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Abstract

Online social networks continue to witness a
tremendous growth both in terms of the number of
registered users and their mutual interactions. In
this paper, we focus on online signed social net-
works where positive interactions among the users
signify friendship or approval, whereas negative in-
teractions indicate antagonism or disapproval. We
introduce a novel problem which we call the link
label prediction problem: Given the information
about signs of certain links in a social network, we
want to learn the nature of relationships that ex-
ist among the users by predicting the sign, positive
or negative, of the remaining links. We propose a
matrix factorization based technique MF-LiSP that
exhibits strong generalization guarantees. We also
investigate the applicability of logistic regression
[8] in this setting. Our experiments on Wiki-Vote,
Epinions and Slashdot data sets strongly corrobo-
rate the efficacy of these approaches.

1 Introduction
The proliferation of user activity on online social communi-
ties, micro-blogging sites and other media such as Slashdot,
Wikipedia, Facebook, and Twitter etc. offers a tremendous
scope for mining interesting user behavior. Not only have
these social networks been registering a steep growth in the
number of new users, but also the interactions amongst the
users. Typically, these interactions are either positive (indi-
cating friendship or support) or negative (indicating antag-
onism or opposition) [6; 7]. How a user perceives his fu-
ture interactions or considers his past experiences with other
users involves underpinnings of several, possibly contradic-
tory, factors. For instance, users with many common friends
tend to develop an affinity for each other even in the absence
of any direct interaction. The scenario becomes much more
complicated in the case of a mixed bag of acquaintances: a
user may have a negative impression of some contacts, and
positive of some others, of a common friend. This effect
becomes even more pronounced when the impact of several

∗P. Agrawal and V. K. Garg contributed equally to this work.

users is taken into account while determining the overall per-
ception of each user toward others. We use the sign or label
of a link to refer to the nature of this link. Given the informa-
tion about signs of certain links in a social network, a central
problem of interest concerns learning the nature of relation-
ships that exist among the users by predicting the sign, posi-
tive or negative, of the remaining links. Hereafter we refer to
this problem as the link label prediction problem.

Several challenges arise in the given context. First, the
global behavior of the different users needs to be accounted
for, albeit the local interactions do play a significant role too
[8]. Second, in a realistic scenario, determining the most im-
portant or discriminative features may not be a straightfor-
ward task; more broadly, there may be correlations among
the users and/or features that are not readily decipherable (or
are hidden), or worse, the different social networks may not
be amenable to a predetermined set of features. Third, deter-
mining the exact nature of relationships is often a tedious and
costly process. In particular, due to manual effort involved in
amassing the training data, information about only a subset
of pairs of users may be available.

In this work, we address some of these key issues. We for-
mulate link sign prediction as a matrix completion problem in
a setting, where the data is represented as a partially observed
(and typically asymmetric) matrix. We propose a technique,
MF-LiSP (Matrix Factorization for Link Sign Prediction),
which employs a trace norm regularizer with a particularly
suited variation of the pair-wise hinge loss to approximate
the given matrix. Our approach is strongly motivated by re-
cent results [2; 14] that suggest the use of such a regularizer
as an excellent alternative to other complexity measures such
as the rank of the matrix. We provide rigorous generalization
bounds for MF-LiSP via algorithmic stability [1]. Addition-
ally, we investigate the suitability of the logistic regression
model [8] in the multiple label prediction setting. Our exper-
iments suggest that the maximum likelihood based logistic
regression model works very well in the current setting too.

The rest of this paper is organized as follows. We first
present the related work in §1.1, and introduce some defi-
nitions in §2. Next we formulate the problem and propose
our main technique in §3. We then present the theoretical jus-
tification of this work by providing rigorous generalization
bounds in §4. We provide a detailed analysis on the results of
our experiments in §6 and a summary of our work in §7.
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1.1 Related Work
Techniques based on matrix factorization have been recently
used for analyzing social networks. For instance, Scripps et
al. [13] and Menon and Elkan [12] proposed algorithms for
sign prediction in graphs. Cui et al. [4] leveraged matrix fac-
torization to rank users with the objective of maximizing the
social influence for a given item, Ma et al. [11] looked into
social network based recommendation systems, and Wang et
al. [16] devised a method for community detection.

Recently, there has been much interest in the problem of
predicting links and their signs. Liben-Nowell and Klein-
berg [9] leveraged measures that captured proximity of nodes,
whereas Chiang et al. [3] investigated the use of social imbal-
ance measures and proposed a supervised learning approach.
Kuter and Golbeck [10] proposed an algorithm for trust (pos-
itive sign) inference with a probabilistic interpretation. Yang
et al. [15] designed algorithms to infer the signs of social ties
completely based on decision making behavior of the users.

Leskovec et al., in a seminal work [8], introduced the edge
sign prediction problem: Given a social network with signs on
all the edges, except that from node u to node v, how reliably
can one infer this sign s(u, v)? In this paper, we generalize
their setting to encompass several missing links. To the best
of our knowledge, our work is the first to tackle simultaneous
label prediction of multiple links.

2 Loss and Stability
Consider a learner that receives instances from
a training set, S = {S1, S2, . . . , Sm}, where
Si = {(xi1, yi1), . . . , (xin, y

i
n)|xij ∈ X ⊆ R, yij ∈ Y ⊆ R}

denotes the sample set of links1 available with user i. Let
St,zi,i′ (and the abbreviated notation S′) refer to the sample
obtained by replacing (xit, y

i
t) in S with (xi

′

z , y
i′

z ) for some
1 ≤ i, i′ ≤ m and 1 ≤ t, z ≤ n. The goal is to learn a
real-valued sign prediction function f using S.

Definition 1. (Loss function) A loss function l : RX × (X ×
Y)× (X × Y)→ R+ ∪ {0} assigns to each f : X → R and
(xij , y

i
j), (x

i
k, y

i
k) ∈ (X × Y), a non-negative real number

l(f, (xij , y
i
j), (x

i
k, y

i
k)), which is interpreted as the penalty or

loss incurred by f due to its relative predictions of xij and xik
given the corresponding labels yij and yik. We shall require
that the loss function l be symmetric with respect to (xij , y

i
j)

and (xik, y
i
k), i.e., for all f , (xij , y

i
j), and (xik, y

i
k),

l(f, (xij , y
i
j), (x

i
k, y

i
k)) = l(f, (xik, y

i
k), (xij , y

i
j)).

Definition 2. (Expected l-error) Let f : X → R be a sign
prediction function onX , and l : RX×(X×Y)×(X×Y)→
R+∪{0} be a loss function. Define the expected l-error of f :
Rl(f) = E((Xij ,Y

i
j ),(X

i
k,Y

i
k ))∈D×D[l(f, (Xi

j , Y
i
j ), (Xi

k, Y
i
k ))],

where both the training and the unseen examples are assumed
to be drawn randomly and independently according to some
(unknown) distribution D.

1We use links and examples interchangeably in the sequel.

Definition 3. (Empirical l-error) Let f : X → R be a func-
tion on X and l : RX × (X ×Y)× (X ×Y)→ R+ ∪{0} be
a loss function. Define the empirical l-error of f , denoted by
R̂l(f ;S), as

R̂l(f ;S) =
1

m

m∑
i=1

1

|QSi |
∑

(j,k)∈QSi

l(f, (xij , y
i
j), (x

i
k, y

i
k)),

where QSi is the set of link pairs that are available with the
user i in S.
Definition 4. (Uniform loss stability) LetA be an algorithm
whose output on a training sample S we denote by fS , and
let l be a loss function. Let β : N × N → R. We say that A
has uniform loss stability β with respect to l if ∀ m,n ∈ N,
S ∈ (X × Y)m×n, 1 ≤ i, i′ ≤ m and 1 ≤ t, z ≤ n, we have
∀(xij , yij), (xik, yik) ∈ (X × Y),

|l(fS , (xij , yij), (xik, yik))−l(fS′ , (xij , yij), (xik, yik))| ≤ β(m,n).

Definition 5. (Uniform score stability) Let A be a sign pre-
diction algorithm whose output on a training sample S is de-
noted by fS . Let ν : N× N→ R. We say that A has uniform
score stability ν if ∀ m,n ∈ N, S ∈ (X×Y)m×n, 1 ≤ i, i′ ≤
m and 1 ≤ t, z ≤ n, we have ∀x ∈ X ,

|fS(x)− fS′(x)| ≤ ν(m,n).

Definition 6. (σ−admissibility) Let F be a class of real-
valued functions on X . Let l be a sign prediction loss func-
tion and let σ > 0. We say that l is σ-admissible (or Lipschitz
continuous) with respect to F if for all f1, f2 ∈ F and all
(xij , y

i
j), (x

i
k, y

i
k) ∈ (X × Y), we have

|l(f1, (xij , yij), (xik, yik))− l(f2, (xij , yij), (xik, yik))|
≤ σ(|f1(xij)− f2(xij)|+ |f1(xik)− f2(xik)|)

3 MF-LiSP
Formally, we consider a sparse matrix (A)m×m ∈ Rm×m
corresponding to a social network withm nodes. Each known
entry Aij represents the sign (1 for positive links and 0 for
negative links) of the edge from node i to node j. Let Ai de-
note the ith row of A, and S the set of known entries in A.
Assuming the entries in A are sampled from a uniform distri-
bution, our objective is to employ matrix factorization based
on the unweighted trace-norm to fill the remaining entries in
A. We accomplish this by approximating the matrix A with
a matrix (X)m×m = (U)m×d(V )′m×d, for some suitable d,
such that the discrepancy betweenA andX is minimized. For
our sign prediction problem, instead of using the point-wise
error, we introduce the following pair-wise empirical error:

R̂l(X;S) =
1

m

m∑
i=1

1

|QS
i |

∑
(j,k)∈QSi

((Aij−Aik)− (Xij−Xik))+,

where QSi is the set of link pairs that are available with the
user i in S. This empirical error loss function is reminiscent
of the hinge loss convex surrogate for 0/1 loss in classifica-
tion. We use this particular variation since it elegantly cap-
tures the correlations amongst the users and thereby makes
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the technique more robust to fluctuations in individual behav-
iors. Moreover, albeit we are concerned with binary predic-
tion in this work, we emphasize that this loss function can
be readily translated to the more generic multi-label settings,
especially owing to its invariance to scale. For the current
setting, our goal is to determine appropriate U and V to mini-
mize the empirical prediction error R̂l(X;S), or equivalently

min
U,V

R̂l(UV
′;S)

To avoid over-fitting, we incorporate a convex regularization
term:

min
U,V ′

R̂l(UV
′;S) +

λ

2
(||U ||2F ||V ||2F ),

and obtain the following primal formulation:

min
U,V,ξ

1

2
(||U ||2||V ||2) +

C

m

m∑
i=1

1

|QSi |
∑

(j,k)∈QSi

ξijk

subject to
ξijk ≥ 0 ∀i, j, k, and

ξijk ≥ (Aij −Aik)− UTi (Vj − Vk) ∀i, j, k

The corresponding dual is obtained by introducing Lagrange
multipliers:

min
α,V

1

2||V ||2

m∑
i=1

∑
(j,k)∈QS

i

(j′,k′)∈QS
i

αijkα
i
j′k′K

i
jk,j′k′

−
m∑
i=1

∑
(j,k)∈QS

i

αijk(Aij −Aik)

subject to

0 ≤ αijk ≤
C

m|Qi|
∀i, j, k

where
Ki
jk,j′k′ = (Vj − Vk) · (Vj′ − Vk′)

Our algorithm, MF-LiSP, solves this convex quadratic pro-
gram (QP) by following a stochastic gradient projection ap-
proach [5]. See Algorithm 1 for more details.

4 Generalization Bounds
We now provide generalization bounds for MF-LiSP. All our
theoretical results hold very generally about labels on links,
covering link strength as well as link sign. We present guar-
antees that hold for real (multi) valued matrices and subsume
the current 0/1 setting. Therefore, our algorithm can be read-
ily adapted to more generic settings: for instance, when in
addition to the (weighted) positive and negative links, there
may be no links or unsigned links. But the main application
in this paper is link sign prediction. To the best of our knowl-
edge, MF-LiSP is the first technique that has provable guaran-
tees for such general link labels. Due to space constraints, we
only outline the main steps of the proofs and omit the details.

Algorithm 1 MF-LiSP

Inputs:
Training sampleQi = (Qi+,Qi−) ∈ An+ ×An−

∀1 ≤ i ≤ m
Kernel functionK : (A×A)× (A×A)→ R
Parameters C, η0, pmax

Initialize:
α
i(1)
jk ←

C
1000m|Qi| ,∀1 ≤ i ≤ m, (j, k) ∈Qi

V (1) to a random matrix of size m× d.

For p = 1 to pmax do
Randomly select a row i.

Update αi:
• [Gradient step]
αi(p+1/2) ← αi(p) − η0√

p∇αO(αi(p),V (p))

• [Projection step]
For all (j, k) ∈Qi

If
(
α
i(p+1/2)
jk < 0

)
Then αi(p+1)

jk = 0

Else If
(
α
i(p+1/2)
jk > C

m|Qi|

)
Then

α
i(p+1)
jk = C

m|Qi|

Else αi(p+1)
jk = α

i(p+1/2)
jk

Update V :
V (p+1) ← V (p) − η0√

p∇VO(αi(p+1),V(p))

Output:
X = (U (p∗))(V (p∗))T ,

where p∗ = arg min1≤p≤(pmax+1)O(α(p),V(p))

and U i(p
∗) =

∑
(j,k)∈Qi

α
i(p∗)
jk (V

(p∗)
j − V (p∗)

k )

Theorem 1. Let A be an algorithm whose output, for
a user i ∈ [m], on a training sample S we denote by
fiS , and let l be a bounded loss function such that 0 ≤
l(fi, (x

i
j , y

i
j), (x

i
k, y

i
k)) ≤ B for all fi : X → R and

(xij , y
i
j), (x

i
k, y

i
k) ∈ (X × Y). Let β : N → R be such that

A has uniform loss stability β with respect to l. Then for any
0 < δ ≤ 1, with probability at least 1− δ over the draw of S,

Rl(fiS)−R̂l(fiS ;S) ≤ 2β(|Si|)+(|Si|β(|Si|)+B)

√
2

|Si|
ln(

1

δ
).

Proof. Define φi(S) = Rl(fiS) − R̂l(fiS ;S). We first
show that φi satisfies the bounded difference requirement of
the McDiarmid’s inequality. We have

∣∣φi(S) − φi(S
t,z
i′,i′′)

∣∣
=

∣∣∣∣ (Rl(fiS)− R̂l(fiS ;S)
)
−

(
Rl(fiSt,z

i′,i′′
)− R̂l(fiSt,z

i′,i′′
;St,z

i′,i′′)

) ∣∣∣∣
≤
∣∣∣∣Rl(fiS)−Rl(fiSt,z

i′,i′′
)

∣∣∣∣+

∣∣∣∣R̂l(fiS ;S)− R̂l(fiSt,z
i′,i′′

;St,z
i′,i′′)

∣∣∣∣.
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It is easy to show that∣∣∣∣Rl(fiS)−Rl(fiSt,z
i′,i′′

)

∣∣∣∣ ≤ E((Xij ,Y
i
j ),(X

i
k,Y

i
k ))

[β(|Si|)]

= β(|Si|).

Now consider
∣∣∣∣R̂l(fiS ;S)−R̂l(fiSt,z

i′,i′′
;St,zi′,i′′)

∣∣∣∣. Considering

the four different cases separately (whether i′ = i and/or i′′ =
i is true), we can show that for all 1 ≤ i′, i′′ ≤ n∣∣φi(S)− φi(St,zi′,i′′)

∣∣ ≤ 2

(
β(|Si|) +

B

|Si|

)
.

Then, from McDiarmid’s inequality, we have for any ε > 0,

P
((
Rl(fiS)− R̂l(fiS ;S)

)
− E

[
Rl(fiS)− R̂l(fiS ;S)

]
≥ ε
)

≤ exp
− ε2|Si|

2|Si|(|Si|β(|Si|)+B)2

It can be shown that E
[
Rl(fiS)− R̂l(fiS ;S)

]
≤ 2β(|Si|),

which immediately gives the result on setting δ =

exp
− ε2|Si|

2

2(|Si|β(|Si|)+B)
2 .

Theorem 2. Let A be a symmetric sign prediction algorithm
whose output, for a user i ∈ [m], on a training sample S
we denote by fiS , and let l be a bounded sign prediction loss
function such that 0 ≤ l(fi, (x

i
j , y

i
j), (x

i
k, y

i
k)) ≤ B for all

fi : X → R and (xij , y
i
j), (x

i
k, y

i
k) ∈ (X × Y). Let A

have uniform loss stability β : N → R with respect to l and
uniform score stability ν : N → R. Then, we must have
β(|Si|) = 2ν(|Si|). Furthermore, for any 0 ≤ δ ≤ 1, the
following holds with probability at least 1 − δ over the draw
of S

Rl(fiS)−R̂l(fiS ;S) < 4ν(|Si|)+(2|Si|ν(|Si|)+B)

√
2

|Si|
ln(

1

δ
).

Proof. Without introducing any ambiguity, for the purpose of
this proof, we succinctly denote St,zi′,i′′ by S′. Now, to prove
β(|Si|) = 2ν(|Si|), we need to show for (xij , y

i
j), (x

i
k, y

i
k) ∈

(X × Y),

|l(fS , (xij , yij), (xik, yik))−l(fS′ , (xij , yij), (xik, yik))| ≤ 2ν(|Si|).
In order to avoid triviality of the result, let us assume without
loss of generality that

l(fS , (x
i
j , y

i
j), (x

i
k, y

i
k)) > l(fS′ , (x

i
j , y

i
j), (x

i
k, y

i
k)).

It is easy to argue that we must have
max

(
fS(xji )− fS(xki ), fS′(x

j
i )− fS′(xki )

)
< yij − yik,

whence

|l(fS , (xij , yij), (xik, yik))− l(fS′ , (xij , yij), (xik, yik))|

= ((yij − yik)− (fS(xji )− fS(xki )))

− ((yij − yik)− (fS′(x
j
i )− fS′(x

k
i )))

≤ |fS(xji )− fS′(x
j
i )|+ |fS(xki )− fS′(xki )|

= 2ν(|Si|).
The theorem follows immediately by substituting this result
in Theorem 1.

4.1 Stability Results
A stable algorithm is understood to be one whose output does
not change significantly with a small change in the input. In
this section, we derive the stability bounds for our algorithm.
Consider the following regularized empirical l-error of a sign
prediction function fi ∈ Fi with respect to a sample S and a
regularization parameter λi > 0, where Fi ⊆ F is a class of
real valued functions andN : F → R+∪{0} is a regularized
functional: R̂λl (fi;S) = R̂l(fi;S) + λiN(fi).

Let fiS ∈ F denote the minimizer of this regularized em-
pirical error on S, i.e., fiS = arg minfi∈Fi R̂

λ
l (fi;S).

Lemma 1. Let Fi ⊆ F be a class of real-valued functions
on X . Let l be a sign prediction loss function that is convex
in fi, and let σ > 0 be such that l is σ-admissible with re-
spect to Fi. Let λi > 0 and let N : F → R+ ∪ {0} be
a functional defined on F such that for any sample S, the
regularized empirical l-error R̂λl (fi;S) has a minimizer (not
necessarily unique) fiS in F . Then for any p ∈ [0, 1],

N(fiS)−N(fiS + p∆fiS) +N(fiSt,z
i′,i′′

)

−N(fiSt,z
i′,i′′
− p∆fiS)

≤ pσ

λi
(|Si|

2

) ∑
j 6=t

(|∆fiS(xti)|+ 2|∆fiS(xji )|+|∆fiS(xzi′′)|),

where ∆fiS = fiSt,z
i′,i′′
− fiS .

Proof. We have, for any p ∈ [0, 1], using the convexity of
R̂l(fiS ;S) in f (since l is convex in f ):

R̂l(fiS + p∆fiS ;S)− R̂l(fiS ;S)

≤ p
(
R̂l(fiSt,z

i′,i′′
;S)− R̂l(fiS ;S)

)
.

(1)

Likewise, R̂l(fiSt,z
i′,i′′
− p∆fiS ;S)− R̂l(fiSt,z

i′,i′′
;S)

≤ p
(
R̂l(fiS ;S)− R̂l(fiSt,z

i′,i′′
;S)
)
.

(2)

Since F is convex, (fiS+p∆fiS ;S), (fiSt,z
i′,i′′
−p∆fiS ;S) ∈

F . Further, since fiS and fiSt,z
i′,i′′

are, respectively, the mini-

mizers of R̂λl (fi;S) and R̂λl (fi;S
t,z
i′,i′′), we must have

R̂λl (fiS ;S)− R̂λl (fiS + p∆fiS ;S) ≤ 0, and (3)

R̂λl (fiSt,z
i′,i′′

;St,zi′,i′′)− R̂
λ
l (fiSt,z

i′,i′′
− p∆fiS ;St,zi′,i′′) ≤ 0. (4)

The result follows by combining (1), (2), (3) and (4).

4.2 Regularization in the Hilbert Space
We now prove that MF-LiSP can be used for efficient sign
prediction in a Reproducible Kernel Hilbert Space (RKHS).

Theorem 3. Let F be an RKHS with kernel K such that for
all x ∈ X ,K(x, x) ≤ κ2 < ∞. Let l be a sign prediction
loss function that is convex in fi ∈ Fi ⊆ F , and let σ > 0 be
such that l is σ-admissible with respect to F . Let λi > 0, and
let A be a sign prediction algorithm that, given a training
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sample S, outputs a sign prediction function fiS ∈ Fi that
satisfies fiS = arg minfi∈Fi{R̂l(fi;S) + λi||fi||2K}. Then
A has uniform score stability ν given by ν(|Si|) = 8σκ2

λi|Si| .

Furthermore, for any 0 < δ ≤ 1, the following holds with
probability at least 1− δ over the draw of S:

Rl(fiS) < R̂l(fiS ;S)+
32σκ2

λi|Si|
+(

16σκ2

λi
+B)

√
2

|Si|
ln(

1

δ
)

Proof. LetN(f) = ||f ||2K . Then, defining ∆fiS = fiSt,z
i′,i′′
−

fiS and applying Lemma 1 with p = 0.5, we get

||fiS ||2K−||fiS+0.5∆fiS ||2K+||f
iS
t,z

i′,i′′
||2K−||fiSt,z

i′,i′′
−0.5∆fiS ||2K

≤ σ

λi|Si|(|Si| − 1)

∑
j 6=t

(|∆fiS(xti)|+ 2|∆fiS(xji )|+ |∆fiS(xzi′′)|)

(5)

Also, ||fiS ||2K − ||fiS + 0.5∆fiS ||2K + ||fiSt,z
i′,i′′
||2K

− ||fiSt,z
i′,i′′
− 0.5∆fiS ||2K

= ||fiS ||2K + ||fiSt,z
i′,i′′
||2K −

1

2
||fiS + fiSt,z

i′,i′′
||2K

−
〈
fiS , fiSt,z

i′,i′′

〉
K

=
1

2
||∆fiS ||2K .

Using (5), we get 1
2 ||∆fiS ||

2
K

≤ σ

λi|Si|(|Si| − 1)

∑
j 6=t

(|∆fiS(xti)|

+ 2|∆fiS(xji )|+ |∆fiS(xzi′′)|).
Applying the Cauchy-Schwarz inequality in conjunction with
reproducing property of the RKHS, we have for all x ∈ X and
all f ∈ F ,

|f(x)| ≤ ||f ||K ||Kx||K = ||f ||K
√
K(x, x). (6)

Since F is an RKHS and ∆fiS ∈ F , therefore 1
2 ||∆fiS ||

2
K

≤ σ

λ|Si|(|Si| − 1)
||∆fiS ||K

∑
j 6=t

(√
K(xti, x

t
i)

+ 2

√
K(xji , x

j
i ) +

√
K(xzi′′ , x

z
i′′)

)
≤ 4σκ

λi|Si|
||∆fiS ||K ,

which yields ||∆fiS ||K ≤ 8σκ
λi|Si| . Using (6), the following

holds for all x ∈ X ,

|fiS(x)− fiSt,z
i′,i′′

(x)| = |∆fiS(x)| ≤ 8σκ2

λi|Si|
.

Thus, ν(|Si|) = 8σκ2

λi|Si| . The error bound follows immediately
from Theorem 2.

5 Logistic Regression based Approach
The Logistic Regression model [8] provides a sound approach
to address the link label prediction problem. As suggested in
[8], we represent each signed edge as a 23-dimensional vector
of following features: (a) 7 features based on (signed) degree
on nodes that include the embeddedness of an edge, which
corresponds to the number of neighbors its vertices have in
common; and (b) 16 features corresponding to 16 triads in-
volving that edge [8]. We use the following model for pre-
dicting the sign of an edge x (in the test set) represented as a
vector of k features (x1, . . . , xk)

P (+|x) =
1

1 + e−(w0+
∑k
i=1 wixi)

where the parameters w0, . . . , wk are estimated using the
training data. Note that in [8], the logistic regression model
is trained on the entire set of the edges except for a test edge
(Leave-one-out (LOO) analysis is conducted using each edge
as a test edge exactly once). The same model can be readily
extended to applications that generate limited training data,
and learn the model on the training data all at once.

6 Empirical Evaluation
We evaluated the empirical performance of MF-LiSP and lo-
gistic regression (LR) using both the synthetic and real world
data sets. We observed the performance of LR based ap-
proach for three different sets of features: 7-dimensional vec-
tor of degree features, 16-dimensional vector of triad features
and 23-dimensional vector of all features. We first describe
the network data sets that we used for our experiments.
Real World Network Data Set: We carried out experiments
on the voting network of Wikipedia, henceforth referred to as
the Wiki-Vote data set. The network comprises 7118 users and
107080 links among these users. Each of these 107080 links
is signed: the sign of each link indicates a positive or neg-
ative vote by a user about the promotion in status to admin
for some other user. Out of these 107080 links, 78.41% are
positive and the rest negative. We employed three-fold cross
validation, i.e., two-thirds of the data was used for training
and the rest for testing.
Synthetic Data Sets: We generated two datasets each com-
prising 10000 users drawn randomly from real-world datasets
Epinions and Slashdot, so that the network structure and dis-
tribution of links in these synthetic data sets closely follows
the real-world social networks.

For all the data sets, we executed our experiments over 10
runs and then averaged the results to account for statistical
significance. We compared the link sign prediction accu-
racy of methods based on MF-LiSP and LR with two baseline
heuristics, namely random and weighted random. In the con-
text of random sign prediction method, we randomly predict
the sign of any given link to be either positive or negative.
Note that the distribution of the positive and negative links
could be very skewed (e.g. in the Wiki-Vote data set about
78.41% of the links are positive). To take into account this
skewness, for any given link, we also predicted the sign of
this link to be positive or negative in proportion to the respec-
tive share, and we refer to this as the weighted method.
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We followed the methodology of Leskovec et al. [8]
to evaluate the performance of these methods for different
threshold embeddedness, Em. Specifically in the case of lo-
gistic regression, as described in Section 5, we represented
each signed edge as a 23-dimensional vector (of which 16
features (triads) become relevant only when the edge vertices
have common neighbors). Therefore, we expect LR meth-
ods to perform better with increasing embeddedness. In our
experiments, we used three different levels of minimum em-
beddedness,Em = 0 (no filtering),Em = 10 andEm = 25.

Figure 1: Comparison between pointwise and pairwise loss
function on synthetic datasets.

(a) Epinions Dataset

(b) Slashdot Dataset

Figure 2: Synthetic Datasets: Classification accuracy of MF-
LiSP, Logistic Regression, and Random.

To bring forth the importance of pairwise loss function, we
present the results in Fig. 1 comparing the pointwise and pair-
wise loss functions for weighted MF-LiSP with Em = 0.
Clearly, our pairwise loss function helps in reducing the clas-
sification error relative to the pointwise loss function. We
also report the prediction accuracy of the MF-LiSP, LR and
random methods with uniform and weighted priors on the

synthetic (Figure 2.a and 2.b) and Wiki-Vote (Figure 3) data
sets, for varying threshold on embeddedness, Em. Note that
we do not include the results for weighted LR methods, as
performance gain for LR is achieved using increasing level
of minimum embeddedness, Em and we observe that due to
greater dependency of LR on features, a weighted prior does
not make significant difference.

From the results with Em = 0, i.e. considering all the
edges irrespective of their embeddedness, we can clearly in-
fer that MF-LiSP and LR methods outperform the random
and the weighted random heuristics. Furthermore, although
MF-LiSP has a comparable (slightly inferior) performance to
LR, it is crucial to note that determining the important set of
features, as required by LR, might not be feasible in all sce-
narios (for instance, due to privacy issues). MF-LiSP over-
comes the need of using features for the learning task, and
hence is very generic in its applicability.

Figure 3: Wiki-Vote: Classification accuracy of MF-LiSP,
Logistic Regression, and Random.

The experiments for Em = {10, 25} show that the LR
model is most effective for edges with higher embeddedness,
while MF-LiSP is robust to varying embeddedness. Natu-
rally, the embeddedness of the edges has no effect on the
random methods. Therefore, LR is more useful in specific
scenarios, e.g., when the nodes in the network are well con-
nected to each other. However, since in general the social net-
works exhibit strong connectivity, we expect LR to perform
well across a wide spectrum of network topologies.

7 Conclusions
We introduced the link label prediction problem: simultane-
ously predict the label of several links in social networks, and
proposed a technique, MF-LiSP, for this problem. We pro-
vided strong generalization guarantees for MF-LiSP thereby
theoretically establishing its efficacy for link label predic-
tion. Since the bounds are generic, MF-LiSP can be readily
adapted to more generic social network settings (e.g. when no
links or only unsigned links are considered), or other domains
(e.g. recommender systems). To the best of our knowledge,
MF-LiSP is the first technique that has provable guarantees
for the general link label prediction problem. We also investi-
gated the applicability of the logistic regression based method
[8] in the multiple label prediction setting. Both the tech-
niques outperform the random and weighted-random heuris-
tics on several synthetic data sets and real world benchmarks.
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