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Abstract

Engineered proteins offer the potential to solve many problems in biomedicine,
energy, and materials science, but creating designs that succeed is difficult in
practice. A significant aspect of this challenge is the complex coupling between
protein sequence and 3D structure, with the task of finding a viable design often
referred to as the inverse protein folding problem. In this work, we introduce a
conditional generative model for protein sequences given 3D structures based on
graph representations. Our approach efficiently captures the complex dependencies
in proteins by focusing on those that are long-range in sequence but local in 3D
space. This graph-based approach improves in both speed and reliability over
conventional and other neural network-based approaches, and takes a step toward
rapid and targeted biomolecular design with the aid of deep generative models.

1 Introduction

A central goal for computational protein design is to automate the invention of protein molecules
with defined structural and functional properties. This field has seen tremendous progess in the past
two decades [1], including the design of novel 3D folds [2], enzymes [3], and complexes [4]. Despite
these successes, current approaches are often unreliable, requiring multiple rounds of trial-and-error
in which initial designs often fail [5, 6]. Moreover, diagnosing the origin of this unreliability is
difficult, as contemporary bottom-up approaches depend both on the accuracy of complex, composite
energy functions for protein physics and also on the efficiency of sampling algorithms for jointly
exploring the protein sequence and structure space.

Here, we explore an alternative, top-down framework for protein design that directly learns a
conditional generative model for protein sequences given a specification of the target structure, which
is represented as a graph over the residues (amino acids). Specifically, we augment the autoregressive
self-attention of recent sequence models [7] with graph-based representations of 3D molecular
structure. By composing multiple layers of this structured self-attention, our model can effectively
capture higher-order, interaction-based dependencies between sequence and structure, in contrast to
previous parameteric approaches [8, 9] that are limited to only the first-order effects.

A graph-structured sequence model offers several benefits, including favorable computational effi-
ciency, inductive bias, and representational flexibility. We accomplish the first two by leveraging
a well-evidenced finding in protein science, namely that long-range dependencies in sequence are
generally short-range in 3D space [10–12]. By making the graph and self-attention similarly sparse
and localized in 3D space, we achieve computational scaling that is linear in sequence length. Addi-
tionally, graph structured inputs offer representational flexibility, as they accomodate both coarse,
‘flexible backbone’ (connectivity and topology) as well as fine-grained (precise atom locations)
descriptions of structure.

We demonstrate the merits of our approach via a detailed empirical study. Specifically, we evaluate
our model’s performance for structural generalization to sequences of protein 3D folds that are
topologically distinct from those in the training set. For fixed-backbone sequence design, we find that
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our model achieves considerably improved statistical performance over a prior neural-network based
model and also that it achieves higher accuracy and efficiency than Rosetta fixbb, a state-the-art
program for protein design.

The rest of the paper is organized as follows. We first position our contributions with respect to the
prior work in Section 1.1. We provide details on our methods, including structure representation,
in Section 2. We introduce our Structured Transformer model in Section 2.2. The details of our
experiments are laid out in Section 3, and the corresponding results that elucidate the merits of our
approach are presented in Section 4.

1.1 Related Work

Generative models for protein sequence and structure A number of works have explored the
use of generative models for protein engineering and design [13]. [8, 9, 14] have used neural network-
based models for sequences given 3D structure, where the amino acids are modeled independently of
one another. [15] introduced a generative model for protein sequences conditioned on a 1D, context-
free grammar based specification of the fold topology. Multiple works [16, 17] have modeled the
conditional distribution of single amino acids given surrounding structure and sequence context with
convolutional neural networks. In contrast to these works, our model captures the joint distribution
of the full protein sequence while grounding these dependencies in terms of long-range interactions
arising from structure.

In parallel to the development of structure-based models, there has been considerable work on deep
generative models for protein sequences in individual protein families [18–21]. While useful, these
methods presume the availability of a large number of sequences from a particular family, which are
unavailable in the case of designing novel proteins that diverge significantly from natural sequences.

Several groups have obtained promising results using unconditional protein language models [22–25]
to learn sequence representations that transfer well to supervised tasks. While serving different
purposes, we emphasize that one advantage of conditional generative modeling is to facilitate
adaptation to specific (and potentially novel) parts of structure space. Language models trained
on hundreds of millions of evolutionary sequences will still be ‘semantically’ bottlenecked by the
thousands of 3D evolutionary folds that these sequences represent. We propose evaluating protein
language models with structure-based splitting of sequence data, and begin to see how unconditional
language models may struggle to assign high likelihoods to sequences from out-of-training folds.

In a complementary line of research, several deep and differentiable parameterizations of protein
structure [26–29] have been recently proposed that could be used to generate, optimize, or validate
3D structures for input to sequence design.

Protein design and interaction graphs For classical approaches to computational protein design,
which are based on joint modeling of structure and sequence, we refer the reader to a review of
both methods and accomplishments in [1]. Many of the major ‘firsts’ in protein design are due to
Rosetta [30, 31], a leading framework for protein design. More recently, there have been successes
with non-parametric approaches to protein design [32] which are based on finding substructural
homologies between the target and diverse templates in large protein database. In this work, we focus
on comparisons to Rosetta (Section 4.2), since it is based on a single parametric energy function for
capturing the sequence-structure relationship.

Self-Attention Our model extends the Transformer [33] to capture sparse, pairwise relational
information between sequence elements. The dense variation of this problem was explored in [34]
and [35]. As noted in those works, incorporating general pairwise information incursO(N2) memory
(and computational) cost for sequences of length N , which can be highly limiting for training on
GPUs. We circumvent this cost by instead restricting the self-attention to the sparsity of the input
graph. Given this graph-structured self-attention, our model may also be reasonably cast in the
framework of message-passing or graph neural networks [36, 37] (Section 4.1). Our approach is
similar to Graph Attention Networks [38], but augmented with edge features and an autoregressive
decoder.
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Figure 1: A graph-based, autoregressive model for protein sequences given 3D structures. (A)
We cast protein design as language modeling conditioned on an input graph. In our architecture, an
encoder develops a sequence-independent representation of 3D structure via multi-head self-attention
[7] on the spatial k-nearest neighbors graph. A decoder then autoregressively generates each amino
acid si given the full structure and previously decoded amino acids. (B) Each layer of the encoder
and decoder contains a step of neighborhood aggregation (self-attention) and of local information
processing (position-wise feedforward).

2 Methods

In this work, we introduce a Structured Transformer model that draws inspiration from the self-
attention based Transformer model [7] and is augmented for scalable incorporation of relational
information (Figure 1). While general relational attention incurs quadratic memory and computation
costs, we avert these by restricting the attention for each node i to the set N(i, k) of its k-nearest
neighbors in 3D space. Since our architecture is multilayered, iterated local attention can derive
progressively more global estimates of context for each node i. Second, unlike the standard Trans-
former, we also include edge features to embed the spatial and positional dependencies in deriving
the attention. Thus, our model generalizes Transformer to spatially structured settings.

2.1 Representing structure as a graph

We represent protein structure in terms of an attributed graph G = (V, E) with node features
V = {v1, . . . ,vN} describing each residue (amino acid, which are the letters which compose a
protein sequence) and edge features E = {eij}i 6=j capturing relationships between them. This
formulation can accommodate different variations on the macromolecular design problem, including
both ‘rigid backbone’ design where the precise coordinates of backbone atoms are fixed, as well
as ‘flexible backbone’ design where softer constraints such as blueprints of hydrogen-bonding
connectivity [5] or 1D architectures [15] could define the structure of interest.

3D considerations For a rigid-body design problem, the structure for conditioning is a fixed set
of backbone coordinates X = {xi ∈ R3 : 1 ≤ i ≤ N}, where N is the number of positions1. We
desire a graph representation of the coordinates G(X ) that has two properties:

• Invariance. The features are invariant to rotations and translations.

• Locally informative. The edge features incident to vi due to its neighbors N(i, k),
i.e. {eij}j∈N(i,k), contain sufficient information to reconstruct all adjacent coordinates
{xj}j∈N(i,k) up to rigid-body motion.

While invariance is motivated by standard symmetry considerations, the second property is motivated
by limitations of current graph neural networks [36]. In these networks, updates to node features

1Here we consider a single representative coordinate per position when deriving edge features but may revisit
multiple atom types per position for features such as backbone angles or hydrogen bonds.
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Figure 2: Spatial features capture structural relationships across diverse folds. (A) The edge
features of our most detailed protein graph representation capture the relative distance, direction, and
orientation between two positions on the backbone. For scalability, all computation after an initially
dense Euclidean distance calculation (right, top), such as relative directions (right, bottom) and neural
steps, can be restricted to the k-Nearest Neighbors graph. (B) Example of topological variation in the
dataset. Protein chains in train, test, and validation are split by the sub-chain CATH [40] topologies,
which means that folds in each set will have distinct patterns of spatial connectivity.

vi depend only on the edge and node features adjacent to vi. However, typically, these features are
insufficient to reconstruct the relative neighborhood positions {xj}j∈N(i,k), so individual updates
cannot fully depend on the ‘local environment’. For example, when reasoning about the neighborhood
around coordinate xi, the pairwise distances Dia and Dib will be insufficient to determine if xa and
xb are on the same or opposite sides.

Relative spatial encodings We develop invariant and locally informative features by first augment-
ing the points xi with ‘orientations’ Oi that define a local coordinate system at each point (Figure 2).
We define these in terms of the backbone geometry as

Oi = [bi ni bi × ni] ,

where bi is the negative bisector of angle between the rays (xi−1 − xi) and (xi+1 − xi), and ni is a
unit vector normal to that plane. Formally, we have

ui =
xi − xi−1
||xi − xi−1||

, bi =
ui − ui+1

||ui − ui+1||
, ni =

ui × ui+1

||ui × ui+1||
.

Finally, we derive the spatial edge features e
(s)
ij from the rigid body transformation that relates

reference frame (xi,Oi) to reference frame (xj ,Oj). While this transformation has 6 degrees of
freedom, we decompose it into features for distance, direction, and orientation as

e
(s)
ij =

(
r (||xj − xi||) , OT

i

xj − xi
||xj − xi||

, q
(
OT
i Oj

))
.

Here the first vector is a distance encoding r(·) lifted into a radial basis2, the second vector is a
direction encoding that corresponds to the relative direction of xj in the reference frame of (xi,Oi),
and the third vector is an orientation encoding q(·) of the quaternion representation of the spatial
rotation matrix OT

i Oj . Quaternions represent 3D rotations as four-element vectors that can be
efficiently and reasonably compared by inner products [39].3

Relative positional encodings As in the original Transformer, we also represent distances between
residues in the sequence (rather than space) with positional embeddings e(p)ij . Specifically, we need
to represent the positioning of each neighbor j relative to the node under consideration i. Therefore,

2We used 16 Gaussian RBFs isotropically spaced from 0 to 20 Angstroms.
3We represent quaternions in terms of their vector of real coefficients.
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we obtain the position embedding as a sinusoidal function of the gap i− j. We retain the sign of the
distance i− j because protein sequences are generally asymmetric. These relative encodings contrast
the absolute encodings of the original Transformer, but are consistent with modifications described in
subsequent work [34].

Node and edge features Finally, we obtain an aggregate edge encoding vector eij by concatenating
the structural encodings e(s)ij with the positional encodings e(p)ij and then linearly transforming them to
have the same dimension as the model. We only include edges in the k-nearest neighbors graph of X ,
with k = 30 for all experiments. This k is generous, as typical definitions of residue-residue contacts
in proteins will result in < 20 contacts per residue. For node features, we compute the three dihedral
angles of the protein backbone (φi, ψi, ωi) and embed these on the 3-torus as {sin, cos}×(φi, ψi, ωi).

Flexible backbone features We also consider ’flexible backbone’ descriptions of 3D structure
based on topological binary edge features and coarse backbone geometry. We combine the relative
positional encodings with two binary edge features: contacts that indicate when the distance between
Cα residues at i and j are less than 8 Angstroms and hydrogen bonds which are directed and defined
by the electrostatic model of DSSP [41]. For coarse node features, we compute virtual dihedral
angles and bond angles between backbone Cα residues, interpret them as spherical coordinates, and
represent them as points on the unit sphere.

2.2 Structured Transformer

Autoregressive decomposition We decompose the distribution of a protein sequence given a 3D
structure as

p(s|x) =
∏
i

p(si|x, s<i),

where the conditional probability p(si|x, s<i) of amino acid si at position i is depends both on the
input structure x as well as on the preceding amino acids s<i = {s1, . . . si−1}.4 These conditionals
are parameterized in terms of two sub-networks: an encoder that computes refined node embeddings
from structure-based node features V(x) and edge features E(x), and a decoder that autoregressively
predicts letter si given the preceding sequence and structural embeddings from the encoder (Figure
1).

Encoder Our encoder module is designed as follows. A transformation Wh : Rdv 7→ Rd produces
initial embeddings hi = Wh(vi) from the node features vi pertaining to position i ∈ [N ] ,
{1, 2, . . . , N}.
Each layer of the encoder implements a multi-head self-attention component, where head ` ∈ [L] can
attend to a separate subspace of the embeddings via learned query, key and value transformations [7].
The queries are derived from the current embedding at node i while the keys and values from the
relational information rij = (hj , eij) at adjacent nodes j ∈ N(i, k). Specifically, W (`)

q maps hi to
query embeddings q(`)

i , W (`)
z maps pairs rij to key embeddings z(`)

ij for j ∈ N(i, k), and W
(`)
v maps

the same pairs rij to value embeddings v(`)
ij for each i ∈ [N ], ` ∈ [L]. Decoupling the mappings for

keys and values allows each to depend on different subspaces of the representation.

We compute the attention a(`)ij between query q
(`)
i and key z

(`)
ij as a function of their scaled inner

product:

a
(`)
ij =

exp(m
(`)
ij )∑

j′∈N(i,k)

exp(m
(`)
ij′ )

, where m
(`)
ij =

q
(`)
i

>
z
(`)
ij√

d
.

The results of each attention head l are collected as the weighted sum

h
(`)
i =

∑
j∈N(i,k)

a
(`)
ij v

(`)
ij ,

4We anticipate that alternative orderings for decoding the sequence may be favorable but leave this to future
work.
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Table 1: Null perplexities for common statistical models of proteins.

Null model Perplexity Conditioned on
Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein
Pfam HMM profiles 11.64 Specific position in a specific protein family

and then concatenated and transformed to give the update

∆hi = Wo Concat
(
h
(1)
i , . . . ,h

(L)
i

)
.

We update the embeddings with this residual, and alternate between these self-attention layers and
position-wise feedforward layers as in the original Transformer [7]. We stack multiple layers atop
each other, and thereby obtain continually refined embeddings as we traverse the layers bottom up.
The encoder yields the embeddings produced by the topmost layer as its output.

Decoder Our decoder module has the same structure as the encoder but with augmented relational
information rij that allows access to the preceding sequence elements s<i in a causally consistent
manner. In contrast to the encoder, where the keys and values are based on the relational information
rij = (hj , eij), the decoder can additionally access sequence elements sj as

r
(dec)
ij =

{
(h

(dec)
j , eij ,g(sj)) i > j

(h
(enc)
j , eij ,0) i ≤ j

.

Here h(dec)
j is the embedding of node j in the current layer of the decoder, h(enc)

j is the embedding of
node j in the final layer of the encoder, and g(sj) is a sequence embedding of amino acid sj at node
j. This concatenation and masking structure ensures that sequence information only flows to position
i from positions j < i, but still allows position i to attend to subsequent structural information unlike
the standard Transformer decoder.

We now demonstrate the merits of our approach via a detailed empirical analysis. We begin with the
experimental set up including our architecture, and description of the data used in our experiments.

3 Training

Architecture In all experiments, we used three layers of self-attention and position-wise feedfor-
ward modules for the encoder and decoder with a hidden dimension of 128.

Optimization We trained models using the learning rate schedule and initialization of the original
Transformer paper [7], a dropout rate of 10% [42], a label smoothing rate of 10%, and early stopping
based on validation perplexity. The unconditional language models did not include dropout or label
smoothing.

Dataset To evaluate the ability of our models to generalize across different protein folds, we
collected a dataset based on the CATH hierarchical classification of protein structure [40]. For all
domains in the CATH 4.2 40% non-redundant set of proteins, we obtained full chains up to length
500 and then randomly assigned their CATH topology classifications (CAT codes) to train, validation
and test sets at a targeted 80/10/10 split. Since each chain can contain multiple CAT codes, we first
removed any redundant entries from train and then from validation. Finally, we removed any chains
from the test set that had CAT overlap with train and removed chains from the validation set with
CAT overlap to train or test. This resulted in a dataset of 18024 chains in the training set, 608 chains
in the validation set, and 1120 chains in the test set. There is zero CAT overlap between these sets.

4 Results

A challenge in evaluating computational protein design methods is the degeneracy of the relationship
between protein structure and sequence. Many protein sequences may reasonably design the same
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Table 2: Per-residue perplexities for protein language modeling (lower is better). The protein
chains have been cluster-split by CATH topology, such that test includes only unseen 3D folds. While
a structure-conditioned language model can generalize in this structure-split setting, unconditional
language models struggle.

Test set Short Single chain All
Structure-conditioned models
Structured Transformer (ours) 8.54 9.03 6.85
SPIN2 [8] 12.11 12.61 -
Language models
LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 16.37 17.12
LSTM (h = 512) 15.98 16.38 17.13
Test set size 94 103 1120

3D structure [43], meaning that sequence similarity need not necessarily be high. At the same time,
single mutations may cause a protein to break or misfold, meaning that high sequence similarity
isn’t sufficient for a correct design. To deal with this, we will focus on three kinds of evaluation: (i)
likelihood-based, where we test the ability of the generative model to give high likelihood to held
out sequences, (ii) native sequence recovery, where we evaluate generated sequences vs the native
sequences of templates, and (iii) experimental comparison, where we compare the likelihoods of the
model to high-throughput data from a de novo protein design experiment.

We find that our model is able to attain considerably improved statistical performance in its likelihoods
while simultaneously providing more accurate and efficient sequence recovery.

4.1 Statistical comparison to likelihood-based models

Protein perplexities What kind of perplexities might be useful? To provide context, we first
present perplexities for some simple models of protein sequences in Table 1. The amino acid alphabet
and its natural frequencies upper-bound perplexity at 20 and ∼17.8, respectively. Random protein
sequences under these null models are unlikely to be functional without further selection [44]. First
order profiles of protein sequences such as those from the Pfam database [45], however, are widely
used for protein engineering. We found the average perplexity per letter of profiles in Pfam 32
(ignoring alignment uncertainty) to be ∼11.6. This suggests that even models with high perplexities
high as ∼ 11 have the potential to be useful for the space of functional protein sequences.

The importance of structure We found that there was a significant gap between unconditional
language models of protein sequences and models conditioned on structure. Remarkably, for a range
of structure-independent language models, the typical test perplexities are ∼16-17 (Table 2), which
were barely better than null letter frequencies (Table 1). We emphasize that the RNNs were not
broken and could still learn the training set in these capacity ranges. All structure-based models had
(unsurprisingly) considerably lower perplexities. In particular, our Structured Transformer model
attained a perplexity of ∼7 on the full test set. It seems that protein language models trained on one
subset of 3D folds (in our cluster-splitting procedure) generalize poorly to predict the sequences

Table 3: Ablation of graph features and model components. Test perplexities (lower is better).

Node features Edge features Aggregation Short Single chain All
Rigid backbone
Dihedrals Distances, Orientations Attention 8.54 9.03 6.85
Dihedrals Distances, Orientations PairMLP 8.33 8.86 6.55
Cα angles Distances, Orientations Attention 9.16 9.37 7.83
Dihedrals Distances Attention 9.11 9.63 7.87
Flexible backbone
Cα angles Contacts, Hydrogen bonds Attention 11.71 11.81 11.51
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Method Recovery (%) Speed (AA/s) CPU Speed (AA/s) GPU
Rosetta 3.10 fixbb 17.9 4.88× 10−1 N/A

Ours (T = 0.1) 27.6 2.22× 102 1.04× 104

(a) Single chain test set (103 proteins)

Method Recovery (%)
Rosetta, fixbb 1 33.1
Rosetta, fixbb 2 38.4

Ours (T = 0.1) 39.2

(b) Ollikainen benchmark (40 proteins)

Table 4: Improved reliability and speed compared to Rosetta. (a) On the ‘single chain’ test set,
our model more accurately recovers native sequences than Rosetta fixbb with greater speed (CPU:
single core of Intel Xeon Gold 5115, GPU: NVIDIA RTX 2080). This set includes NMR-based
structures for which Rosetta is known to not be robust [46]. (b) Our model also performs favorably
on a prior benchmark of 40 proteins. All results reported as median of average over 100 designs.

of unseen folds. We believe this possibility might be important to consider when training protein
language models for protein engineering and design.

Improvement over deep profile-based methods We also compared to a recent method SPIN2
that predicts, using deep neural networks, protein sequence profiles given protein structures [8].
Since SPIN2 is computationally intensive (minutes per protein for small proteins) and was trained
on complete proteins rather than chains, we evaluated it on two subsets of the full test set: a ‘Small’
subset of the test set containing chains up to length 100 and a ‘Single chain’ subset containing only
those models where the single chain accounted for the entire protein record in the Protein Data Bank.
Both subsets discarded any chains with structural gaps (chain break). We found that our Structured
Transformer model significantly improved upon the perplexities of SPIN2 (Table 2).

Graph representations and attention mechanisms The graph-based formulation of protein de-
sign can accommodate very different formulations of the problem depending on how structure is
represented by a graph. We tested different approaches for representing the protein including both
more ‘rigid’ design with precise geometric details, and ‘flexible’ topological design based on spatial
contacts and hydrogen bonding (Table 3). For the best perplexities, we found that using local orienta-
tion information was indeed important above simple distance measures. At the same time, even the
topological features were sufficient to obtain better perplexities than SPIN2 (Table 2), which uses
precise atomic details.

In addition to varying the graph features, we also experimented with an alternative aggregation
function from message passing neural networks [36].5 We found that a simple aggregation function
∆hi =

∑
j MLP(hj ,hj , eij) led to the best performance of all models, where MLP(·) is a two layer

perceptron that preserves the hidden dimension of the model. We speculate that this is due to potential
overfitting by the attention mechanism. Although this suggests room for future improvements, we
use multi-head self-attention throughout the remaining experiments.

4.2 Benchmarking protein redesign

Decoding strategies Generating protein sequence designs requires a sampling scheme for drawing
high-likelihood sequences from the model. While beam-search or top-k sampling [47] are commonly
used heuristics for decoding, we found that simple biased sampling from the temperature adjusted
distributions p(T )(s|x) =

∏
i

p(si|x,s<i)
1/T∑

a p(a|x,s<i)1/T
was sufficient for obtaining sequences with higher

likelihoods than native. We used a temperature of T = 0.1 selected from sequence recovery on
validation. For conditional redesign of a subset of positions in a protein, we speculate that the
likelihood calculation is sufficiently fast such that MCMC-based approaches such as Gibbs sampling
may be feasible.

5We thank one of our reviewers for this suggestion.
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Table 5: Structure-conditioned likelihoods correlate with mutation effects in de novo-designed
miniproteins. Shown are Pearson correlation coefficients (R, higher is better) between the log-
likelihoods of mutated sequences and high-throughput mutation effect data from a systematic design
of miniproteins [6]. Each design (column) includes 775 experimentally tested mutant protein
sequences.

Design ββαββ37 ββαββ1498 ββαββ1702 ββαββ1716 αββα779

Rigid backbone 0.47 0.45 0.12 0.47 0.57
Flexible backbone 0.50 0.44 0.17 0.40 0.56

Design αββα223 αββα726 αββα872 ααα134 ααα138

Rigid backbone 0.36 0.11 0.21 0.24 0.33
Flexible backbone 0.33 0.21 0.23 0.36 0.41

Comparison to Rosetta To evaluate the performance of our model at generating realistic protein
sequences, we performed two experiments that compare with Rosetta [30], a state-of-the-art frame-
work for computational protein design. We found that our model was more accurate and significantly
faster than Rosetta (Table 4). In the first, we used the latest version of Rosetta (3.10) to design
sequences for our ‘Single chain’ test set with the fixbb fixed-backbone design protocol and default
parameters (Table 4a). In the second, we also compared to a prior benchmark from members of
the Rosetta community [48, 49] across 40 diverse proteins. For this set of proteins, we re-split our
dataset to form new training and validation sets with no CAT overlap to the 40 templates for design.
Although this reduced the size of the training set from ∼18,000 to ∼10,000 chains, we found our
model to be both more accurate than and several orders of magnitude faster than Rosetta (Table 4b).

4.3 Unsupervised anomaly detection for experimental protein design

We can also measure what our structure-conditioned language model ‘knows’ about protein function
by comparing the likelihoods it assigns to functional and non-functional mutant proteins from recent
high-throughput design experiments. This may be seen as a kind of evolutionary unsupervised
anomaly detection [18]. We compare to a recent high-throughput design and mutagenesis experiment
in which several de novo designed mini-proteins were subject to systematic mutagenesis to all possible
point mutations [6]. We find that the log-likelihoods of our model non-trivially reflect mutational
preferences of designed proteins (Table 5). Importantly, we see that the performance is not dependent
on precise 3D geometric features (e.g. distances and orientations) but can also be realized with coarse
information (e.g. contacts, hydrogen bonds, and coarse backbone angles).

5 Conclusion

We introduced a new generative model for designing protein sequences based on a graph-
representation of their 3D structures6. Our model augments the traditional sequence-level self-
attention of Transformers [7] with graph-based, 3D structural encodings and is able to leverage the
spatial locality of dependencies in molecular structures for efficient computation. When evaluated on
unseen folds, our model achieves significantly improved perplexities over recent neural network-based
generative models and generates sequences with improved accuracy and speed over a state-of-art
program Rosetta.

Our framework suggests the possibility of being able to efficiently design and engineer protein
sequences with structurally-guided deep generative models, and underscores the central role of
modeling sparse, long-range dependencies in biological sequences.
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