ∆ + n− 1 is

ρ ≤ L+ 1

L−∆− n+ 2

(
L+ 1

∆ + n− 1

)(n+∆−1)/(L−∆−n+2)

= 1 + Θ

(
logL

L−∆− n+ 2

)
,

provided the reward associated with any transition does not change for (at least) L+ 1 steps from
the time it is revealed as peek information to the online algorithm.

Proof. The online algorithm maximizes the following non-stationary objective at time i:

fi(y) , Ri(yi|ŷ[i−n,i−1]) +

n−1∑
j=1

γjRi(yi+j |ŷ[i−n+j,i−1], y[i,i+j−1])

+

L∑
j=n

γjRi(yi+j |y[i+j−n,i+j−1]) ,

where the subscript i shown with f and R indicates that the rewards associated with a transition may
change with time i. Proceeding as in the proof of Theorem 1, we get

fi(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

+ γRi(ỹ
1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1Ri(ỹ
j+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1)

+

L−1∑
j=n

γj+1Ri(ỹ
j+1
i−1 |ỹ

[j−n+1,j]
i−1) .

However, by our assumption, we can equivalently write

fi(ỹi) ≥ (1− γ)

L∑
j=∆+n−1

γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

+ γRi−1(ỹ1
i−1|ŷ[i−n,i−1])

+

n−1∑
j=1

γj+1Ri−1(ỹj+1
i−1 |ŷ[i−n+j,i−1]), ỹ

[j]
i−1)

+

L−1∑
j=n

γj+1Ri−1(ỹj+1
i−1 |ỹ

[j−n+1,j]
i−1) .

Expanding f(ỹi), summing over all i, and defining s = i+ j as in Theorem 2, we get∑
i

Ri(ŷi|ŷ[i−n,i−1]) ≥
∑
i

L∑
j=∆+n−1

(1− γ)γjRi(y
∗
i+j |y∗[i+j−n,i+j−1])

= (1− γ)

L∑
j=∆+n−1

γj
∑
s

Rs−j(y
∗
s |y∗[s−n,s−1])

= (1− γ)

L∑
j=∆+n−1

γj
∑
s

Rs(y
∗
s |y∗[s−n,s−1]) ,

17

where we have again made use of the fact that reward due to any transition does not change for
L+ 1 steps once revealed. The rest of the proof is identical to the analysis near the end of proof for
Theorem 1.

E Efficient Dynamic Programs

Theorem 2. Peek Search can compute a best γ-discounted path for the next L+ 1 steps, in nth order
Markov chain models, in time O(L|K|n), where K is the set of states.

Proof. Let Si(`, v[a,b]) denote the set of all valid paths of length ` + 1 emanating from the state
ŷi−1 at time i, where ` ∈ {0, 1, . . . , L}, that end in the state sequence (va, . . . , vb). Thus, e.g., if the
directed edge e = (ŷi−1, vn) exists, then

Si(0, v[2, n]) =

{
{e} if vn−j = ŷi−j , ∀j ∈ [n− 2]

∅ otherwise ,

where ∅ is the empty set. We also denote the reward resulting from valid paths of length `+ 1 that
end in sequence v[a,b] by Πi(`, v[a, b]). That is,

Πi(`, v[a,b]) = max
(yi,...,yi+`)∈Si(`,v[a,b])

f`(y[i,i+`]),

where we define f`(y[i,i+`]) recursively as

f`(y[i,i+`]) =



R(yi|ŷ[i−n,i−1]) ` = 0

f`−1(y[i,i+`−1]) + γ`R(yi+`|ŷ[i−n+`,i−1], y[i,i+`−1]) ` ∈ [n− 1]

f`−1(y[i,i+`−1]) + γ`R(yi+`|y[i−n+`,i+`−1]) ` ∈ [n,L]

.

Note that fL(yi,i+L) is precisely the objective optimized by Peek Search at time i. Now, suppose
` ∈ [n,L]. Then, for any end sequence v[2,n],

Πi(`, v[2,n]) = max
y[i,i+`]∈Si(`,v[2,n])

f`(y[i,i+`])

= max
v1

max
y[i,i+`]∈Si(`,v[1,n])

f`(y[i,i+`]) ,

which may be expanded as6

max
v1∈K

max
y[i,i+`]∈Si(`,v[1,n])

f`−1(y[i,i+`−1]) + γ`R(yi+`|y[i−n+`,i+`−1])

= max
v1

max
Si(`,v[n])

f`−1(y[i,i+`−1]) + γ`R(vn|v[n−1])

= max
v1

max
Si(`−1,v[n−1])

f`−1(y[i,i+`−1]) + γ`R(vn|v[n−1])

= max
v1

(
Πi(`− 1, v[n−1]) + γ`R(vn|v[n−1])

)
.

A similar analysis can be done for ` ∈ [n− 1]. Then, the maximizing path of length `+ 1 is in the set

arg max
v[2,n]∈K

max
v1∈K

(
Πi(`− 1, v[n−1]) + γ`R(vn|v[n−1])

)
,

which requires7 checking O(|K|n) values for v[n]. We conclude by noting that Πi is updated for each
` ∈ {0, . . . , L}, and thus the total complexity is O(L|K|n).

We sketch our efficient traceback procedure in Algorithm 1. In the procedure, we let S(`)
i , ` ∈

{0, . . . , L} be all state sequences of length `+ 1 that start from state at time i. Thus, for instance,
S

(0)
i contains all states yi that can be reached in one step.

6We simply write Si(`, v) instead of y[i,i+`] ∈ Si(`, v) in order to improve readability at the expense of
abuse of notation.

7In addition to backpointer information that is required to determine a maximizing path as in the Viterbi
algorithm once the construction of table for bookkeeping Πi is completed. Construction of table requires
O(L|K|n) time which dominates the O(L) time required for computing the path from the backpointers.

18

Algorithm 1 Peek Search (γ, L,Ri, ŷi−n, . . . , ŷi−1)

Input: previous states ŷ[i−n,i−2] and current state ŷi−1, latency L, discount factor γ and reward
function Ri(·|·)
Output: a sequence of states that maximizes the γ-discounted reward over paths of length (L+ 1)
Initialize rewards available in the immediate step
Set yi−j = ŷi−j , ∀j ∈ [n]

Πi(0, y[i−n,i−1], yi) =

{
Ri(yi|y[i−n,i−1]), yi ∈ S(0)

i

0 otherwise

Update rewards & backpointers incrementally
Define the shorthand ym,n

(a,b) , y[a+m,b+n]

for ` = 1 to L for yi+` ∈ S(`)
i do

Πi(`, y
`−n,`
(i,i−1), yi+`)= max

z

(
Πi(`− 1, z, y`−n,`(i,i−1)) + γ`Ri(yi+`|z, y`−n,`(i,i−1))

)
Store the backpointer z∗` (yi+`) that maximizes the score Πi(`, y

`−n,`
(i,i−1), yi+`) above

end for
Trace back a path with maximum discounted reward
ỹi+L ∈ argmax

yi+L

max
y[i+L−n,i−1+L]

Πi(L, y
L−n,L
(i,i−1) , yi+L+1)

for ` = L− 1 to 0 do
ỹi+` = z∗`+1(ỹi+`+1)

end for
Set ŷi = ỹi

Note that both Randomized Peek Search and Peek Reset, can compute rewards on their paths
efficiently by using our procedure for Peek Search as a subroutine. For instance, Randomized Peek
Search could invoke Algorithm 1 at each reset point with γ set to 1, and follow this path until the
next reset point.

F Randomized Peek Search

Theorem 3. Randomized Peek Search achieves, in expectation, on Markov chain models of order n
with diameter ∆ a competitive ratio

ρ ≤ 1 +
∆ + n− 1

L+ 1− (∆ + n− 1)

= 1 + Θ

(
1

L− ∆̃ + 1

)
.

Proof. Recall that the randomized algorithm recomputes and follows a path that optimizes the non-
discounted reward once every L+ 1 steps (which we call an epoch). Since the starting or reset point
is chosen uniformly at random from {1, 2, . . . , L+ 1}, we define a random variable X that denotes
the outcome of an unbiased (L + 1)-sided dice. Let (X = x) be any particular realization. Then,
during epoch i, one option available with the online algorithm is to give up rewards in steps

[i ∗ (L+ 1) + x, i ∗ (L+ 1) + x+ ∆ + n− 2]

to reach a state on the optimal offline path and follow it for the remainder of the epoch. Let ONx

denote the total reward of the online randomized algorithm conditioned on realization x, and let
OPT be the optimal reward. Then, letting r∗t be the reward obtained by the optimal offline algorithm
at time t we must have

ONx ≥ OPT −
∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t . (11)

19

Since x is chosen uniformly at random from [L+ 1], we also note the expected value of the second
term on the right

= Ex

∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t

∣∣∣∣X = x


=

1

L+ 1

L+1∑
x=1

∑
i

i∗(L+1)+x+∆+n−2∑
t=i∗(L+1)+x

r∗t

=
1

L+ 1

L+1∑
x=1

∑
i

∆+n−2∑
z=0

r∗z+i∗(L+1)+x

=
1

L+ 1

∆+n−2∑
z=0

(∑
i

L+1∑
x=1

r∗z+i∗(L+1)+x

)

=
1

L+ 1

∆+n−2∑
z=0

OPT

=
∆ + n− 1

L+ 1
OPT .

Therefore, taking expectations on both sides of (11),

Ex(ONx) ≥ OPT
(

1− ∆ + n− 1

L+ 1

)
,

whence the result follows immediately.

G Peek Reset

Theorem 4. The competitive ratio of Peek Reset on Markov chain models of order n with diameter
∆ for latency L is

ρ ≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 8(∆ + n− 1) + 1
= 1 + Θ

(
1

L− 8∆̃ + 1

)
.

Proof. We will assume for now that L is a multiple of 4(∆ + n − 1). Recall that the Peek Reset
algorithm works in phases with varying lengths, and takes multiple steps in each phase. Let (i)
denote the time at which phase i begins. Then, the algorithm follows, in phase i, a sequence
of states ŷ(i) , (ŷ(i), ŷ(i)+1, . . . , ŷTi−1) that maximizes the following objective over valid paths
y = (y(i), . . . , yTi−1) :

f(y) , R(y(i)|ŷ[(i)−n,(i)−1])

+

n−1∑
j=1

R(y(i)+j |ŷ[(i)−n+j,(i)−1], y[(i),(i)+j−1])

+

Ti−(i)−1∑
j=n

R(y(i)+j |y[(i)+j−n,(i)+j−1]) ,

where Ti is chosen arbitrarily from the set

arg min
t∈[(i)+L/2+1,(i)+L]

max
(yt−n,...,yt)

R(yt|y[t−n,t−1]) .

We define the corresponding reward

xTi = min
t∈[(i)+L/2+1,(i)+L]

max
(yt−n,...,yt)

R(yt|y[t−n,t−1]) .

20

Consider the portion of the path traced by the online algorithm from ŷ(i)+L/2 to ŷTi−1. Total number
of edges on this path is zi = Ti − ((i) + L/2 + 1). We claim that the reward resulting from this
sequence is at least

ai =
zi − (∆ + n− 1)

∆ + n
xTi

.

This is true since, by definition of xTi
, at each time t ∈ [(i) + L/2 + 1, (i) + L], there is a state yt−1

such that moving to some state yt will fetch a reward at least xTi
. Note that a maximum of ∆ +n− 1

steps might have to be wasted to reach another state that fetches at least xTi . Thus, a reward of xTi is
guaranteed every ∆ +n steps. While there are zi steps in this sequence, at most ∆ +n− 1 steps may
be left over as residual edges that do not fetch any reward if zi is not a multiple of ∆ + n. Since the
online algorithm optimized for total non-discounted reward, it must have considered this alternative
subsequence of steps for the interval pertaining to zi.

Next consider the portion traversed by the online algorithm from ŷTi
to ŷ(i)+L in the next phase

(i + 1). This phase starts at time Ti. By an argument analogous to previous paragraph, the online
algorithm collects from this sequence an aggregate no less than

bi =
(i) + L− Ti − (∆ + n− 1)

∆ + n
xTi .

Thus, the reward accumulated by the online algorithm in these two portions is at least

ai + bi =
L− 4(∆ + n− 1)

2(∆ + n)
xTi .

Summing over all phases, we note that the total reward gathered by the online algorithm is∑
i

f(ŷ(i)) ≥ L− 4(∆ + n− 1)

2(∆ + n)

∑
i

xTi
. (12)

Let f(y∗(i)) be the reward collected by the optimal offline algorithm in phase i. Since the online
algorithm optimizes for the total reward, one possibility it considers is to forgo reward in the first
(∆ + n− 1) steps in each phase in order to traverse the same sequence as the optimal algorithm in
the remaining steps. Thus, we must have∑

i

f(ŷ(i)) ≥
∑
i

f(y∗(i))− (∆ + n− 1)
∑
i

xTi
. (13)

Combining (12) and (13), we note for even L∑
i f(y∗(i))∑
i f(ŷ(i))

≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 4(∆ + n− 1)
.

Accounting for L that are not multiples of 4(∆ + n− 1), we conclude the competitive ratio of Peek
Reset is

ρ ≤ 1 +
2(∆ + n)(∆ + n− 1)

L− 8(∆ + n− 1) + 1
.

H Lower Bounds

Theorem 5. The competitive ratio of any deterministic online algorithm on nth order (time-varying)
Markov chain models with diameter ∆ for latency L is greater than

1 +
∆̃

L

(
1 +

∆̃ + L− 1

(∆̃ + L− 1)2 + ∆̃

)
.

In particular, when n = 1, ∆ = 1, the ratio is larger than

1 +
1

L
+

1

L2 + 1
.

21

Proof. We motivate the main ideas of the proof for the specific setting of n = 2 and unit diameter.
The extension to general n and unit diameter is then straightforward. Finally, we conjure an example
to prove the lower bound for arbitrary n and ∆ via a prismatic polytope construction.

First consider the case n = 2 and ∆ = 1. We design a 3× (L+ 3) matrix initialized as shown below:
each row corresponds to a different state, each column corresponds to a time, “?” indicates that the
corresponding entry is not known since it lies outside the current peek window of length L+ 1, and
a > 0 is a variable that will be optimized later.�0 1 a a . . . a ? ?

0 1 a a . . . a ? ?
0 1 a a︸ ︷︷ ︸

(L−1) terms

. . . a ? ?

 (14)

The box in front of the first entry indicates that the online algorithm made a transition to state 1 from
a dummy start state “ ∗ ” and is ready to make a decision in the current step t = 0 about whether to
continue staying in state 1, or transition to either state 2 or 3. At time t = 0, the rewards for the next
L+ 1 steps are identical, so without loss of generality, let the online algorithm choose the first state,
get 0 as reward, and move to the next time t = 1. An additional column is revealed and we get the
following snapshot.

[
�0 �1 a a . . . a 0 ?

0 1 a a . . . a 2a ?
0 1 a a . . . a 2a ?

]
(15)

Since n = 2, we may enforce the following second order Markov dependencies for t ≥ 1: any
state s ∈ {1, 2, 3} yields zero reward unless the previous two states s′, s′′ ∈ {1, 2, 3, ∗} were such
that s′ ∈ {∗, s} and s′′ = s. If this condition is true, then the algorithm receives the current entry
pertaining to s as the reward. In other words, other than the special case of dummy start state being
one of the states, the algorithm receives the reward only if s is same as the previous two states.

Suppose the online algorithm selects state 1 again at t = 1. Then it collects reward 1, and another
column is revealed as shown below.

[
�0 �1 �a a . . . a 0 0

0 1 a a . . . a 2a 0
0 1 a a . . . a 2a 0

]
(16)

In this scenario, the maximum reward the online algorithm can fetch, during its entire execution, is at
most 1 + (L− 1)a. To see this note that this is exactly the reward the algorithm gets if it sticks to
state 1 at all subsequent times t. If, however, it were to jump to any other state and continue with it
for at least one step, then it would lose rewards in successive steps due to second order dependency,
for a total loss of reward 2a. All other possibilities incur a loss greater than 2a. This loss offsets
the additional 2a reward available with states other than 1. On the other hand, the offline algorithm
would select a state s ∈ {2, 3} from the very beginning, and thus receive 1 + (L+ 1)a in total. The
competitive ratio in this scenario, therefore, turns out to be

r1 =
1 + (L+ 1)a

1 + (L− 1)a
= 1 +

2a

1 + (L− 1)a
.

Suppose instead the online algorithm transitions to some state s ∈ {2, 3} at t = 1. We assume
without loss of generality that the algorithm transitions to state 2. The last column is then revealed as
follows.8

8Note that since our objective here is to prove a lower bound, we would like the competitive ratio to be as
high as possible. It might be tempting to set a reward larger than a for state 3 in the last column. That would
imply both the online and the offline algorithms could receive an additional reward worth a. This, however,

would not improve the competitive ratio for the simple reason that for positive x, y, and c,
x+ c

y + c
>
x

y
only if

x < y (we instead have x > y since r2 > 1).

22

[
�0 �1 a a . . . a 0 0

0 1 �a a . . . a 2a 0
0 1 a a . . . a 2a a

]
(17)

Note that the online algorithm loses on rewards 1 and a in successive steps due to transition. The
maximum total reward possible in this case is La regardless of whether the online algorithm makes a
transition to other states, or sticks with state 2 subsequently. The offline algorithm, in contrast, would
receive all rewards available in state 3. Thus, the ratio in this scenario is

r2 =
1 + (L+ 2)a

La
= 1 +

1 + 2a

La
.

Combining the two cases, the competitive ratio of the online algorithm is at least min{r1, r2}, and
thus we could set r1 = r2 and solve for a.

We can extend this analysis to the general n ≥ 1 setting with unit diameter easily. We design a
3× (L+ 3) matrix with the same row initialization as in (14). Also, we assume that prior to time
t = 0, only zero reward transitions were available between some dummy states9 for both the online
and the offline algorithms. We denote the set of these dummy states by ∗∗. We enforce the following
nth order Markov dependencies for t ≥ 1: any state s ∈ [m] yields zero reward unless the previous
n states were same as s or had a prefix consisting only of states in ∗∗ followed by s in the remaining
time steps. If this condition is satisfied, the algorithm receives the current entry pertaining to s as
reward.

The evolution of the reward matrix is as follows. Assuming state 1 was selected at t = 0, we let
column L + 2 have all entries in rows 2 and 3 to na (instead of 2a that we set in (15)) at t = 1.
Finally, if the online algorithm selects state 1 at t = 1, we set the last column to all zeros at time
t = 2 as in (16); otherwise, we set first two entries in the last column to 0, and a in the last row as in
(17).

Reasoning along the same lines as before, the competitive ratio of the online algorithm is at least

min

{
1 +

na

1 + (L− 1)a
, 1 +

1 + na

La

}
. (18)

We set

1 +
na

1 + (L− 1)a
= 1 +

1 + na

La
,

whereby

a =
n+ L− 1 +

√
(n+ L− 1)2 + 4n

2n
.

Substituting this value for a in (18), and leveraging that

a <
n+ L− 1

n
+

1

n+ L− 1
,

we note the competitive ratio is at least

1 +
n

L

(
1 +

n+ L− 1

(n+ L− 1)2 + n

)
. (19)

The foregoing analysis may be visualized geometrically in terms of a triangle, with each vertex
corresponding to a state. The rewards for initial L + 1 steps are all same, and thus the online
algorithm does not have preference for any state initially. Without loss of generality, as soon as it
selects state 1 (with all rewards at time t = 0 being 0), the rewards for time step L+ 2 are chosen
at t = 1 such that states 2 and 3 would fetch reward na while state 1 will fetch none. The online
algorithm could either stay with state 1 and get a suboptimal total reward or jump to an adjacent
vertex or state, which would not yield reward for n steps.

9Another way to enforce the same effect, without the dummy states, is to add additional n columns, with all
zero rewards for all the actual states, prior to time t = 0.

23

We now extend this analysis to accommodate any finite ∆ ≥ 1. Toward that goal, we consider a
∆-dimensional prismatic polytope10 with a triangular base (i.e. having 3 vertices). Each vertex of
the polytope corresponds to a state, and the maximum distance between two vertices is exactly ∆.
Moreover, for every vertex there is some vertex at distance d for each d ∈ [∆]. The polytope is
completely symmetric with respect to all the vertices, and we again set rewards for the first L+ 1
steps at all vertices to be the same as before.

Without loss of generality, we again assume that the online algorithm starts at some state 1 (arbitrary
labeled). At the next time step, the reward at all vertices that are at a distance d from this vertex is
set to (n+ d− 1)a. Thus, the vertices adjacent to state 1 have reward na in column (L+ 2) since
they lie at distance d = 1, while the reward for state 1 in this column is 0. Thus, the maximum
reward is available at distance d = ∆ from state 1, however, the online algorithm will need to make
∆ steps to reach such a state, and then wait another n− 1 steps before availing this reward. Thus,
effectively, ∆̃ = n + ∆ − 1 steps are wasted that the offline algorithm could fully exploit due to
prescience. Proceeding along same lines as before, and replacing n with ∆̃ in (19), we conclude that
the competitive ratio of any deterministic online algorithm on our construction is at least

1 +
∆̃

L

(
1 +

∆̃ + L− 1

(∆̃ + L− 1)2 + ∆̃

)
.

Theorem 6. For any ε > 0, the competitive ratio of any randomized online algorithm, that is allowed
latency L, on nth order (time-varying) Markov chain models with ∆ = 1 is at least

1 +
(1− ε)n
L+ εn

.

For a general diameter ∆, the competitive ratio is at least

1 +

(
2∆−1d1/εe − 1

)
n

2∆−1d1/εeL+ n
.

Proof. First consider the unit diameter setting (i.e. ∆ = 1). We design a matrix with d1/εe rows and
L+ 2 columns. The first column consists of all zeros, the next L columns contain all ones, and the
last column contains all zeros except one randomly chosen row that contains n. We again enforce the
Markov dependency structure described in the proof of Theorem 5 for all states (or rows) in [d1/εe].
The optimal offline algorithm knows beforehand which row q contains n in the last column, and thus
collects a total reward L+ n. On the other hand, any randomized online algorithm chooses this row
at t = 0 with only probability ε. Selecting any other row at t = 0 may fetch a maximum reward of L
accounting for all the possibilities including sticking to this row subsequently, or moving to q in one
or more transitions. Since the randomized algorithm is assigned at time t = 0 with the remaining
probability (1− ε) to some row other than q, its expected reward cannot exceed

ε ∗ (L+ n) + (1− ε) ∗ L = L+ εn.

Thus, when ∆ = 1, the competitive ratio for any randomized online algorithm is at least
L+ n

L+ εn
as

claimed. For the general setting, we consider a ∆-dimensional prismatic polytope with the base
containing d1/εe vertices. In addition to the usual prismatic polytope topology (assuming bidirectional
edges between any pair of adjacent vertices), we add edges so that vertices on each face are strongly
connected, i.e., directed edges in both directions connect all pairs of vertices that lie on a face. The
polytope contains u = 2∆−1d1/εe states in total. We design a matrix having these many rows and
L+ 2 columns as before. Any randomized online algorithm has only a 1/u probability of getting the
maximum possible L+ n reward (due to selecting q and sticking with it), and must forfeit a reward
no less than n with the remaining probability. Thus, the expected reward cannot exceed

(L+ n)/u+ (1− 1/u) ∗ L = L+ n/u,

10Note that a d-dimensional prismatic polytope is constructed from two (d - 1)-dimensional polytopes,
translated into the next dimension.

24

while the maximum possible reward is L+ n. Thus the competitive ratio is at least
L+ n

L+ n/u
which

simplifies to the result stated in the problem statement.

25

	Introduction
	Overview of our results
	Peek Search
	Randomized Peek Search
	Peek Reset
	Lower Bounds
	Experiments
	Genome sequencing
	Part-of-speech tagging

	First order chain models with = 1
	nth order chain models with = 1
	nth order chain models with diameter
	Non-homogeneous Markov chain models
	Efficient Dynamic Programs
	Randomized Peek Search
	Peek Reset
	Lower Bounds

