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Abstract

Growing costs, environmental awareness and govern-
ment directives have set the stage for an increase in the
fraction of electricity supplied using intermittent renew-
able sources such as solar and wind energy. To com-
pensate for the increased variability in supply and de-
mand, we need algorithms for online energy resource al-
location under temporal uncertainty of future consump-
tion and availability. Recent advances in prediction al-
gorithms offer hope that a reduction in future uncer-
tainty, through short term predictions, will increase the
worth of the renewables. Predictive information is then
revealed incrementally in an online manner, leading to
what we call dynamic temporal uncertainty. We demon-
strate the non-triviality of this problem and provide on-
line algorithms, both randomized and deterministic, to
handle time varying uncertainty in future rewards for
non-stationary MDPs in general and for energy resource
allocation in particular. We derive theoretical upper and
lower bounds that hold even for a finite horizon, and es-
tablish that, in the deterministic case, discounting future
rewards can be used as a strategy to maximize the total
(undiscounted) reward. We also corroborate the efficacy
of our methodology using wind and demand traces.

Growing costs, environmental awareness and government
directives have set the stage for an increase in the fraction
of electricity supplied using renewable sources (Wiser and
Barbose 2008). Distributed generation (Ackermann, Ander-
sson, and Soder 2001), using renewable sources, is gaining
prominence and perceived as vital in achieving cost and car-
bon reduction goals. Extracting value from a time varying
and intermittent renewable energy resource requires intelli-
gent optimization of markets (Bitar et al. 2011), generation
(Bhuvaneswari et al. 2009), storage (Zhu et al. 2011) and
loads (Kowli and Meyn 2011), and motivates this work.

Advanced techniques such as Weather Research and Fore-
casting (WRF) models (Monteiro et al. 2009), signal pro-
cessing (Abdel-Karim, Small, and Ilic 2009), and machine
learning (Sharma et al. 2011) can offer accurate predictions
of solar and wind power availability (Contreras et al. 2003).
With short term predictions, information about future time
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steps is refined as we get closer to them. This kind of dy-
namic uncertainty - where uncertainty changes as more in-
formation is revealed after every action - is widely preva-
lent. We demonstrate how online algorithms can be designed
for such optimization and control problems (with dynamic
uncertainty) that lie at the intersection of Model Predictive
Control (MPC) (incorporate predictions) and Markov Deci-
sion Processes (MDPs) (model the state and action space).
We also provide strong performance guarantees (both upper
and lower bounds) for our algorithms.

While we focus on energy applications, our techniques
are generic. We model a class of online resource allocation
problems in terms of MDPs with short term predictions and
develop non-obvious algorithms for them. In the process, we
give a theoretical justification of MPC algorithms that have
been widely used in the control theory. In particular, we

• study a number of online optimization problems that arise
in smart grids in an MDP framework with arbitrary (non-
stochastic, possibly adversarial) rewards,

• propose practicable algorithms for such problems and an-
alyze the underlying MDP in a novel setting where short
term predictions of future rewards (e.g., future renewable
availability, demand and prices) are available,

• show how an algorithm that maximizes a time discounted
form of the rewards (with appropriate discounting factor)
can perform arbitrarily better than the obvious algorithm
that maximizes the total (undiscounted) reward even when
exact (i.e. noiseless) short term predictions are available1,

• and provide simulations to substantiate that discounting
can improve performance with short term predictions.

Prediction based (micro) storage management
Uncertainty in renewable energy supply and the growing im-
balance between energy supply and demand have motived
much recent work in algorithms for the online allocation of
scarce intermittent energy supply to time varying demand
at minimum cost. These problems arise for example in (i)

1In other words, we show that discounting can be used as a
strategy to maximize the total (undiscounted) reward.
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(micro) grid management (Katiraei et al. 2008), where lo-
cal generation has to be scheduled and allocated optimally
to local demand, (ii) buying and selling intermittent wind
power to maximize profits (Bitar et al. 2011), (iii) demand
response, where demand is to be curtailed or shifted to max-
imize utility (Kowli and Meyn 2011) and (iv) storage man-
agement, which involved optimal charging and discharging
in response to time varying prices, demand and supply (Ur-
gaonkar et al. 2011). While we focus on energy applications
here, we emphasize that our results are applicable to general
MDPs for online resource allocation with short term predic-
tions. Our motivation is the ongoing project to establish a
research microgrid at the Kuala Belalong Center in Brunei2.

The online optimization problem that is of particular in-
terest to us, and which subsumes many other smart grid re-
source allocation problems, is the problem of optimal en-
ergy storage management given short term predications of
demand, prices and renewable power availability. In every
time slot t suppose we, as a consumer, obtain some utility
At(dt) for consuming electricity dt. We also have access to
a time varying amount of (free) renewable energy zt and can
purchase an additional amount of electricity pt at a cost of
ct/unit on the electricity spot market. We choose to draw ft
from battery of size Bmax, (note that ft can be negative cor-
responding to charging the battery), so that battery state up-
date is xt+1 = xt−ft to satisfy a demand dt = zt+ft+pt.
So the offline problem to be solved is

maximize
p1,...,pT ,f1,...,fT

T∑
t=1

At(dt)− ptct =

T∑
t=1

r(xt, ut, wt)

(1)
subject to dt = zt + ft + pt, 0 ≤ xt+1 ≤ Bmax

−Bch ≤ ft ≤ Bch, xt+1 = xt + ft

}
∀ t

where Bch is the maximum amount the battery can be
charged or discharged by in a single time slot. The function
(1) is called the welfare function and is the difference of the
utility gained by the user by consuming electricity and the
price paid for purchasing it. In general, utility (and reward)
functions are assumed to be positive, concave and increasing
satisfying a diminishing returns property (Li, Chen, and Low
2011) for computational reasons. Our techniques and model
are more general and our results hold for any choice of util-
ity function. We are interested in online algorithms for this
problem where rewards and costs are revealed and refined
dynamically through short term predictions.

Markov Decision Process Model
The smart grid applications we listed above, and many oth-
ers online resource allocation problems, share some com-
mon characteristics allowing us to model the problem us-
ing an MDP. They have a notion of the state of the system
xt ∈ X in a time slot t and a set of actions (or decisions)
available to the algorithm in that state ut ∈ U . In general the
set of available actions could depend arbitrarily on the state.

2http://ubdestate.blogspot.in/2009/06/kuala-belalong-field-
studies-centre.html

An action moves the system into a new state xt+1 in the next
time step and depending on the state of nature wt ∈ W ,
gives the decision maker a reward r(xt, ut, wt). We as-
sume all sets are finite. In the storage management problem
ut = [pt ft] denotes the action taken and wt = [ct At]
denotes the disturbance while (1) gives the time varying re-
wards. We will use a deterministic MDP model where the
state transition σ is defined as a mapping (x, u) 7→ x′ where
x, x′ ∈ X , u ∈ U and w ∈ W . Our techniques can also be
extended stochastic MDPs which we discuss towards the end
of this paper. Rewards can be non-stationary but we restrict
them to be non-negative; let rt(x, u, w) denote the reward at
time t. We normalize the rewards to lie in the interval [0, 1]

In this paper, we are interested in online algorithms that
use short term predictions, i.e. those that make decisions
on actions ut given knowledge of the next few states of
nature which correspond to information about the distur-
bances wt, wt+1 . . . and as a result the reward functions
r(•, •, wt), r(•, •, wt+1), . . .. In our energy applications for
example, these values are often available given short term
predictions of demand dt, . . . , dt+L, prices ct, . . . , ct+L and
customer utilities At, . . . , At+L for L steps, as discussed in
the previous section. The optimal solution to this MDP for
a horizon T is given by solving the following optimization
problem maximize

u1,...,uT

∑T
t=1 r(xt, ut, wt). Such an MDP can be

used, for example, to represent exactly problem (1).

Dynamic temporal uncertainty for online
algorithms with short term predictions
We assume that the disturbance information available to
the algorithm for some future time step t, while it pro-
ceeds through steps 1, 2, . . . , t − 1, is that it belongs to a
fixed set Wt; during step t, a fixed element wt ∈ Wt,t is
revealed, but only after the action ut is taken. We study
online algorithms where the disturbances are dynamically
evolving. At the start of time step t, nature reveals to
the online algorithm a sequence of active disturbance sets
Wt,t,Wt,t+1, . . . ,Wt,T ⊆ W , called the disturbance pro-
file for time t. The set Wt,t̂ represents the allowed distur-
bances for time step t̂ as seen by the algorithm at time t.
After an action is taken for this step, nature chooses a distur-
bance wt ∈ Wt,t called the realized disturbance for step t.
We assume that the disturbance profiles satisfy a consistency
property, in that the realized disturbance wt is in all of them.
As a result we can always take intersections with previous
disturbance profiles, to have W1,t ⊇ W2,t ⊇ · · · ⊇ Wt,t,
for all t. To summarize, the sequence of events, when the
online algorithm is in state xt at the start of time step t, is as
follows: (i) the active disturbances Wt,t̂ for all t ≤ t̂ ≤ T
are selected arbitrarily by an adversary and revealed to the
online algorithm, (ii) the online algorithm takes some ac-
tion ut and moves to state σ(xt, ut) and obtains a reward
r(xt, ut, wt), (iii) time is incremented t← t+ 1. Thus, we
consider the fully adversarial setting where future rewards
can be chosen arbitrarily.

We adopt the customary approach of comparing the to-
tal reward obtained by the online algorithm ON to an of-
fline algorithm with total reward OFF that has prescient
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information regarding the disturbance profile. A strong of-
fline algorithm, inspired by (Regan and Boutilier 2011), is
one that knows the realized disturbances wt for every t be-
forehand. A weak offline algorithm, on the other hand, is
similar to adaptive robust optimization (Ben-Tal, El Ghaoui,
and Nemirovski 2009; Iancu 2010) in that it knows only
the disturbance set Wt,t for every t beforehand and has no
knowledge of the realized disturbance. The regret of the on-
line algorithm equals the maximum value of OFF − ON ,
whereas the competitive ratio equals the maximum value
of OFF/ON over all choices of the disturbance parame-
ters. In this paper, we provide bounds on the average regret
defined as OFF−ON

T over a time horizon T . Finally, we de-
fine the diameter or delay of an MDP as a fixed constant
(for a given problem) ρ which is the maximum number of
steps required for an algorithm to move from any specific
state to another, similar to (Ortner 2010). For example, for
the storage management algorithm ρ = Bmax

Bch
.

Non-triviality of online optimization with short
term predictions
We first briefly describe a simple example that indicates the
non-triviality of regret minimization and achieving reason-
able competitive ratio even with perfect, noiseless predic-
tions of the future. We consider a situation where perfect
forecasts of the rewards are available for the next L+ 1 time
steps. Note that this corresponds to singleton sets Wt,t̂ for
t̂ ≤ t + L + 1. A natural algorithm, given information at
time t about the next L + 1 steps, would compute the best
path that collects the most reward over the revealed horizon.
Given this calculated path it then executes the first action.
After the execution it is revealed information about one more
step in the future, namely t + L + 2 at time t + 1. It then
re-calculates the best path given this information and cur-
rent state. This process is repeated in each time step. Note
that this algorithm is completely natural and is essentially
Model Predictive Control from control theory (Morari and
Lee 1999), which is very widely used in practice.

The Game: Consider a state space with 4 states in se-
quence : A − B − C − D. Transitions are only allowed to
stay in the same state e.g. A → A, or to transition between
neighbouring states i.e. A → B,B → C,C → D and in
reverse. Suppose, the reward for transitioning into A in an
even time step t is (G + tε) and 0 in odd time steps, while
the reward for transitioning into D in an odd time step t is
(G+ tε) and 0 in even time steps, though this is not revealed
to the online algorithm. Choosing ε = 1

T , say, ensures that
rewards are bounded. In alternate time steps it is most prof-
itable to transition to A and D, with no rewards for tran-
sitioning to the intermediate states B and C. Suppose that
initially, at t = 0, the algorithm starts in state B. We con-
sider the case where the current and next L = 4 states of
nature are revealed before an action is taken.

Path followed by the natural algorithm: FromB we are
given a prediction that transitioning into A for the current
and next 4 steps gives a reward [0 , G + ε , 0 , G + 3ε , 0]
while transitioning into D gives [G , 0 , G+ 2ε , 0, G+ 4ε].
The best path available to the algorithm is B → C → D →

D → D gathering a reward of 2G+ 6ε. It then executes the
transition B → C. Now given predictions for transition into
A of [G + ε , 0 , G + 3ε , 0, G + 5ε] and transition into D
of [0 , G + 2ε , 0, G + 4ε, 0] the best path available to the
algorithm is C → B → A→ A→ A gathering a reward of
2G+8ε. We see that for any even lookahead L the algorithm
repeats B → C → B and collects no reward.

Competitive ratio of the natural algorithm: The opti-
mal algorithm for the example above is for the algorithm to
remain in state A or D throughout (depending on if T is odd
or even) and collect a reward of approximately T

2 (G+ T
2 ε).

This results in a competitive ratio of∞ even for L large.
While such counter examples are used in the analysis of

greedy online algorithms, we have not seen them in the con-
text of MPC. In the sequel we show how a simple modifica-
tion of the natural algorithm can give us deterministic algo-
rithms with better performance. We will develop a regular-
ized (or discounted) algorithm below that ‘believes’ that ‘a
bird in hand is worth 2 in the bush’, and will not fall into the
same trap as the natural algorithm. A primary contribution
of our work is the analysis technique, which uses ideas from
the potential function analysis of algorithms in a novel man-
ner, that formalizes this intuition forming an novel bridge
between online algorithms and MPC and MDP problems.

Quantifying dynamic uncertainty
For ease of exposition, we will assume that the rewards are
set to zero for time steps beyond the time horizon T , so that
r(·) is well-defined for all positive integers t. We also set
Wt,t̂ equal to some dummy set (say W) for all t̂ > T . We
consider a graph representation corresponding to the time
unrolled (non-stationary) MDP (Madani 2002). We treat the
state-action pair (xt̂, ut̂) as an edge et̂ in the graph represen-
tation of the underlying MDP that can be taken during time
step t̂. Given the disturbance profile at time t and a future
time step t̂ ≥ t, each state-action pair (xt̂, ut̂) induces a set
of rewards It,t̂(xt̂, ut̂) = It,t̂(et̂) = {r(xt̂, ut̂, wt̂) : wt̂ ∈
Wt,t̂}, each of which involves the common transition to state
σ(xt̂, ut̂). The assumption that the transitions in the MDP
are not affected by disturbances is quite restrictive and this
may be relaxed by choosing a weaker offline algorithm to
compare against, which we do not address here. Technically
It,t̂(et̂) is a set but for our purposes, we may think of it as an
interval whose length is |It,t̂(et̂)| = maxwt̂

r(xt̂, ut̂, wt̂) −
minwt̂

r(xt̂, ut̂, wt̂). We define the uncertainty function
g(k) = maxt,t̂:t̂−t≤k maxxt̂,ut̂

|It,t̂(xt̂, ut̂)|. This is a non-
decreasing function that encapsulates how large the uncer-
tainty can get as we look further into the future. The key
quantity in our bounds is the effective uncertainty ηg,ρ(γ)
of a ρ-delayed MDP with uncertainty function g(·), defined
as a function of the discount factor 0 ≤ γ < 1.

ηg,ρ(γ) = g(0) +
1 +

∑∞
k=1 γ

kh(k)

1 +
∑∞
k=1 γ

k
(2)

Here h(k) equals 1, when k < ρ, and g(k) otherwise. The
first term g(0) accounts for the uncertainty the online al-
gorithm has about its current reward and is, essentially, un-
avoidable. The second term is much more interesting and
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Algorithm 1 (Online Algorithm for Dynamic Uncertainty)
1: Setup: An MDP with initial state x1, state transition

function σ(·), and rewards rt(·) for all t.
2: Input at time t: State xt, reward intervals It,t̂(et̂) for

all t̂ ≥ t and edges et̂. Let rt,t̂(et̂) denote the minimum
value in It,t̂(et̂).

3: Output at time t: Action ut.

4: Let x̂t = xt also denote the current state.
5: for each current action ût and future sequence of actions

(ût+1, ût+2, . . . ) do
6: Let êτ denote the edge (x̂τ , ûτ ) such that x̂τ+1 =
σ(x̂τ , ûτ ) for τ = t, t+ 1, . . .

7: Let P̂t denote the path followed starting from x̂t+1

by taking this future sequence of actions
8: Compute ∆t(P̂t) =

∑∞
k=1 γ

k · rt,t+k(êt+k)

9: Compute the anticipated reward rt,t(êt) + ∆t(P̂t)
10: end for
11: Compute (et, Pt) such that it maximizes the anticipated

reward. Let et = (xt, ut).
12: Take the action ut to move to state xt+1, and obtain the

realized reward r̄t(et) ∈ It,t(et)

measures the usable information about future rewards avail-
able to the online algorithm relative to the worst case sce-
nario where no such information is available. For exam-
ple, information about the next ρ steps may be of limited
value (due to unreachability), and decisions regarding future
uncertainties, albeit important, may be deferred to a later
time, and so should be discounted appropriately. Note that
even with perfect short term predictions, the effective uncer-
tainty is non-zero and the optimal discounting factor is some
γ < 1, as emphasized in Theorem 2 below.

Discounting as a strategy for online
optimization

We now describe an online algorithm, based on the notion
of discounting future rewards, to obtain good regret bounds.
The pseudocode for the algorithm is in Algorithm 1. The
algorithm uses the minimum value of It,t̂(et̂) denoted by
rt,t̂(et̂) as the estimated reward; plausible alternatives do
exist, but the analysis becomes more involved. We set the
rewards to equal 0 beyond time step T . With this convention,
we can state the regret bound for this algorithm.
Theorem 1. For a ρ-delayed MDP with uncertainty function
g(·) with bounded rewards, Algorithm 1 with discount factor
γ achieves an average regret at most ηg,ρ(γ) when compared
to the strong offline algorithm.

Proof. For an edge et and time t, let r̄t(et) denote the real-
ized reward given by the realized disturbance wt. Consider
the execution of the offline algorithm as tracing an infinite
path (a1, a2, . . . , ) of edges starting from x1. Let At denote
the suffix (at+1, at+2, . . . ) of this path for any t. The to-
tal reward collected by the offline algorithm over the hori-
zon T is OFF =

∑T
t=1 r̄t(at). At time t, the online al-

gorithm computes et and Pt such that the anticipated re-
ward rt,t(et) + ∆t(Pt) is maximized. Thus, the anticipated
reward of the chosen path will be better than for the path
that joins the offline algorithm’s path by traversing some
edge e∗t starting from xt (since ρ = 1) and then following
the path At. The the anticipated reward of this path equals
rt(e

∗
t ) + ∆t(At), where ∆t(At) =

∑∞
k=1 γ

krt,t+k(at+k).

rt,t(et) + ∆t(Pt) ≥ rt(e∗t ) + ∆t(At) ≥ ∆t(At). (3)

In addition, the anticipated reward of the chosen path will be
better than for the path Pt−1 that was selected to maximize
the anticipated reward during time step t− 1. (For t = 1 set
this reward equal to zero.) Indeed, this path starts from xt
and if Pt−1 = (e′t, e

′
t+1, . . . ), then

rt(et) + ∆t(Pt) ≥
∑∞
k=0 γ

krt,t+k(e′t+k) ≥∑∞
k=0 γ

krt−1,t+k(e′t+k) = 1
γ ·∆t−1(Pt−1), (4)

where the second inequality follows term-wise since
It,t+k(et+k) ⊆ It−1,t+k(et+k). After multiplying (3) by
1 − γ, (4) by γ, and add the two inequalities for t =
1, 2, . . . , T . The sum telescopes, and since ∆T (PT ) involves
zero reward edges beyond the horizon T , we obtain:

T∑
t=1

rt,t(et) ≥ (1− γ)
T∑
t=1

∆t(At) (5)

= (1− γ)
T∑
t=1

∞∑
k=1

γkrt,t+k(at+k).

For the edge et traversed by the online algorithm we have:
|rt,t(et) − r̄t(et)| ≤ g(0). For the edge at+k traversed by
the offline algorithm at time t+ k, we have: |rt,t+k(at+k)−
r̄t+k(at+k)| ≤ g(k). Using these facts in the above equa-
tion, the total reward collected by the online algorithm,

ON :=
T∑
t=1

r̄t(et) ≥ −Tg(0)− (1− γ)T
∞∑
k=1

γkg(k)

+ (1− γ)
T∑
t=1

∞∑
k=1

γkr̄t+k(at+k)︸ ︷︷ ︸
(A)

. (6)

We now evaluate expression (A) above, replacing s = t+k,:

(A) = (1− γ)
T∑
s=1

r̄s(as)
s−1∑
k=1

γk =
T∑
s=1

r̄s(as)(γ − γs)

= γ ·OFF −
T∑
s=1

r̄s(as)γ
s. (7)

Applying this bound in (6) and rearranging terms, we obtain:

OFF −ON
T

≤ g(0)+(1−γ)
OFF

T
+(1−γ)

∞∑
t=1

γkg(k).

(8)
Here, the second term in (7) is a geometric series that be-
comes negligible compared to T , for large enough T (When
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padding we assumed that the rewards are 0 for the first
q steps. Then γq � 1/T , say for q = log T ). Since,
OFF/T ≤ 1, the average regret is:

OFF −ON
T

≤ g(0) + (1− γ)(1 +
∞∑
t=1

γkg(k)) = ηg,ρ.

If ρ is unbounded then Theorem 1 is trivial and it is then
possible to construct adversarial sequences for which the av-
erage regret of any online algorithm is unbounded.

Since the generality of the above proof may obscure the
message, we consider a special case that is often of practical
interest, when perfect predictions of the rewards are avail-
able for the current and next L time steps.
Theorem 2. Consider the case of a ρ delayed MDP with
fixed lookahead where the rewards have no uncertainty for
L+ 1 steps, for some lookahead L ≥ ρ, and no information
is available beyondL+1 steps in the future i.e. g(k) = 0, for
k ≤ L, and 1 otherwise. For γ = 1− logL

L , the average re-
gret is Θ( logL

L−ρ+1 ) and the competitive ratio is 1+Θ( logL
L−ρ+1 )

compared to the strong offline algorithm.

Here we see that as L → ∞, the regret goes to 0, unlike
the natural undiscounted MPC algorithm. In the next section
we show that permitting ourselves some amount of random-
ization will allow us to prove better bounds. This serves two
purposes: it gives a flavor of different algorithms and anal-
yses that are possible, and it highlights the intuition that the
deterministic discounting algorithm is in some sense a de-
randomization against possible futures.

Competitive ratio against the weak offline
In this section we present a randomized and robust online
adaptive algorithm to handle dynamic uncertainty. This ran-
domized algorithm is also applicable to the problem studied
in the previous section, where it gives a better bound for ex-
pected reward. For simplicity, we assume that ρ = 1, though
the proofs generalize. We consider the weak offline algo-
rithm that is given a set of disturbancesW∗t , ∀ t before t = 1,
while the online algorithm is revealed the same disturbance
set L steps in advance so thatWt,t = Wt−1,t = Wt−2,t =
. . . = Wt−L,t = W∗t and Wt−L−s,t = W ∀ s ≥ 1. Note
that, as before, an adversary can choose the sequence of dis-
turbance sets arbitrarily. We denote the sequence of actions
taken by the online algorithm with u1, . . . , uT . Let the of-
fline algorithmOFF we compare against have a policy con-
sisting of an action u∗t for every time step t and state xt.

We design a ‘lazy’ online algorithm that chooses the path
that optimizes the reward once every L+1 steps and follows
this path for the nextL+1 steps with no updates, reminiscent
of the episodes of (Ortner 2010). Our online algorithm has a
choice of L+ 1 possible starting times or ‘re-set’ points j =
1, . . . , L+ 1. In the ρ = 1 case, this corresponds to possibly
‘giving up’ rewards t0 = (L + 1) + j in order to transition
to the state that the optimal offline algorithm would be in
at t0 + 1. The algorithm makes this choice of ‘re-set’ point
j uniformly at random from 1 to L + 1 without revealing

this choice to the adversary, thus making it a randomized
algorithm. At a particular time t0 our online algorithm solves
the following robust optimization problem for L time steps

max
ut0

min
wt0
∈Wt0,t0

. . . max
ut0+L

min
wt0+L∈Wt0,t0+L

t0+L∑
τ=t0

r(xτ , uτ , wτ )

subject to : xτ+1 = σt(xτ , uτ ), τ ∈ {t0, . . . , t0 + L}

The algorithm executes this sequence of ut0 , . . . , ut0+L.
It then repeats this operation for the next batches at time
t+ L, t+ 2L, . . .. Note that one policy evaluated by the on-
line algorithm is to jump to x∗t+1 in step t and follow the
same sequence of policies as the optimal offline algorithm
for the remaining steps. As a consequence, for the alterna-
tive sequence of policies chosen byOFF , the algorithm can
produce a ‘witness’ sequence of ŵt, . . . , ŵt+L such that

t0+L∑
τ=t0

r(xτ , uτ , wτ ) ≥
t0+L∑
τ=t0+1

r(x∗τ , u
∗
τ , ŵτ ) (9)

Essentially, the algorithm is giving up at most one reward in
every sequence of L + 1 rewards that the offline algorithm
gets. Summing up (9) over t0, t0 + L, . . . we have that

T∑
t=1

r(xt, ut, wt) ≥
T∑
t=1

r(x∗t , u
∗
t , ŵt) (10)

−
∑

t=i∗(L+1)+j

r(x∗t , u
∗
t , w

∗)

The first term in (10) is a lower bound on the rewards col-
lected by the offline algorithm, for the w∗t s (since the w∗t s
were chosen as the minimizers of the optimal offline prob-
lem). If the online algorithm uniformly chooses a starting
point j in 1, . . . , L+ 1, then the second term in (10), on av-
erage, is bounded by 1

L+1OPT , where OPT is the reward
of the optimal offline algorithm, giving us the following:

Theorem 3. For a ρ-delayed MDP with bounded rewards
the randomized algorithm, in expectation over internal ran-
domness, achieves a competitive ratio 1 + Θ( 1

L+1 ) and re-
gret Θ( 1

L+1 ) when compared to the weak offline algorithm.

Simulations
Experimental set-up: We consider a home with local loads,
storage and wind as in (1). Realistic load traces yt were
generated using the model built in (Richardson et al. 2010)
from 1 year of data from 22 UK households. We collected
wind speeds near our micro grid location in Brunei. For spot
market prices, we used traces from the New England ISO.
We assumed the demand must be satisfied, so that (1) be-
comes a cost minimization problem. For our experiments,
we state results with costs as opposed to the (equivalent)
reward model discussed earlier. Since the total cost has a
free parameter (namely, the absolute amount of energy con-
sumed), we scaled all the costs in the figures. We also set
the storage size to (1/3)rd of the average daily consump-
tion, and assumed it can be changed fully in 5 steps (ρ = 5).
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Figure 1: Benefits of discounting for storage management

The need for discounting: We now present the results of
our experiments to further support our assertion that dis-
counting is useful in real problems. In Figure 1, we com-
pare the performance of the natural undiscounted algorithm
with the discounting based strategy (for different settings of
the lookahead) for the first 100 days of the year, assuming
error free predictions of demand, prices and renewable sup-
ply. We see that, for the natural algorithm, increasing the
lookahead into the future can actually increase the cost. We
observed this phenomenon of reduced performance with in-
creased lookahead was common to most of our experiments
(including, sometimes, the discounting strategy). Thus, we
emphasize that there is a scope for extracting value from
predictions of the future even when they are precise.

Discussions and Conclusions
Near tightness of our bounds follows from constructing
counterexample sequences. For instance, consider a reward
matrix with the rows representing states and the columns
time steps. Let ρ = 1, i.e. one reward is lost in any transition
after the first time instant. The adversary generates the ma-

trix with d1
ε
e rows andL+2 columns (which can be repeated

indefinitely). The first column contains all zeroes, the next
L columns contain all ones, and one row in the last column
contains a one while the rest contain zeroes. The optimal
choice is to move during the first step to the row containing
the one in column L + 2, and to stay in that row for L + 1
steps, collecting a total reward of L + 1. Any (randomized)
online strategy stands only an ε chance of choosing this row,
and with probability at least 1− ε must either miss one unit
reward. The following result can be proved rigorously.

Theorem 4. The competitive ratio of any online algorithm
for arbitrary MDPs with perfect predictions of rewards for
the next L time steps is larger than 1 + 1

L . The competitive
ratio of any deterministic online algorithm is larger than 1+
1
L + 1

1+L2 .

These results, along with Theorem 3 and Corollary 2,
show that if randomization is possible and average case

guarantees are sufficient, our randomized algorithm is es-
sentially optimal in expectation with expected competitive
ratio 1 + Θ(1/L). For deterministic algorithms, we obtain a
lower bound of 1+Ω(1/L+(1/L2)) and an upper bound of
1 +O( logL

L ). These results indicate a non-trivial separation
between what is possible with randomized and deterministic
algorithms; in particular, it may be possible to design better
deterministic algorithms than what we presented here.

Computational considerations: Depending on the struc-
ture of the reward functions, the online algorithm has a com-
plexity polynomial in L at each time step. For instance, if
convex, the optimization problem being solved in Algorithm
1 resembles robust optimization over horizon L. (Ben-Tal,
El Ghaoui, and Nemirovski 2009) discuss conditions that
make the optimization problem computationally efficient.

MDPs with stochastic rewards and transitions: Our al-
gorithm can be easily extended to account for stochastic-
ity in transitions and in rewards. An equivalent notion of ρ-
delay, for non-stationary MDPs corresponds to reaching an
arbitrary distribution over states from any initial distribution,
within ρ time steps. In particular, we can prove
Theorem 5. If the online algorithm is revealed the distri-
bution over transitions and rewards with lookahead L, then
a version of Algorithm 1 has average regret Θ( logL

L−ρ+1 ) and

expected competitive ratio 1 + Θ( logL
L−ρ+1 ) when compared

with a weak offline algorithm that also only has access to
the same distributions, albeit all before time t = 1.

Prior work: Uncertainty is known to exist in many real
world applications (Nilim and Ghaoui 2005). Robust plan-
ning under uncertainty has been addressed by many papers
(Jaksch, Ortner, and Auer 2010; Bartlett and Tewari 2009;
Mannor, Mebel, and Xu 2012). Robust optimization tech-
niques for MDPs have been proposed recently, e.g., (Re-
gan and Boutilier 2011), but lack theoretical support. Some
recent work has aimed at understanding optimization in-
volving parameter uncertainty (under the aegis of stochastic
optimization and robust optimization (Ben-Tal, El Ghaoui,
and Nemirovski 2009)); however, in this paper, we explored
the problems raised by temporal uncertainty, where knowl-
edge of the future is limited. Another line of work strives
to quantify the relative performance compared to a) the
best alternative policy in the hindsight (Yu and Mannor
2009), and b) the best stationary policy over time (Even-
Dar, Kakade, and Mansour 2009). Robust optimization of
Imprecise-reward MDPs (IRMDPs) (Regan and Boutilier
2011), wherein an initially large feasible (uncertain) reward
set shrinks as more information is acquired through online
elicitation, has also been proposed. For deterministic MDPs,
(Ortner 2010) showed ε-optimal performance on the finite
horizon regret; however, the underlying assumption that suc-
cessive rewards, for any fixed edge, are generated i.i.d. from
a fixed but unknown probability distribution may not hold
in practice. Contrastingly, we consider the case where exter-
nal, possibly uncertain, dynamic predictions of the rewards
are available for arbitrary, non-stationary MDPs.

In Theorem 2 and Theorem 5, the L = T case corre-
sponds to offline optimization or conventional robust opti-
mization. To the best of our knowledge, the setting L < T
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has been studied for the first time in our work. So, our
work significantly builds on the robust and online optimiza-
tion literature by accounting for the time varying/dynamic
prediction structure in a non-stochastic world. Our approach
is also reminiscent of MPC algorithms used in control theory
(Morari and Lee 1999), and our analysis can be seen as pro-
viding some theoretical justification for such algorithms that
discount rewards for tractability. However, unlike MPC, we
demonstrate how discounting can be leveraged, as a strategy,
to do well with respect to the total (undiscounted) reward.
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