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Abstract
The types of large matrices that appear in mod-
ern Machine Learning problems often have com-
plex hierarchical structures that go beyond what
can be found by traditional linear algebra tools,
such as eigendecompositions. Inspired by ideas
from multiresolution analysis, this paper intro-
duces a new notion of matrix factorization that
can capture structure in matrices at multiple dif-
ferent scales. The resulting Multiresolution Ma-
trix Factorizations (MMFs) not only provide a
wavelet basis for sparse approximation, but can
also be used for matrix compression (similar to
Nyström approximations) and as a prior for ma-
trix completion.

1. Introduction
Recent years have seen a surge of work on compressing and
estimating large matrices in a variety of different ways, in-
cluding (i) low rank approximations (Drineas et al., 2006;
Halko et al., 2009), (ii) matrix completion (Achlioptas &
McSherry, 2007; Candès & Recht, 2009); (iii) compres-
sion (Williams & Seeger, 2001; Kumar et al., 2012), and
(iv) randomized linear algebra (see (Mahoney, 2011) for a
review). Each of these requires some assumption about the
matrix at hand, and invariably that assumption is that the
matrix is of low rank. In this paper we offer an alternative
to the low rank paradigm by introducing multiresolution
matrices, and argue that in many contexts it better captures
the true nature of matrices arising in learning problems.

To contrast the two approaches, recall that saying that a
symmetric matrix A ∈ Rn×n is of rank r≪ n means that
it can be expressed in terms of a dictionary of r mutually
orthogonal unit vectors {u1, u2, . . . , ur} in the form

A =

r∑
i=1

diuiu
⊤
i , (1)
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where u1, . . . , ur are the normalized eigenvectors of A and
d1, . . . , dr are the corresponding eigenvalues. This is the
decomposition that Principal Component Analysis (PCA)
finds and it corresponds to the factorization

A = U⊤DU (2)
with D = diag (d1, . . . , dr, 0, 0, . . . , 0) and U orthogonal.

The drawback of PCA is that eigenvectors are almost al-
ways dense, while matrices occurring in learning problems,
especially those related to graphs, often have strong local-
ity properties, whereby they more closely couple certain
clusters of “nearby” coordinates than those farther apart ac-
cording to some underlying topology. In such cases, mod-
eling A in terms of a basis of global eigenfunctions is both
computationally wasteful and conceptually absurd: a lo-
calized dictionary would be much more appropriate. This
is part of the reason for the recent interest in sparse PCA
(sPCA) algorithms (Jenatton et al., 2010), in which the
{ui} dictionary vectors of (2) are constrained to be sparse,
while the orthogonality constraint may be relaxed. How-
ever, sPCA is liable to suffer from the opposite problem
of capturing structure locally, but failing to recover larger
scale patterns in A.

In contrast to PCA and sPCA, the multiresolution factoriza-
tions introduced in this paper tease out structure at multiple
different scales by applying not just one, but a sequence
of sparse orthogonal transforms to A. After the first or-
thogonal transform, the subset of rows/columns of U1AU

⊤
1

which interact the least with the rest of the matrix capture
the finest scale structure in A, so the corresponding rows
of U1 are designated level one wavelets, and these dimen-
sions are subsequently kept invariant. Then the process
is repeated by applying a second orthogonal transform to
yield U1U2AU

⊤
1 U

⊤
2 and splitting off another subspace of

Rn spanned by second level wavelets, and so on, ultimately
resulting in an L level factorization of the form

A = U⊤
1 U

⊤
2 . . . U⊤

LHUL . . . U2U1. (3)
For a given type of sparsity constraint on U1, . . . , UL and a
given rate at which dimensions must be eliminiated, matri-
ces that are expressible in this form with H diagonal (ex-
cept for a specific small block which might be dense) we
call multiresolution factorizable.
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Multiresolution matrix factorization (MMF) uncovers soft
hierarchical organization in matrices characteristic of nat-
urally occurring large networks or the covariance structure
of large collections of random variables, without enforcing
a hard hierarchical clustering. In addition to using MMF as
an exploratory tool, we suggest that

1. MMF structure may be used as a “prior” in matrix ap-
proximation and completion problems;

2. MMF can be used for matrix compression, since
each intermediateUℓ . . . U1AU

⊤
1 . . . U⊤

ℓ is effectively
a compressed version of A;

3. The wavelet basis associated with MMF is a natural
basis for sparse approximation of functions on a do-
main whose metric structure is given by A.

In the following we discuss the relationship of MMF to
classical multiresolution analysis (Section 3), propose al-
gorithms for computing MMFs (Section 4), take the first
steps to analyze their theoretical properties (Section 5) and
provide some experiments (Section 6). The proofs of all
propositions and theorems are in the supplement.

1.1. Related work

Our work is related to several other recent lines of work on
constructing wavelet bases on discrete spaces. The work of
Coifman & Maggioni (2006) on Diffusion Wavelets was a
major inspiration, especially in emphasizing the connec-
tion to classical harmonic analysis. The tree-like struc-
ture of MMFs relates them to the recent work of Gavish
et al. (2010) on multiresolution on trees, and in particu-
lar to Treelets (Lee et al., 2008), which is a direct precur-
sor to this paper. Finally, the spectral graph wavelets of
Hammond et al. (2011) establish the connection between
Fourier analysis and spectral graph theory, and how this can
be used as a basis for bulding multiresolution on graphs.

More generally, the idea of multilevel operator compres-
sion is related to both algebraic multigrid methods (e.g.,
(Livne & Brandt, 2011)) and fast multipole expansions
(Greengard & Rokhlin, 1987). In the machine learning
community, ideas of multiscale factorization and clustering
appeared in (Dhillon et al., 2007)(Savas & Dhillon, 2011),
amongst other works.

2. Notation
We define [n] = {1, 2, . . . , n}. The n dimensional identity
matrix we denote In unless n is obvious from the context,
in which case we will just use I . The i’th row of a matrix
M is Mi,: and the j’th column is M:,j . We use ∪· to denote
the disjoint union of two sets, so S1 ∪· . . . ∪· Sm = T is
a partition of T . The group of n dimensional orthogonal
matrices is SO(n).

L2(X) // . . . // V0 //
%%JJ

J V1 //
%%LL

L V2 //
&&MM

MM . . .

W1 W2 W3

Figure 1. Multiresolution analysis repeatedly splits V0, V1, . . .
into a smoother part Vj+1 and a rougher part Wj+1.

Given a matrix M ∈ Rn×m and two sequences of indices
I= (i1, . . . , ik)∈[n]k and J= (j1, . . . , jℓ)∈[m]ℓ,MI,J will
denote the k×ℓ submatrix of M cut out by rows i1, . . . , ik
and columns j1, . . . , jℓ, i.e., the matrix whose entries are
[MI,J ]a,b = Mia,jb . Similarly, if S = {i1, . . . , ik} ⊆ [n]

and T = {j1, . . . , jℓ} ⊆ [m] (assuming i1 < i2 < . . . < ik
and j1<j2< . . . < jk), MS,T will be the k×ℓ matrix with
entries [MT,S ]a,b =Mia,jb .

Given M1 ∈ Rn1×m1 and M1 ∈ Rn1×m1 , M1⊕M2 is the
(n1+n2)× (m1+m2) dimensional matrix with entries

[M1⊕M2]i,j =


[M1]i,j if i≤n1 and j ≤m1

[M2]i−n1,j−m1 if i > n1 and j >m1

0 otherwise.

A matrix M is said to be block diagonal if it is of the form

M =M1 ⊕M2 ⊕ . . .⊕Mp (4)

for some sequence of smaller matrices M1, . . . ,Mp. We
will only deal with block diagonal matrices in which each
of the blocks is square. To remove the restriction that each
block in (4) must involve a contiguous set of indices we
introduce the notation

M = ⊕(i11,...,i
1
k1
)M1⊕(i21,...,i

2
k2

)M2 . . .⊕(ip1 ,...,i
p
kp

)Mp (5)

for the generalized block diagonal matrix whose entries are

Ma,b =

{
[Mu]q,r if iuq =a and iur =b for some u, q, r,

0 otherwise .
We will sometimes abbreviate expressions like (5) by drop-
ping the first ⊕ operator and its indices.

3. Multiresolution Analysis
Given a measurable space X , Fourier analysis filters func-
tions on X according to smoothness by expressing them
in the eigenbasis of an appropriate self-adjoint smoothing
operator T . On X = Rd, for example, T might be the
inverse of the Laplacian ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ . . .+ ∂2

∂x2
d
,

leading to the Fourier transform f̂(k) =
∫
f(x)e−2πik·xdx.

When X is a graph and T is the graph Laplacian or a diffu-
sion operator, the same ideas lead to spectral graph theory.
Thus, Fourier analysis corresponds to the eigendecomposi-
tion T =U⊤DU or its operator counterpart.

In contrast, Multiresolution Analysis (MRA) constructs a
sequence of spaces of functions of increasing smoothness

L2(X) ⊃ . . . ⊃ V0 ⊃ V1 ⊃ V2 ⊃ . . . (6)
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by repeatedly splitting each Vj into a smoother part Vj+1,
and a rougher part Wj+1 (Figure 1). The further we go
down this sequence, the longer the length scale over which
typical functions in Vj vary, thus, projecting a function to
Vj , Vj+1, . . . amounts to resolving it at different levels of
resolution. This inspired Mallat to define multiresolution
analysis on X =R directly in terms of dilations and trans-
lations by the following axioms (Mallat, 1989):

1.
∩

j Vℓ = {0},
2.
∪

ℓ Vℓ = L2(R),
3. If f ∈ Vℓ then f ′(x) = f(x − 2ℓm) is also in Vℓ for

any m∈Z,
4. If f ∈ Vℓ, then f ′(x) = f(2x) is in Vℓ−1.

These imply the existence of a so-called “mother wavelet”
ψ such that each Wℓ is spanned by an orthonormal basis

Ψℓ = {ψℓ,m(x) = 2−ℓ/2 ψ(2−ℓx−m) }m∈Z

and a “father wavelet” ϕ such that each Vℓ is spanned by an
orthonormal basis1

Φℓ = {ϕℓ,m(x) = 2−ℓ/2ϕ(2−ℓx−m) }m∈Z.

The wavelet transform (up to level L) of a function
f : X → R residing at a particular level of the hierarchy
(6), without loss of generality f ∈ V0, expresses it as

f(x) =

L∑
ℓ=1

∑
m

αℓ
mψ

ℓ
m(x) +

∑
m

βmϕ
L
m(x), (7)

with αℓ
m = ⟨f, ψℓ

m⟩ and βm = ⟨ϕLm, f⟩. Multiresolution
owes much of its practical usefulness to the fact that ψ can
be chosen in such a way that (a) it is localized in both space
and frequency; (b) the individual Uℓ : Vℓ−1 → Vℓ⊕Wℓ ba-
sis transforms are sparse. Thus, (7) affords a computation-
ally efficient way of decomposing functions into compo-
nents at different levels of detail, and provides an excellent
basis for sparse approximations.

3.1. Multiresolution on discrete spaces

The problem with extending multiresolution to less struc-
tured and discrete spaces, such as graphs, is that in these
settings there are no obvious analogs of translation and
dilation, required by Mallat’s third and fourth axioms.
Rather, similarly to (Coifman & Maggioni, 2006), assum-
ing that |X|=n is finite, we adopt the view that multireso-
lution analysis with respect to a symmetric smoothing ma-
trixA∈Rn×n now consists of finding a sequence of spaces

VL ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 = L(X) ∼= Rn (8)

1 To be more precise, Mallat’s axioms imply that there is a set
of mother wavelets and father wavelets from which we can build
bases in this way. However, the vast majority of MRAs discussed
in the literature only make recourse to a single mother wavelet
and a single father wavelet.

where each Vℓ has an orthonormal basis Φℓ :={ϕℓm}m and
each complementary space Wℓ has an orthonormal basis
Ψℓ :={ψℓ

m}m satisfying the following conditions:

MRA1. The sequence (8) is a filtration of Rn in terms of
smoothness with respect to A in the sense that

ηℓ = sup
v∈Vℓ

⟨v,Av⟩ / ⟨v, v⟩

decays at a given rate.
MRA2. The wavelets are localized in the sense that

µℓ = max
m∈{1,...,dℓ}

∥ψℓ
m∥0,

increases no faster than a certain rate.
MRA3. Letting Uℓ be the matrix expressing Φℓ∪Ψℓ in the

previous basis Φℓ−1, i.e.,

ϕℓm =
∑dim(Vℓ−1)

i=1 [Uℓ]m,i ϕ
ℓ−1
i (9)

ψℓ
m =

∑dim(Vℓ−1)
i=1 [Uℓ]m+dim(Vℓ−1),i ϕ

ℓ−1
i , (10)

each Uℓ is sparse, guaranteeing the existence of a
fast wavelet transform (Φ0 is taken to be the stan-
dard basis, ϕ0m = em).

3.2. Multiresolution Matrix Factorization

The central idea of this paper is to convert multiresolu-
tion analysis into a matrix factorization problem by fo-
cusing on how it compresses the matrix A. In particu-
lar, extending each Uℓ matrix to size n × n by setting
Uℓ ← Uℓ ⊕ In−dim(Vℓ−1), we find that in the Φ1 ∪ Ψ1

basis A becomes U1AU
⊤
1 . In the Φ2 ∪ Ψ2 ∪ Ψ1 basis

it becomes U2U1AU
⊤
1 U

⊤
2 , and so on, until finally in the

ΦL∪ΨL∪ . . . ∪Ψ1 basis it takes on the form

H = UL . . . U2U1AU
⊤
1 U

⊤
2 . . . UL. (11)

Therefore, similarly to the way that Fourier analysis cor-
responds to eigendecomposition, multiresolution analysis
effectively factorizes A in the form

A = U⊤
1 U

⊤
2 . . . ULHUL . . . U2U1 (12)

with the constraints that (a) eachUℓ orthogonal matrix must
be sufficiently sparse; (b) outside its top left dim(Vℓ−1) ×
dim(Vℓ−1) block, each Uℓ is the identity. Furthermore, by
(9), the first dim(VL) rows of UL . . . U2U1 are the {ϕLm}m
scaling functions, whereas the rest of its rows return the
{ψL

m}, {ψL−1
m }, . . . wavelets.

In the Fourier case, H would be diagonal. In the multireso-
lution case the situation is slightly more complicated since
H consists of four distintict blocks:

H =

(
HΦ,Φ HΦ,Ψ

HΨ,Φ HΨ,Ψ

)
=

(
H1:dL,1:dL H1:dL,dL+1:n

HdL+1:n,1:dL HdL+1:n,dL+1:n

)
,

with dL = dim(VL). Here HΦ,Φ is effectively A com-
pressed to VL, and is therefore dense. The structure of the
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other three matrices, however, reflects to what extent the
MRA1 criterion is satisfied. In particular, the closer the
wavelets are to being eigenfunctions, the better they can
filter the space by smoothness, as defined by A. Below,
we define multiresolution factorizable matrices as those for
which this is perfectly satisfied, i.e., which have a factor-
ization with HΦ,Ψ =H⊤

Ψ,Φ =0 and HΨ,Ψ diagonal.

In the following, we relax the form of (12) somewhat by
allowing each Uℓ to fix some set [n]\Sℓ of n−dim(Vℓ−1)
coordinates rather than necessarily the last n−dim(Vℓ−1)
(as long as S0 ⊇ S1 ⊇ . . .). This also affects the order in
which rows are eliminiated as wavelets, and the criterion
for perfect factorizability now becomes H ∈ Hn

SL
, where

Hn
SL

= {H ∈Rn×n |Hi,j =0 unless i= j or i, j ∈SL}.

Definition 1 Given an appropriate subset O of the group
SO(n) of n–dimensional rotation matrices, a depth param-
eter L ∈ N, and a sequence of integers n = d0 ≥ d1 ≥
d2 ≥ . . . ≥ dL ≥ 1, a Multiresolution Matrix Factoriza-
tion (MMF) of a symmetric matrix A ∈ Rn×n over O is a
factorization of the form

A = U⊤
1 U

⊤
2 . . . U⊤

L H UL . . . U2U1, (13)

where each Uℓ ∈ O satisfies [Uℓ][n]\Sℓ−1, [n]\Sℓ−1
= In−dℓ

for some nested sequence of sets [n] = S0 ⊇ S1 ⊇ . . .⊇ SL

with |Sℓ |= dℓ, and H ∈Hn
SL

.

Definition 2 We say that a symmetric matrix A ∈ Rn×n

is fully multiresolution factorizable over O ∈ SO(n) with
(d1, . . . , dL) if it has a decomposition of the form described
in Definition 1.

The sequence (d1, . . . , dL) may follow some predefined
law, such as geometric decay, dℓ = ⌈nηℓ⌉ or arithmetic
decay, dℓ = n− ℓm. The major difference between differ-
ent types of MMFs, however, is in the definition of the set
O of sparse rotations. In this regard we consider two alter-
natives: elementary and compound k’th order rotations.

Definition 3 We say that U ∈Rn×n is an elementary rota-
tion of order k (sometimes also called a k–point rotation)
if it is an orthogonal matrix of the form

U = In−k ⊕(i1,...,ik) O (14)
for some {i1, . . . , ik} ⊆ [n] and O ∈ SO(k). The set of all
such matrices we denote SOk(n).

A k’th order elementary rotation is very local, since it only
touches coordinates {i1, . . . , ik}, and leaves the rest invari-
ant. The simplest case are second order rotations, which
are of the form

U = Uθ
i,j =


·

c −s
·

s c
·

, c = cos θ
s = sin θ,

(15)

where the dots denote that apart from rows/columns i and j,
Uθ
i,j is the identity, and θ is some angle in [0, 2π). Such ma-

trices are called Givens rotations, and they play an impor-
tant role in numerical linear algebra. Indeed, Jacobi’s algo-
rithm for diagonalizing symmetric matrices (Jacobi, 1846),
possibly the first matrix algorithm to have been invented,
works precisely by constructing an MMF factorization over
Givens rotations. Inspired by this connection, we will call
any MMF with O = SOk(n) a k’th order Jacobi MMF.

Definition 4 We say that U ∈ Rn×n is a compound ro-
tation of order k if it is an orthogonal matrix of the form

U = ⊕(i11,...,i
1
k1
)O1 ⊕(i21,...,i2k2

)O2 . . .⊕(im1 ,...,imkm
)Om (16)

for some partition {i11, . . . , i1k1
} ∪· . . . ∪· {im1 , . . . , imkm

} of
[n] with k1, . . . , km ≤ k, and some sequence of orthogonal
matrices O1, . . . , Om of the appropriate sizes. The set of
all such matrices we denote SO∗

k(n).

Intuitively, compound rotations consist of many elementary
rotations exectuted in parallel, and can consequently lead to
much more compact factorizations.

4. Computing MMFs
Much like how low rank methods express matrices in terms
of a small dictionary of vectors as in (1), MMF approxi-
mates A in the form

A∗ =

dL∑
i,j=1

βi,j ϕ
L
i ϕ

L
j
⊤ +

L∑
ℓ=1

dℓ∑
i=1

ηℓi ψ
ℓ
i ψ

ℓ
i
⊤,

where the ηℓi = ⟨ψℓ
i , Aψ

ℓ
i ⟩ wavelet frequencies are the di-

agonal elements of the HΨ,Ψ block of H , whereas the βi,j
coefficients are the entries of the HΦ,Φ block. Thus, given
O and (d1, . . . , dL), finding the best MMF factorization to
a symmetric matrix A requires solving

minimize
[n]⊇ S1 ⊇ . . .⊇ SL

H∈Hn
SL

; U1, . . . , UL∈O

∥A− U⊤
1 . . . U

⊤
L H UL . . . U1 ∥.

Assuming that we measure error in the Frobenius norm,
which is rotationally invariant, this is equivalent to

minimize
[n]⊇ S1 ⊇ . . .⊇ SL

U1, . . . , UL∈O

∥UL . . . U1A U
⊤
1 . . . U

⊤
L ∥2resi , (17)

where ∥ ∥2resi is the squared “residual norm”

∥H∥2resi =
∑

i ̸=j and (i,j)̸=SL×SL

|Hi,j |2 .

Defining Aℓ = Uℓ . . . U1AU
⊤
1 . . . Uℓ, intuitively, our ob-

jective is to find a series of sparse rotations

A ≡ A0
U1−→ A1

U2−→ . . .
UL−→ AL (18)
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Figure 2. Left: Example of the tree induced by a second order
Jacobi MMF of a six dimensional matrix. Right: Example of a
Jacobi MMF with k=3 of a 10 dimensional matrix.

that bring A to a form as close to diagonal as possible. The
following Proposition tells us that as soon as we designate a
certain set Jℓ := Sℓ−1\Sℓ of rows/columns inAℓ wavelets,
the ℓ2-norm of these rows/columns (discounting the diago-
nal and those parts that fall outside the Sℓ−1×Sℓ−1 active
submatrix) is already committed to the final error.

Proposition 1 Given an MMF as defined in Definition 1,
the objective function of (17) is expressible as

∑L
ℓ=1 Eℓ,

where Eℓ = ∥[Aℓ]Jℓ,Jℓ
∥2off-diag + 2 ∥[Aℓ]Jℓ,Sℓ

∥2Frob, and
∥M∥2off-diag :=

∑
i ̸=j |Mi,j |2.

The following algorithms for finding MMFs all follow the
greedy approach suggested by this proposition of find-
ing at each level a rotation Uℓ that produces dℓ − dℓ−1

rows/columns that are as close to diagonal as possible, and
then designating these as the level ℓ wavelets.

4.1. Jacobi MMFs

In Jacobi MMFs, where each Uℓ is an In−k⊕(i1,...,ik)O ele-
mentary rotation, we set (d1, . . . , dL) so as to split off some
constant number m < k of wavelets at each level. For sim-
plicity, for now we take m = 1. Furthermore, we make
the natural assumption that this wavelet is one of the rows
involved in the rotation, w.l.o.g. Jℓ = {ik}.

Proposition 2 If Uℓ = In−k⊕IO with I = (i1, . . . , ik)
and Jℓ = {ik}, then the contribution of level ℓ to the MMF
approximation error is

Eℓ = EOI = 2
k−1∑
p=1

[O[Aℓ−1]I,IO
⊤]2k,p + 2[OBO⊤]k,k,

(19)where B = [Aℓ−1]I,Sℓ
([Aℓ−1]I,Sℓ

)⊤.

Corollary 1 In the special case of k=2 and Iℓ = (i, j),

Eℓ = EO(i,j) = 2[O[Aℓ−1](i,j),(i,j)O
⊤]22,1 + 2[OBO⊤]k,k

(20)
with B = [Aℓ−1](i,j),Sℓ

([Aℓ−1](i,j),Sℓ
)⊤.

According to the greedy strategy, at each level ℓ, the I in-
dex tuple and O rotation must be chosen so as to mini-
mize (19). The resulting algorithm is given in Algorithm 1,
where AL ↓Hn

SL
stands for zeroing out all the entries of Aℓ

except those on the diagonal and in the SL×SL block.

Algorithm 1 GREEDYJACOBI: computing the Jacobi
MMF of A with dℓ =n−ℓ.

Input: k, L, and a symmetric matrix A0 = A∈Rn×n

set S0 ← [n]
for (ℓ=1 to L ){
foreach I = (i1, . . . , ik)∈ (Sℓ−1)

k with i1< . . . < ik
compute EI = minO∈SO(k) EOI (as defined in (19))

set Iℓ ← argminI EI
set Oℓ ← argminO∈SO(k) EOIℓ
set Uℓ ← In−k ⊕IℓOℓ

set Sℓ ← Sℓ−1 \ {ik}
set Aℓ ← UℓAℓ−1 U

⊤
ℓ

}
Output: U1, . . . , UL and H = AL ↓Hn

SL

When k=2, the rotationsU1, . . . , UL form a binary tree, in
which each Uℓ takes two scaling functions from level ℓ−1
and passes on a single linear combination of them to the
next level (Figure 2). In general, the more similar two rows
Ai,: and Aj,: are to each other, the smaller we can make
(21) by choosing the approriate O. In graphs, for example,
where in some metric the entries in row i measure the sim-
ilarity of vertex i to all the other vertices, this means that
Algorithm 1 will tend to pick pairs of adjacent or nearby
vertices and then produce scaling functions that represent
linear combinations of those vertices. Thus, second order
MMFs effectively perform a hierarchical clustering on the
rows/columns of A. Uncovering this sort of hierarchical
sructure is one of the goals of MMF analysis.

The idea of constructing wavelets by forming a tree of
Givens rotations was first intruduced under the name
“Treelets” by Lee et al. (2008). Their work, however, does
not make a connection to matrix factorization. In particu-
lar, instead of minimizing the contribution of each rotation
to the matrix approximation error, the Treelets algorithm
chooses I and O so as to zero out the largest off-diagonal
entry of Aℓ−1. This pivoting rule is the same as in Jacobi’s
classical algorithm, so if one of the two indices {i, j} was
not always eliminated from the active set, we would even-
tually diagonalize A to arbitrary precision.

Jacobi MMFs with k ≥ 3 are even more interesting be-
cause they correspond to a lattice in which each Uℓ now
has k children and k− 1 parents (Figure 2). In the k = 2
case the supports of any two wavelets ψℓ

1 and ψℓ′

1 are ei-
ther disjoint or one is contained in the other. In contrast,
for k ≥ 3, a single original coordinate, such as δ6 in Fig-
ure 2 can contribute to multiple wavelets (ψ5

1 and ψ6
1 , for

example) with different weights, determined by all the or-
thogonal matrices along the corresponding paths in the lat-
tice. Thus, higher order MMFs are more subtle than just a
single hierarchical clustering: by building a lattice of sub-
spaces they capture a softer notion of hierarchy, and can



Multiresolution Matrix Factorization

Algorithm 2 GREEDYPARALLEL: computing the binary
parallel MMF of A with dℓ = ⌈n2−ℓ⌉.

Input: L and a symmetric matrix A = A0 ∈Rn×n

set S0 ← [n]
for (ℓ=1 to L ){
set p← ⌊|Sℓ−1| /2⌋
compute Wi,j =Wj,i as defined in (22) ∀ i, j ∈Sℓ−1

find the matching {(i1, j1), . . . , (ip, jp)}
minimizing

∑p
r=1Wir,jr

for (r=1 to p) set Or ← argminO∈SO(2) EO(ir,jr)
set Uℓ ← ⊕(i1,j1)O1 ⊕(i2,j2) O2 ⊕ . . .⊕(ip,jp) Op

set Sℓ ← Sℓ−1 \ {i1, . . . , ip}
set Aℓ ← UℓAℓ−1 U

⊤
ℓ

}
Output: U1, . . . , UL and H = AL ↓Hn

SL

uncover multiple overlapping hierarchical structures in A.

4.2. Parallel MMFs

Since MMFs exploit hierarchical cluster-of-clusters type
structure in matrices, towards the bottom of the hierarchy
one expects to find rotations that act locally, within small
subclusters, and thus do not interact with each other. By
combining these independent rotations into a single com-
pound rotation, parallel MMFs yield factorizations that
are not only more compact, but also more interpretable in
terms of resolving A at a small number of distinct scales.
Once again, we assume that it is the last coordinate in
each (i11, . . . , i

1
k1
) . . . (im1 , . . . , i

m
km

) block that gives rise to
a wavelet, therefore dℓ decays by a constant factor of ap-
proximately (k−1)/k at each level.

Proposition 3 If Uℓ is a compound rotation of the form
Uℓ = ⊕I1O1. . .⊕ ImOm for some partition I1 ∪· . . .∪· Im of
[n] with k1, . . . , km ≤ k, and some sequence of orthogo-
nal matrices O1, . . . , Om, then level ℓ’s contribution to the
MMF error obeys

Eℓ ≤ 2
m∑
j=1

[kj−1∑
p=1

[Oj [Aℓ−1]Ij ,IjO
⊤
j ]

2
kj ,p+[OjBjO

⊤
j ]kj ,kj

]
,

(21)
where Bj = [Aℓ−1]Ij ,Sℓ−1\Ij ([Aℓ−1]Ij ,Sℓ−1\Ij )

⊤.

The reason that (21), in contrast to (19), only provides an
upper bound on Eℓ is that it double counts the contribution
of the matrix elements {[Aℓ]kj ,kj′}

m
j,j′=1 at the intersection

of pairs of wavelet rows/columns. Accounting for these el-
ements explicitly would introduce interactions between the
Oj rotations, leading to a difficult optimization problem.
Therefore, both for finding the optimal partition I1∪· . . .∪· Im
and for finding the optimal O1, . . . , Om rotations, we use
the right hand side of (21) as a proxy for Eℓ.

Once again, the binary (k = 2) case is the simplest, since
optimizing I1 ∪· . . . ∪· Im then reduces to finding a minimal

cost matching amongst the indices in the active set Sℓ−1

with cost matrix

Wi,j = 2 min
O∈SO(2)

[
[O[Aℓ−1](i,j),(i,j)O

⊤]22,1+[OBO⊤]k,k
]
,

(22)
where B = [Aℓ−1](i,j),Sℓ−1\{i,j} ([Aℓ−1](i,j),Sℓ−1\{i,j})

⊤.
An exact solution to this optimization problem can be
found in timeO(|Sℓ−1|3) using a modern weighted version
of the famous “Blossom algorithm” by Edmonds (1965).
However, it is also known that the simple greedy strategy
of setting (i1, j1) = argmini,j∈Sℓ−1

Wi,j , then (i2, j2) =
argmini,j∈Sℓ−1\{i1,j1}Wi,j , etc., yields a 2–approxima-
tion in linear time. In general, the most expensive com-
ponent of MMF factorizations is forming the B matrices
(which naı̈vely takes O(nk) time), however, in practice
techinques like locality sensitive hashing allow this (as well
as the entire algorithm) to run in time close to linear in n.
We remark that the fast Haar transform is nothing but a
binary MMF, and the Cooley–Tukey FFT is a degenerate
MMF (where d0 = . . .= dL) of a complex valued matrix.

4.3. Computational details

Problems of the form minO∈SO(k)∥OBO⊤C ∥, called Pro-
crustes problems, generally have easy, O(k3) time closed
form solutions. Unfortunately, both (19) and (21) involve
mixed linear/quadratic versions of this problem, which are
much more challenging. However, the following result
shows that in the k=2 case this may be reduced to solving
a simple trigonometric equation.

Proposition 4 Let A ∈R2×2 be diagonal, B ∈R2×2 sym-
metric and O =

(
cosα − sinα
sinα cosα

)
. Set a = (A1,1−A2,2)

2/4,

b=B1,2, c= (B2,2−B1,1)/2, e=
√
b2+c2, θ = 2α and

ω = arctan(c/b). Then if α minimizes ([OAO⊤]2,1)
2 +

[OBO⊤]2,2, then θ satisfies

(a/e) sin(2θ) + sin(θ + ω + π/2) = 0. (23)

Putting A and B in the diagonal form required by this
proposition is easy. While (23) is still not an explicit ex-
pression for α, it is trivial to solve with iterative methods.

5. Theoretical analysis
MMFs satisfy properties MRA2 and MRA3 of Section 3.1
by construction. Showing that they also satisfy MRA1 re-
quires, roughly, to prove that the smoother a function is,
the smaller its high frequency wavelet coefficients are. For
this purpose the usual notion of smoothness with respect to
a metric d is Hölder continuity, defined

|f(x)−f(y)| ≤ cH d(x, y)α ∀x, y ∈X,

with cH and α > 0 constant. In classical wavelet analysis
one proves that the wavelet coefficients of (cH , α)–Hölder
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Figure 3. The MMF wavelets on a cycle graph on 16 vertices
recover the Haar wavelet system.

functions decay at a certain rate, for example, | ⟨f, ψm
ℓ ⟩ | ≤

c′ℓα+β for some β and c′ (Daubechies, 1992).

As we have seen, MMFs are driven by the similarity be-
tween the rows/columns of the matrix A. Therefore, relax-
ing the requirement that d must be a metric, we now take

d(i, j) = | ⟨Ai,:, Aj,:⟩ |−1
. (24)

One must also make some assumptions about the structure
of the underlying space, classically that X is a so-called
space of homogeneous type (Deng & Han, 2009), which
means that for some constant chom,

Vol(B(x, 2r)) ≤ chom Vol(B(x, r)) ∀x∈X, ∀r > 0.

To capture the analogous structural property for matrices,
we introduce a concept with connections to the R.I.P con-
dition in compressed sensing (Candes & Tao, 2005).

Definition 5 We say that a symmetric matrix A ∈ Rn×n

is Λ–rank homogeneous up to order K, if for any S ⊆
[n] of size at most K, letting Q = AS,:A:,S , setting D

to be the diagonal matrix with Di,i = ∥Qi,:∥1, and Q̃ =

D−1/2QD−1/2, the λ1, . . . , λ|S| eigenvalues of Q̃ satisfy
Λ < |λi | < 1 − Λ, and furthermore c−1

T ≤Di,i ≤ cT for
some constant cT .

Recall that the spectrum of the normalized adjacency ma-
trix of a graph is bounded in [−1, 1] (Chung, 1997). Defini-
tion 5 asserts that if we form a graph with vertex set S and
edge weights ⟨Ai,:, Aj,:⟩, its eigenvalues in absolute value
are bounded away from both 0 and 1. Definition 5 then
roughly corresponds to asserting that A does not have clus-
ters of rows that are either almost identical (an incoherence
condition) or completely unrelated. This allows us to now
state the matrix analog of the Hölder condition.

Figure 4. Comparison with the Treelets algorithm. Zachary’s
Karate Club graph (top) and a matrix describing the estimated
additive genetic relationship between 50 individuals (bottom).

Theorem 1 Let A ∈ Rn×n be a symmetric matrix that is
Λ–rank homogeneous up to order K and has an MMF fac-
torization A = U⊤

1 . . . U⊤
LHUL . . . U1. Assume ψℓ

m is a
wavelet in this factorization arising from row i of Aℓ−1

supported on a set S of size K ≤K and that ∥Hi,:∥2 ≤ ϵ.
Then if f : [n] → R is (cH , 1/2)–Hölder with respect to
(24), then

| ⟨f, ψℓ
m⟩ | ≤ cT

√
cHcΛ ϵ

1/2K (25)

with cΛ = 4/(1− (1− 2Λ)2).

Here ϵ is closely related to the MMF approximation error
and is therefore expected to be small. Eq. (25) then says
that, as we expect, if f is smooth, then its “high frequency”
local wavelet coefficents (low K and ℓ) will be small.

6. Experiments
In a toy example we consider the diffusion kernel of the
Laplacian, T , of a cycle graph (Cn) on n=16 vertices. Ap-
plying Algorithm 2, we compute the binary parallel MMF
of T up to depth L=5. We find that the sequence of MMF
rotations reconstructs the Haar wavelets (Figure 3). In fact,
similar results can be obtained for any cycle graph, except
that for large n the longest wavelength wavelets cannot be
fully reconstructed due to numerical precision issues.

We also evaluate the performance of GREEDYJACOBI by
comparing it with Treelets on two small matrices. Note
that in the greedy setting MMF removes one dimension at
a time, similarly to the Treelets algorithm, and thus in both
algorithms the off-diagonal part of the rows/columns desig-
nated as wavelets contributes to the error. The first dataset
is the well-known Zachary’s Karate Club (Zachary, 1977)
social network (N = 34, E = 78) for which we set A to
be the heat kernel. The second one is constructed using
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Figure 5. Frobenius norm error of the MMF and Nyström meth-
ods on a random vs. a structured (Kronecker) matrix.

simulated data from the family pedigrees in (Crossett et al.,
2013), 5 families were randomly selected, and 10 individu-
als from the 15 related individuals were randomly selected
independently in each family. The resulting relationship
matrix represents the estimated kinship coefficient and is
calculated via the GCTA software of Yang et al. (2011).
Figure 4 shows that GREEDYJACOBI outperforms Treelets
for a wide range of compression ratios.

6.1. Comparison to Other Factorization Methods

To verify that MMF produces meaningful factorizations,
we measure the approximation error of factoring two
1024× 1024 matrices: a matrix consisting of i.i.d. normal
random variables and a Kronecker graph, Kk

1 , of order
k = 5, where K1 is a 2× 2 seed matrix (Leskovec et al.,
2010). Figure 5 shows that MMF performs sub-optimally
when the matrix lacks an underlying multiresolution struc-
ture. However, on matrices with multilevel structure MMF
systematically outperforms other algorithms.2

In order to evaluate MMF for matrix compression, we use
several large datasets: GR (arXiv General Relativity collab-
oration graph, N = 5242) (Leskovec et al., 2007), Dexter
(bag of words, N = 2000) (Asuncion & Newman, 2012),
and HEP (arXiv High Energy Physics collaboration graph,
N = 9877, see Supplement). The first two are normal-
ized graph Laplacians of real-world networks and the third
one is a linear kernel matrix constructed from a 20000-
feature dataset. By virtue of its design, MMF operates
only on symmetric matrices, so we compare its perfor-
mance to other algorithms designed specifically for sym-
metric matrices. Figure 6 compares the approximation er-
ror of MMF and the Nyström-based family of randomized
algorithms. The Nyström method has several extensions
differing in sampling technique (uniform at random with-
out replacement, non-uniform leverage score probabilities,
Gaussian or SRFT mixtures of the columns). The MMF
approximation error is measured by taking the cumulative
l2 norm of the rows/columns that are designated wavelets

2 Note that compressing a matrix to size d×d means something
slightly different for Nyström methods and MMF: in the latter
case, in addition to the d×d core, we also preserve a sequence of
n−d wavelet frequencies.

Figure 6. Comparison of the Frobenius norm error of the binary
parallel MMF and Nyström approximations on two real datasets.
In the rank restricted cases k=20 for GR and k=8 for Dexter.

at each iteration of the algorithm (Proposition 1). For the
Nyström-based algorithms the compression error is a func-
tion of the number of columns sampled (and possibly the
desired rank of the approximation leading to a distinction
between the rank-restricted and unconstrained rank ver-
sions of the method) and is defined as ||A− CW †CT ||Frob

or ||A− CW †
kC

T ||Frob(Gittens & Mahoney, 2013). Simi-
larly, at every level of the MMF compression, the approxi-
mation error is a function of |Sℓ|, the number of dimensions
that have not yet been eliminated.

These results convincingly show that, despite similar wall
clock times, MMF factorization characteristically outper-
forms standard techniques when the underlying matrix has
multiscale structure. We are working on more extensive
experiments that go beyond the scope of this paper.

7. Conclusions
The interplay between the geometry of a space X and the
structure of function spaces on X is a classical theme in
Harmonic Analysis (Coifman & Maggioni, 2006). As an
instance of this connection, this paper developed the ma-
trix factorization analog of multiresolution analysis on fi-
nite sets. The resulting factorizations, on the one hand,
provide a natural way to define multiresolution on graphs,
correlated sets of random variables, and so on. On the other
hand, they lead to new classes of structured matrices and
new matrix compression algorithms.

The present work could only explore a small subset of the
potential applications of MMFs from matrix completion
via sparse approximation to community detection in net-
works. In general, what classes of naturally occurring ma-
trices exhibit MMF structure is itself an important question.
From an algorithmic point of view, devising fast random-
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ized version of MMFs will be critical. Finally, from the
theoretical point of view, one of the biggest challenges is to
relate the new concepts of multiresolution factorizable and
Λ–rank homogenous matrices to the existing body of work
in harmonic analysis, algebra and compressed sensing.
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8. Supplement to “Multiresolution Matrix
Factorization” (ICML 2014 submission)

Proof of Proposition 1. By the nestedness of S0 ⊇ S1 ⊇
. . . ⊇ SL, for some sequence of permutation matrices
Π1, . . . ,ΠL, H decomposes recursively as

[H]Sℓ,Sℓ
= Πℓ

(
[H]Sℓ+1,Sℓ+1

[H]Sℓ+1, Jℓ+1

[H]Jℓ+1, Sℓ+1
[H]Jℓ+1, Jℓ+1

)
Π⊤

ℓ

Unwrapping this recursion tells us that ∥H∥2resi is equal to

L∑
ℓ=1

[
∥[H]Jℓ, Sℓ

∥2Frob + ∥[H]Sℓ, Jℓ
∥2Frob + ∥[H]Jℓ, Jℓ

∥2off-diag

]
.

However, since the rotations Uℓ+1, . . . , UL leave
span({ ei | i∈ [n] \ Sℓ }) invariant,

∥[Aℓ]Jℓ, Sℓ
∥2Frob = ∥[Aℓ+1]Jℓ, Sℓ

∥2Frob = . . . =

= ∥[AL]Jℓ, Sℓ
∥2Frob == ∥[H]Jℓ, Sℓ

∥2Frob.

By symmetry, ∥[H]Sℓ, Jℓ
∥2Frob = ∥[H]Jℓ, Sℓ

∥2Frob. Similarly,
∥[Aℓ]Jℓ, Jℓ

∥2off-diag = . . . = ∥[H]Jℓ, Jℓ
∥2off-diag. ■

Proof of Proposition 2. Since J = {ik}, by Proposition 1

Eℓ = 2

k−1∑
p=1

[UℓAℓ−1U
⊤
ℓ ]2ik,ip + 2∥[UℓAℓ−1U

⊤
ℓ ]ik,Sℓ

∥2.

The first term can be written 2
∑k−1

p=1 [O[Aℓ−1]I,IO
⊤]2k,p,

while the second term is

2∥ [O[Aℓ−1]I,Sℓ
[Uℓ]

⊤
Sℓ,Sℓ

]k,: ∥2 =

2[O[Aℓ−1]I,Sℓ
[Uℓ]

⊤
Sℓ,Sℓ

[Uℓ]Sℓ,Sℓ
[Aℓ−1]

⊤
I,Sℓ

O⊤]k,k =

2[O[Aℓ−1]I,Sℓ
[Aℓ−1]

⊤
I,Sℓ

O⊤]k,k = 2[OBO⊤]k,k

■

Proof of Proposition 3. Analogous to the proof of Propo-
sition 2, but summed over each I1×I1, . . . , Im×Im block.

Proof of Proposition 4. We want to minimize

ϕ(α) =

([
Oα

(
A1 0
0 A2

)
O⊤

α

]
2,1

)2

+

[
Oα

(
B1,1 B1,2

B2,1 B2,2

)
O⊤

α

]
2,2

.

Expanding, we get

ϕ(α) = ((A1 −A2) sinα cosα)2 +B1,1(sinα)
2+

2B1,2 sinα cosα+B2,2(cosα)
2 =(A1−A′

2

2

)2
(sin(2α′))2+

B1,2 sin(2α) + (sinα′)2B1,1 + (cosα′)2B2,2.

Rewriting the second two terms as

((sinα)2 + (cosα′)2)(B1,1 +B2,2)

2
+

((sinα)2 − (cosα′)2)(B1,1 −B2,2)

2

gives

ϕ(α) =
(A1−A2

2

)2
(sin(2α))2 +B1,2 sin(2α)+

B1,1 +B2,2

2
+
B2,2 −B1,1

2
cos(2α).

Introducing d = (B2,2 − B1,1)/2 and the other variables
a, b, c, e and θ gives the new objective function

ψ(θ) = a(sin θ)2 + b sin θ + c cos θ + d.

Setting the derivative with respect to θ zero,

2a sin θ cos θ + b cos θ − c sin θ = 0.

Again using sin(2x) = 2 sinx cosx,

a sin(2θ) + b cos θ − c sin θ = 0.

Now letting e =
√
b2 + c2 and ω = arctan(c/b)

a sin(2θ) + e(cosω cos θ − sinω sin θ) = 0.

Using cos(x+ y) = cosx cos y − sinx sin y,

(a/e) sin(2θ) + cos(θ + ω) = 0,

which is finally equivalent to (23). ■

Proof of Theorem 1. Let ψ be a specific wavelet ψℓ
m, with

support S = {s1, . . . , sK} = supp(ψ) ⊆ [n]; fS and ψS

be the restriction of f and ψ to S regarded as a vectors;
and Q,D and Q̃ be defined as in Definition 5. The Hölder
property then gives

f⊤S L̃fS =
K∑

i,j=1

Q̃i,j(f(si)− f(sj))2 ≤

≤
K∑

i,j=1

cT Qi,j(f(si)− f(sj))2 ≤ cT cHK2, (26)

where L̃ = I−Q̃ is the normalized Laplacian. At the same
time, if ψℓ

m comes from row/column i of Aℓ, then by (11),
[Aℓ]:,i = Uℓ . . . U1Aψ, and therefore

ψ⊤
SQ̃ψS ≤ cT ψ⊤

SQψS ≤ cT ψ⊤
SAS,:A:,SψS =

= cT ∥Aψ∥2 = cT ∥[Aℓ]:,i∥2 = cT ∥H:,i∥2 ≤ cT ϵ (27)
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Clearly, Q̃ and L̃ share the same normalized eigenbasis
{v1, . . . , vn}. Letting λ1, . . . , λK be the corresponding
eigenvalues, fi = ⟨fS , vi⟩ and ψi = ⟨ψS , vi⟩ and taking
any γ > 0

K∑
i=1

(√
γλiψi −

1√
γλi

fi

)2
≥ 0, (28)

which implies

⟨f, ψ⟩ = ⟨fS , ψS⟩ ≤
1

2

[
γψ⊤

SQ̃ψS + γ1/2f⊤S Q̃
−1fS

]
.

The first term on the r.h.s of this inequality is bounded by
(27), while for any cΛ ≥ 4/(1− (1− 2Λ)2), by (26),

f⊤S Q̃
−1fS =

K∑
i=1

1

λi
f2i ≤ cΛ

K∑
i=1

(1− λi)f2i =

= cΛf
⊤
S L̃fS ≤ cT cHcΛK2

giving ⟨f, ψ⟩ ≤ cT (γϵ + γ−1cHcΛK
2). Optimizing this

for γ yields ⟨f, ψ⟩ ≤ cT
√
cHcΛ ϵ

1/2K. By flipping the −
sign in (28) to +, a similar lower bound can be derived for
−⟨f, ψ⟩. ■

9. Additional experimental results

Figure 7. Comparison of the Frobenius norm error of the binary
parallel MMF and Nyström approximations on the HEP dataset in
the non rank-restricted case and the k=60 rank restricted case.


