
Generalization and Representational Limits of Graph Neural Networks

Vikas K. Garg 1 Stefanie Jegelka 1 Tommi Jaakkola 1

Abstract
We address two fundamental questions about
graph neural networks (GNNs). First, we prove
that several important graph properties, e.g.,
shortest/longest cycle, diameter, or certain mo-
tifs, cannot be computed by GNNs that rely en-
tirely on local information. Such GNNs include
the standard message passing models, and more
powerful variants that exploit local graph struc-
ture (e.g., via relative orientation of messages,
or local port ordering) to distinguish neighbors
of each node. Our treatment includes a novel
graph-theoretic formalism. Second, we provide
the first data dependent generalization bounds for
message passing GNNs. This analysis explicitly
accounts for the local permutation invariance of
GNNs. Our bounds are much tighter than exist-
ing VC-dimension based guarantees for GNNs,
and are comparable to Rademacher bounds for
recurrent neural networks.

1. Introduction
Graph neural networks (Scarselli et al., 2009; Gori et al.,
2005), in their various incarnations, have emerged as mod-
els of choice for embedding graph-structured data from
a diverse set of domains, including molecular structures,
knowledge graphs, biological networks, social networks,
and n-body problems (Duvenaud et al., 2015; Defferrard
et al., 2016; Battaglia et al., 2016; Zhang et al., 2018b; San-
toro et al., 2018; Yun et al., 2019; Jin et al., 2019).

The working of a graph neural network (GNN) on an in-
put graph, with a feature vector associated with each node,
can be outlined as follows. Layer ` of the GNN updates
the embedding of each node v by aggregating the feature
vectors, or node and/or edge embeddings, of v’s neighbors
from layer ` − 1 via a non-linear transformation, possi-

1CSAIL, MIT. Correspondence to: Vikas Garg
<vgarg@csail.mit.edu>, Stefanie Jegelka <stefje@mit.edu>,
Tommi Jaakkola <tommi@csail.mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

bly combining this with v’s embedding. The exact form
of the aggregate and combine steps varies across archi-
tectures, and empirical success has been demonstrated for
several variants. These include Graph Convolutional Net-
works (GCN) (Kipf and Welling, 2017), Graph Attention
Networks (GAT) (Veličković et al., 2018), Graph Isomor-
phism Network (GIN) (Xu et al., 2019), and GraphSAGE
(Hamilton et al., 2017). GNNs are known to have funda-
mental connections to message passing (Dai et al., 2016;
Gilmer et al., 2017), the Weisfeiler-Leman (WL) graph iso-
morphism test (Xu et al., 2019; Morris et al., 2019), and
local algorithms (Sato et al., 2019; Loukas, 2020).

In this work, we investigate the representational limitations
and generalization properties of GNNs. That is, we exam-
ine the performance of GNNs from a learning perspective:
(a) how well they can discriminate graphs that differ in a
specific graph property (represented by assigning different
labels to such graphs), and (b) how well they can predict
labels, e.g., a graph property, for unseen graphs. Specifi-
cally, we focus on classification: (1) a GNN with learnable
parameters embeds the nodes of each input graph, (2) the
node embeddings are combined into a single graph vector
via a readout function such as sum, average, or element-
wise maximum, and (3) a parameterized classifier either
makes a binary prediction on the resulting graph vector
(our setting for representation limits), or local binary pre-
dictions, one per node, the majority of which determines
the graph label (our setting for generalization bounds).

Our contributions. (1) We show that GNNs that generate
node embeddings solely based on local information can-
not distinguish some simple non-isomorphic graphs. As a
result, these GNNs cannot compute important graph prop-
erties such as longest or shortest cycle, diameter, etc. This
limitation holds for popular models such as GraphSAGE,
GCN, GIN, and GAT. Our impossibility results also ex-
tend to more powerful variants that provide to each node
information about the layout of its neighbors, e.g., via port
numbering, like CPNGNN (Sato et al., 2019), or geometric
information, like DimeNet (Klicpera et al., 2020).

We introduce a novel graph-theoretic formalism for analyz-
ing CPNGNNs, and our constructions provide insights that
may facilitate the design of more effective GNNs.

(2) We provide the first data dependent generalization

Generalization and Representational Limits of Graph Neural Networks

bounds for message passing GNNs. Our guarantees are
significantly tighter than the VC bounds established by
Scarselli et al. (2018) for a class of GNNs. Interestingly,
the dependence of our bounds on parameters is compara-
ble to Rademacher bounds for recurrent neural networks
(RNNs). Our results also hold for folding networks (Ham-
mer, 2001) that operate on tree-structured inputs.

Our generalization analysis specifically accounts for local
permutation invariance of the GNN aggregation function.
This relies on a specific sum form that extends to aggregat-
ing port-numbered messages, and therefore opens avenues
for analyzing generalization of CPNGNNs.

The first part of the paper is dedicated to analyzing what
GNNs cannot learn. The second part investigates how well
GNNs learn when they can: we establish new generaliza-
tion bounds for GNNs. We outline some key proof steps for
our results in the main text, and defer the detailed proofs to
the Supplementary material.

2. Related Work
GNNs continue to generate much interest from both the-
oretical and practical perspectives. An important theoreti-
cal focus has been on understanding the expressivity of ex-
isting architectures, and thereby introducing richer (invari-
ant) models that can generate more nuanced embeddings.
But, much less is known about the generalization ability of
GNNs. We briefly review some of these works.

Expressivity. Scarselli et al. (2009) extended the universal
approximation property of feed-forward networks (FFNs)
(Scarselli and Tsoi, 1998) to GNNs using the notion of
unfolding equivalence. Recurrent neural operations for
graphs were introduced with their associated kernel spaces
(Lei et al., 2017). Dai et al. (2016) performed a sequence
of mappings inspired by mean field and belief propaga-
tion procedures from graphical models, and Gilmer et al.
(2017) showed that common graph neural net models mod-
els may be studied as Message Passing Neural Networks
(MPNNs). It is known (Xu et al., 2019) that GNN variants
such as GCNs (Kipf and Welling, 2017) and GraphSAGE
(Hamilton et al., 2017) are no more discriminative than the
Weisfeiler-Leman (WL) test. In order to match the power
of the WL test, Xu et al. (2019) also proposed GINs. Show-
ing GNNs are not powerful enough to represent probabilis-
tic logic inference, Zhang et al. (2020) introduced Express-
GNN.

Among other works, Barceló et al. (2020) proved results
in the context of first order logic, and Dehmamy et al.
(2019) investigated GCNs through the lens of graph mo-
ments underscoring the importance of depth compared to
width in learning higher order moments. The inability of
some graph kernels to distinguish properties such as pla-

narity has also been established (Kriege et al., 2018; 2020).

Spatial, hierarchical, and higher order GNN variants have
also been explored. Notably, Sato et al. (2019) exploited a
local port ordering of nodes to introduce the Consistent Port
Numbering GNN (CPNGNN), which they proved to be
strictly more powerful than WL. They and (Loukas, 2020)
also established connections to distributed local algorithms.
Higher order generalizations have been studied by (Morris
et al., 2019; Murphy et al., 2019; Maron et al., 2019c); in
particular, Maron et al. (2019a) introduced models that are
more powerful than WL. Hella et al. (2015) investigated
models weaker than port numbering. Several other works
exploit spatial information to obtain more nuanced embed-
dings (Ying et al., 2018; You et al., 2019; Ingraham et al.,
2019; Klicpera et al., 2020; Chen et al., 2019). Xu et al.
(2018) learned locally adaptive structure-aware representa-
tions by adaptively aggregating information over extended
neighborhoods. Veličković et al. (2018) introduced GATs
that obviate specifying the graph structure in advance.

Concurrent to our work, Chen et al. (2020b) established re-
sults regarding the ability of MPNNs and Invariant Graph
Networks (IGNs) to count substructures in graphs. Sub-
graph counts and related properties have also been stud-
ied in (Arvind et al., 2020). Sato et al. (2020) advocated
adding random features to nodes in order to better approx-
imate some problems. We refer the reader to (Sato, 2020)
for a survey about expressivity of GNNs.

Invariance. An important consideration in the design of
GNNs is their ability to produce output embeddings that
are equivariant or permutation-invariant to the input fea-
ture vectors. Maron et al. (2019b) constructed permutation-
invariant and equivariant linear layers, and showed that
their model can approximate any GNN that can be cast as a
MPNN in the framework of (Gilmer et al., 2017). Murphy
et al. (2019) constructed new permutation-invariant func-
tions for variable-size inputs, and suggested some approx-
imations. Maron et al. (2019c); Keriven and Peyré (2019)
proved universality theorems for a specific class of invari-
ant and equivariant networks, respectively.

Generalization. Several works have established general-
ization guarantees for FFNs (Bartlett et al., 2017; Golowich
et al., 2018; Neyshabur et al., 2018; Zhang et al., 2018a)
and RNNs (Chen et al., 2020a; Allen-Zhu and Li, 2019).
GNNs differ in some key aspects from those models. Un-
like RNNs that process sequences, GNNs operate on graph-
structured data: sharing of recurrent weights takes place
along both the depth and width of a GNN. Unlike FFNs,
GNNs deal with irregular local structure. Moreover, at
each node, GNNs typically employ permutation-invariant
aggregations, in contrast to global permutation invariance
(Sokolic et al., 2017). Scarselli et al. (2018) proved VC-
dimension bounds for GNNs on a restricted class of graphs

Generalization and Representational Limits of Graph Neural Networks

that have their label determined by a single designated
node. Verma and Zhang (2019) showed stability bounds
for single-layer GCNs in a semi-supervised setting.

Du et al. (2019) introduced Graph Neural Tangent Ker-
nels that are equivalent to infinitely wide multi-layer GNNs
trained by gradient descent, and established generalization
bounds in their large width setting. Xu et al. (2020) stud-
ied how the alignment of network architecture and target
reasoning tasks affects generalization.

3. Preliminaries
We define the shorthand [c] = {1, 2, . . . , c}. For a matrix
W , we denote its Frobenius norm by ||W ||F and spectral
norm by ||W ||2. We also denote the Euclidean norm of a
vector v by ||v||2.

In a popular class of GNNs, which we call Locally Un-
ordered GNNs (LU-GNNs), the embedding of each node
is updated using messages from its neighbors but with-
out using any spatial information (e.g., the relative ori-
entation of the neighbors). This class subsumes variants
such as GraphSAGE (Hamilton et al., 2017), GCN (Kipf
and Welling, 2017), GIN (Xu et al., 2019), and GAT
(Veličković et al., 2018). We can summarize the updated
embedding h(`)

v for node v at layer ` in many LU-GNNs by
an aggregation and combine operation:

h̃(`−1)
v = AGG{h(`−1)

u |u ∈ N(v)},
h(`)
v = COMBINE{h(`−1)

v , h̃(`−1)
v } ,

where N(v) denotes the set of neighbors of v, and func-
tions AGG and COMBINE are sometimes folded into a
single aggregation update. One common implementation,
called mean field embedding (Dai et al., 2016), uses the
input features xv of node v, in place of h(`−1)

v in the COM-
BINE step above; we will use an instance of this variant for
generalization analysis. AGG is typically a permutation-
invariant function (e.g., sum).

Recently, two subtle variants have been proposed that ex-
ploit local structure to treat the neighbors differently. One
of these, CPNGNN (Sato et al., 2019), is based on a con-
sistent port numbering that numbers the neighbors of each
node v from 1 . . . degree(v). Equivalently, a port num-
bering (or port ordering) function p associates with each
edge (u, v) a pair of numbers (i, j), i ∈ [degree(u)] and
j ∈ [degree(v)] such that p(u, i) = (v, j), i.e., u is con-
nected to v via port i. Thus, u can tell any neighbor from
the others based on its ports. We say p is consistent if
p(p(u, i)) = (u, i) for all (u, i). Multiple consistent or-
derings are feasible; CPNGNN arbitrarily fixes one before
processing the input graph.

When computing node embeddings, the embedding of node

v is updated by processing the information from its neigh-
bors as an ordered set, ordered by the port numbering, i.e.,
the aggregation function is generally not permutation in-
variant. In addition to a neighbor node u’s current embed-
ding, v receives the port number that connects u to v.

Another model, DimeNet (Klicpera et al., 2020), is a direc-
tional message passing algorithm introduced in the context
of molecular graphs. Specifically, DimeNet embeds atoms
via a set of messages (i.e., edge embeddings) and lever-
ages the directional information by transforming messages
based on the angle between them. For each node v, the
embedding for an incoming message from neighbor u is
computed as

m(`)
uv = f1(m(`−1)

uv , m̃(`−1)
uv), where (1)

m̃(`−1)
uv =

∑
w∈N(u)\{v}

f2(m(`−1)
wu , e(uv), a(wu,uv))) ,

and e(uv) is a representation of the distance from u to v,
a(wu,uv) combines ∠wuv with the distance from w to u,
and f1 and f2 are update functions similar to AGG and
COMBINE. The node embedding h(`)

v is simply the sum of
message embeddings m(`)

uv .

For the purposes of this paper, message passing GNNs con-
sist of LU-GNNs, CPNGNN, and DimeNet. We establish
representational limits of message passing GNNs with re-
spect to several important graph properties in this paper.
Namely, (a) girth (length of the shortest cycle), (b) circum-
ference (length of the longest cycle), (c) diameter (maxi-
mum distance, in terms of shortest path, between any pair
of nodes in the graph), (d) radius (minimum node eccen-
tricity, where eccentricity of a node u is defined as the max-
imum distance from u to other vertices), (e) conjoint cycle
(two cycles that share an edge), (f) total number of cycles,
and (g) k-clique (a subgraph of at least k ≥ 3 vertices such
that each vertex in the subgraph is connected by an edge to
any other vertex in the subgraph).

We will appeal to the following definition to formalize
when GNNs cannot distinguish non-isomorphic graphs,
that is, when two distinct graphs are represented with the
same embedding regardless of GNN parameters.

Definition 1. For a given graph property P and readout
function f , we say that a GNN Q decides P , if for any pair
of graphs (G1, G2) such that G1 and G2 differ on P , we
have f(gQ(G1)) 6= f(gQ(G2)). Here, gQ(G) denotes the
collection of embeddings of nodes inGwhenG is provided
as input to Q. By extension, a class Q of GNNs cannot
decide P if there does not exist any Q ∈ Q that decides P .

We can compute the embedding of any node v using a lo-
cal computation tree, rooted at v and obtained by unrolling

Generalization and Representational Limits of Graph Neural Networks

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
2

2
2

1 1

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

2
2 1

1

1

G

Figure 1: Construction for Proposition 1. Graph G con-
sists of two triangles that differ in their ports (shown next
to nodes on each edge) but are otherwise identical, whereas
G consists of a 6-cycle. LU-GNNs do not use ports, and
each node treats all its messages equally. Thus, the neigh-
borhood of each node X1, where X ∈ {B,C,D} in G,
is indistinguishable from that of X1 in G (so X1 and X1

have identical embeddings), and similarly X2 and X2 can-
not be told apart. So, LU-GNN with permutation-invariant
readout fails to separate G and G. In contrast, CPNGNN
can exploit that port 2 of D2 connects it to B2, whereas the
corresponding node D2 connects to B1 via port 1.

the neighborhood aggregations. Specifically, the depth of
this tree is L for a GNN with L layers: the children of any
node u in the tree are the nodes in N(u). The flow of infor-
mation is from the leaves all the way up to the root: each
leaf is associated with a node feature vector and the em-
bedding of v is simply the result of performing aggregation
and combine operations at the root using the embeddings
from the subtrees recursively.

4. Representational limits of GNNs
We now sketch novel constructions to illustrate the lim-
its of LU-GNNs, CPNGNNs, and DimeNets. First, we
show that in some cases, CPNGNNs can be more discrimi-
native than LU-GNNs, depending on the port numbering.
Then, we demonstrate that still, LU-GNNs, CPNGNNs,
and DimeNets cannot compute certain graph properties.
Our proofs build examples of graphs that (1) differ in im-
portant graph properties, but that (2) these models cannot
distinguish. As a consequence, these models will not be
able to compute such graph properties in general.

To formalize this framework, we introduce a condition of
local isomorphism for a pair of graphs. This condition im-
plies that CPNGNNs and LU-GNNs cannot distinguish the
two graphs. A similar framework applies to DimeNet. Fi-
nally, our insights point to a new GNN variant that lever-
ages additional geometric features to circumvent our con-
structions for CPNGNNs and DimeNets.

Limitations of LU-GNNs.

Proposition 1. There exist non-isomorphic graphs that
LU-GNNs cannot distinguish, but CPNGNN can distin-
guish with some consistent port ordering.

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
1

2
1

2 2

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

1
2 2

1

1

G

Figure 2: Construction for Proposition 2. Graphs G and
G are as in Fig. 1, but have been assigned a different consis-
tent port numbering. CPNGNN can no longer distinguish
the graphs with permutation-invariant readout since each
node labeled with X1 in G, where X ∈ {B,C,D} has
a corresponding node labeled X1 in G with identical fea-
tures and indistinguishable port-numbered neighborhoods
(similarly for X2). Thus, port numbering matters.

Fig. 1 shows two graphs, G (consisting of two triangles)
and G. Nodes with the same color (or, equivalently, same
uppercase symbol without the subscripts and underline)
have identical feature vectors. The port numbers for each
node are shown next to the node on the respective edges;
the numbering is consistent. Moreover, for LU-GNNs,
edges on nodes with same color have identical edge fea-
ture vectors; for CPNGNNs, edge features are the same if,
in addition, the local ports for nodes that have the same
color are identical. As explained in Fig. 1, CPNGNN can
distinguish between the two graphs by exploiting the port
information. However, LU-GNNs do not leverage such in-
formation, and fail to find distinct representations.

We note that Theorem 2 in Sato et al. (2019) also estab-
lishes the discrepancy in expressivity of CPNGNNs and
LU-GNNs, by exploiting a connection between GNNs and
local algorithms from distributed computing. In contrast to
their approach, our construction in Proposition 1 may also
be invoked to argue that DimeNets are strictly more expres-
sive than LU-GNNs.

Limitations of CPNGNNs. Port orderings can help CP-
NGNNs distinguish graphs that LU-GNNs cannot. But,
port orderings are not unique, and not all orderings distin-
guish the same set of graphs.

Proposition 2. There exist pairs of non-isomorphic graphs
and consistent port numberings p and q such that CPNGNN
can distinguish the graphs with p but not q.

Fig. 2 shows the same pair of graphs G and G, but with a
different ordering. CPNGNN can no longer distinguish the
two non-isomorphic graphs with this new ordering. Thus,
it may be useful to try multiple random orderings, or even
parameterize and learn one along with GNN parameters.

Henceforth, we assume that an ordering is given with the
input graph. We now demonstrate the inability of CP-
NGNNs to decide several graph properties. Toward this
goal, note that in Fig. 1 we constructed an explicit bijection

Generalization and Representational Limits of Graph Neural Networks

A1 B1

C1D1

A2 B2

C2D2

A1 B1 C1 D1

D2 C2 B2 A2

1 1

2
2

11
2
2

1 1

2
2

11
2
2

1 1 2 2 1 1

1 1 2 2 1 1
2
2

2
2S4 S4 S8

A1

B1

C1

D1

A2

B2

C2

D2

1
1

1
1

2
2

2
21

1
1

1

2
2

2
2

3 3 3 3

A1

B1C1D1

1
1

11 22
2

2

G1 G1

A2

D2C2B2

1
1

11 22
2

2
3

3

3

3G2

Figure 3: Constructions for Proposition 4. The graph with two copies of S4 is indistinguishable from S8 despite having
different girth, circumference, diameter, radius, and total number of cycles. This follows since for eachX ∈ {A,B,C,D},
nodes X1 and X1 have identical feature vectors as well as identical port-ordered neighborhoods (similarly for nodes X2

andX2). Likewise, the graph with two copies of G1, each having a conjoint cycle, cannot be distinguished from G2 as the
graphs are port-locally isomorphic. A simple modification extends the result to k-clique (described in the Supplementary).
The constructions hold for LU-GNNs as well (by simply ignoring the port numbers). Note that, in contrast, DimeNet is able
to distinguish the graphs in these constructions, e.g., using that ∠A1B1C1 is different from the corresponding ∠A1B1C1.

between nodes in G and G to reason about permutation-
invariant readouts. We now introduce a graph-theoretic for-
malism for CPNGNNs that obviates the need for an explicit
bijection and is easier to check.

We define a pair of surjective mappings between two
graphs in question, and impose additional conditions that
guarantee the existence of a bijection. This bijection im-
plies that corresponding nodes in the graphs receive identi-
cal embeddings, and hence both graphs obtain the same set
of node embeddings, making them indistinguishable.

The main idea is that a node v1 in graphG1 is locally indis-
tinguishable from v2 in G2 if (1) the node features agree:
xv1 = xv2 , and (2) the port-ordered local neighborhoods
of v1 and v2 cannot be told apart. That is, if port i of v1

connects to port k of v, then a locality preserving bijec-
tion connects the nodes corresponding to images of v1 and
v via the same ports. In the notation here, we include the
port numbers (i, j) associated with each edge (u, v) in the
edge notation, i.e., ((u, i), (v, j)).

Definition 2. We say that graph G1(V1, E1, p) port-covers
G2(V2, E2, q) if the following conditions are satisfied: (a)
there exists a surjection f : V1 7→ V2 such that xv = xf(v)

for all v ∈ V1, (b) p and q are consistent, and (c) for all
v1 ∈ V1 there exists a local bijection gv1 such that for all
i ∈ [degree(v1)] and (v, k) = p(vi, i), we have

gv1(((v1, i), (v, k))) = (q(f(v), k), q(f(v1), i)) ,

such that q(f(v), k) = (f(v1), i); q(f(v1), i) = (f(v), k);
((v1, i), (v, k)) ∈ E1; and (q(f(v), k), q(f(v1), i)) ∈ E2.
Moreover, we say thatG1(V1, E1, p) andG2(V2, E2, q) are
port-locally isomorphic if they both cover each other.

Definition 2 does not preclude the possibility that f maps
multiple nodes in G1 to the same node in G2, or the other
way round. Hence, the claim that G1 and G2 cannot be
distinguished by CPNGNN might not hold. Fortunately,
the following result comes to our rescue.

Proposition 3. If G1(V1, E1, p) and G2(V2, E2, q) are
port-locally isomorphic, there exists a bijection h that sat-
isfies (a)-(c) in Definition 2 (with h replacing f). As a re-
sult, CPNGNNs produce identical embeddings for the cor-
responding nodes inG1 andG2, so CPNGNNs cannot sep-
arate G1 and G2 with permutation-invariant readout.

We may characterize port-local isomorphism in alterna-
tive ways, e.g., in terms of an identical multiset of port-
numbered computation trees (i.e., computation trees with
associated port numbers on edges). Our formalism allows
us to construct an explicit port-cover bijection from only a
pair of surjective mappings, one in each direction (see the
proof of Proposition 3 for details). Thus, it provides insight
into the role played by locally isomorphic neighborhoods in
unraveling a port-cover bijection whenever it exists.

We now proceed to establish that CPNGNNs are limited in
that they fail to decide important graph properties. We can
invoke conditions of Proposition 3, or define a bijection, to
show the following result (see Fig. 3 for our constructions).
Proposition 4. There exist consistent port orderings such
that CPNGNNs with permutation-invariant readout cannot
decide several graph properties: girth, circumference, di-
ameter, radius, conjoint cycle, total number of cycles, and
k-clique.

Clearly, these impossibility results apply to LU-GNNs as
well (see Fig. 3). However, as described in Fig. 3, our con-
structions for CPNGNNs do not work for DimeNets. This
immediately leads us to the question whether DimeNets are
expressive enough to decide the graph properties.

Limitations of DimeNets. Unfortunately, as we show in
Fig. 4, there exists an example of two graphs that differ in
several of these properties but cannot be distinguished by
DimeNets.
Proposition 5. DimeNet with permutation-invariant read-
out cannot decide several graph properties: girth, circum-
ference, diameter, radius, or total number of cycles.

Generalization and Representational Limits of Graph Neural Networks

In fact, as we argue in Fig. 4, augmenting DimeNet with
port-numbering would still not be sufficient. Therefore,
a natural question that arises is whether we can obtain a
more expressive model than both CPNGNN and DimeNet.
Leveraging insights from our constructions, we now intro-
duce one such variant, H-DCPN (short for Hierarchical Di-
rectional Message Passing Consistent Port Numbering Net-
works), that generalizes both CPNGNN and DimeNet.

More powerful GNNs. The main idea is to augment
DimeNet not just with port ordering, but also additional
spatial information. Observe that the construction in Fig. 4
will fail if for each edge (u, v), we additionally model
the set of angles αwuvz between planes P(w, u, v) and
P(u, v, z) due to neighbors w of u and neighbors z of v.
Similarly, we could use the distances between these planes.
We denote by Φuv all such features derived from to these
planes. Denote by m(`)

uv the message from neighbor u of v
at time `, and by m(`)

uv = f(m
(`)
uv ,Φuv) a refined message

that encapsulates the effect of geometric features.

We can incorporate salient aspects of CPNGNN as well.
Specifically, we first fix a consistent port numbering, as in
CPNGNN. Denote the degree of v by d(v). Let cv(j) be
the neighbor of v that connects to port j of v via port tj,v ,
for j ∈ [d(v)]. We suggest to update the embedding of v as

h(`)
v = f(h(`−1)

v ,m
(`−1)
cv(1)v, t1,v, . . . ,m

(`−1)
cv(d(v))v, td(v),v) ,

where f can potentially take into account the ordering of
its arguments. The update resembles CPNGNN when we
define m(`)

uv = h
(`)
u ; and DimeNet when f ignores h(`−1)

v

(and ports) and we define m(`)
uv using (1) in section 3. H-

DCPN derives its additional discriminative power from the
features Φuv encoded in messages m(`)

uv . For instance, the
nodes labeled A1, B1, C1, D1 lie on the same plane in G3.
In contrast, the plane defined by nodes with labels A1, B1,
C1 in G4 is orthogonal to that defined by nodes with labels
D2, A1, B1; thus allowing H-DCPN to distinguish the node
labeled A1 from the node labeled A1 (Fig. 4).

5. Generalization bounds for GNNs
Next, we study the generalization ability of GNNs via
Rademacher bounds, focusing on binary classification. We
generalize the previous results on the complexity of feed-
forward networks (Bartlett et al., 2017; Neyshabur et al.,
2018) and RNNs (Chen et al., 2020a) in mainly three ways.
First, we process graphs, unlike sequences in RNNs, or
instances restricted to the input layer in feedforward net-
works. In particular, we show that the complexity of GNNs
that combine predictions from individual nodes may be an-
alyzed by focusing on local node-wise computation trees.
Second, we share weights across all nodes in these com-
putation trees (i.e., both along the depth and the width of

D1

A1

C1

B1

D2

A2

C2

B2

D2

A1

C2

B1

A2B2

D1C1

G3 G3 G4

Figure 4: Construction for Proposition 5. DimeNet can-
not discriminate between G4 and the other graph that con-
sists of two identical copies of G3, since the corresponding
local angles and distances are identical in the two graphs.
Moreover, since G3 and G4 are obtained by overlaying S4

and S8 (from Fig. 3), respectively on a cube, augmenting
DimeNet with the port-numbering scheme from S4 and S8

will still not be sufficient to distinguish the graphs.

the tree). Third, we model local permutation-invariance in
the aggregation function at each node in the tree. Curi-
ously, our resulting bounds are comparable to Rademacher
bounds for RNNs.

We consider locally permutation invariant GNNs, where in
each layer `, the embedding h`v ∈ Rr of node v of a given
input graph is updated by aggregating the embeddings of
its neighbors, u ∈ N(v), via an aggregation function ρ :
Rr → Rr. Different types of updates are possible; we
focus on a mean field update (Dai et al., 2016; Jin et al.,
2018; 2019)

h`v = φ
(
W1xv +W2ρ(

∑
u∈N(v)

g(h`−1
u))

)
, (2)

where φ and g are nonlinear transformations and xv ∈ Rr
is the feature vector for v. We assume ρ(0) = 0, ||xv||2 ≤
Bx for all v, ||φ(x)||∞ ≤ b <∞ for all x ∈ Rr, φ(0) = 0,
and g(0) = 0. One possible choice of φ is a squashing
function such as tanh. We also assume that φ, ρ, and g
have Lipschitz constants Cφ, Cρ, and Cg respectively; and
that W1 and W2 have bounded norms: ||W1||2 ≤ B1,
||W2||2 ≤ B2. The weights W1,W2 and functions φ, ρ, g
are shared across nodes and layers.

The graph label is generated by a readout function that ag-
gregates node embeddings of the final layer L. Here, we
assume this function applies a local binary classifier of the
form fc(h

L
v) = ψ(β>hLv) from a family Fβ parameterized

by β such that ||β||2 ≤ Bβ , with sigmoid function ψ, to
each node representation hLv , and then averages the binary
predictions of all nodes, i.e., f(G) =

∑
v∈V fc(h

L
v). We

predict label 1 if f(G) > 0.5, else 0. Such networks imple-
ment permutation invariance locally in each neighborhood,
and globally when aggregating the node embeddings. This
invariance will play an important role in the analysis.

Let f(G) be the output of the entire GNN for input graphG
with true label y ∈ {0, 1}. Our loss is a margin loss applied

Generalization and Representational Limits of Graph Neural Networks

to the difference in probability between true and incorrect
label:

τ(f(G), y) = y(2f(G)− 1) + (1− y)(1− 2f(G)),

with τ(f(G), y) < 0 if and only if there is a classification
error. The margin loss is then, with a = −τ(f(G), y) and
indicator function 1[·]:

lossγ(a) = 1[a > 0] + (1 + a/γ)1[a ∈ [−γ, 0]]. (3)

A standard result in learning theory relates the population
risk P[τ(f(G), y) ≤ 0] to the empirical risk for training
examples {(Gj , yj)}mj=1,

R̂γ(f) =
1

m

m∑
j=1

lossγ(−τ(f(Gj), yj)) (4)

and to the empirical Rademacher complexity R̂S(Jγ) of
the class Jγ of functions concatenating the loss with the
GNN prediction function f .

Lemma 1 (Mohri et al. (2012)). For any margin γ > 0,
any prediction function f in a classF andJγ ∈ {(G, y) 7→
lossγ(−τ(f(G), y))|f ∈ F}, given m samples (Gj , yj) ∼
D, with probability 1 − δ, the population risk for D and f
is bounded as

P(τ(f(G), y) ≤ 0) ≤ R̂γ(f) + 2R̂G(Jγ) + 3

√
log(2/δ)

2m .

Hence, we need to bound the empirical Rademacher com-
plexity R̂G(Jγ) for GNNs. We do this in two steps: (1) we
show that it is sufficient to bound the Rademacher complex-
ity of local node-wise computation trees; (2) we bound the
complexity for a single tree via recursive spectral bounds,
taking into account permutation invariance.

5.1. From Graphs to Trees

We begin by relating the Rademacher complexity of Jγ
to the complexity of each node classification. The node
embedding hLv is equal to a function applied to the local
computation tree of depth L, rooted at v, that we obtain
when unrolling the L neighborhood aggregations. That is,
the tree represents the structured L-hop neighborhood of v,
where the children of any node u in the tree are the nodes
in N(u). Hence, if t is the tree at v, we may write, with
a slight abuse of notation, fc(hLv) = fc(t; Θ), where Θ
represents the parameters W1,W2 of the embedding and β
of the node classifier.

With this notation, we rewrite f(G; Θ) as an expectation
over functions applied to trees. Let T1, . . . , Tn be the set
of all possible computation trees of depth L, and wi(G) the

number of times Ti occurs in G. Then, note that we may
write f(G; Θ) as the sum

n∑
i=1

wi(G)∑n
`=1 w`(G)︸ ︷︷ ︸
= w′

i(G)

fc(Ti; Θ) = ET∼w′(G)fc(T ; Θ). (5)

This perspective implies a key insight of our analysis: the
complexity of the GNN may be bounded by the complexity
of the computation trees.

Proposition 6. Let G = {G1, . . . , Gm} be a set of i.i.d.
graphs, and let T = {t1, . . . , tm} be such that tj ∼
w′(Gj), j ∈ [m]. Denote by R̂G and R̂T the empirical
Rademacher complexity of GNNs for graphs G and trees
T , respectively. Then R̂G ≤ Et1,...,tmR̂T .

Therefore, to apply Lemma 1, it is sufficient to bound the
Rademacher complexity of classifying single node-wise
computation trees. Before addressing this next step in de-
tail, we state and discuss our main result for this section.

5.2. Generalization Bound for GNNs

We define the percolation complexity of our GNNs to be
the product C , CρCgCφB2 of Lipschitz constants and
weight norm bounds. We now bound R̂T (Jγ), when each
tree tj ∈ T has a branching factor (i.e., maximum number
of neighbors for any node) at most d, and Jγ maps each
(t, y) pair to lossγ(−p(fc(t; Θ), y)).

Proposition 7. The empirical Rademacher complexity of
Jγ with respect to T is

R̂T (Jγ) ≤ 4

γm
+

24rBβZ

γ
√
m

√
3 logQ , where

Q = 24Bβ
√
mmax{Z,M

√
rmax{BxB1, RB2}},

M = Cφ
(Cd)

L − 1

Cd− 1
, Z = CφB1Bx + CφB2R ,

R ≤ CρCgdmin
{
b
√
r,B1BxM

}
.

Note that we do not need to prespecify B1 and B2: we can
simply take these values to be the spectral norm, respec-
tively, of the learned weights W1 and W2. Before proceed-
ing with the proof, we discuss some important implications
of this result in the wake of Lemma 1 and Proposition 6.

Comparison with RNN. Table 1 summarizes the depen-
dence of our generalization error on the embedding di-
mension r, branching factor d , depth L and sample size
m for different C up to log factors (denoted by notation
Õ). Importantly, our bounds increase mostly linearly, at
most with power 1.5, as a function of r, d and L. Cu-
riously, these dependencies are analogous to bounds for

Generalization and Representational Limits of Graph Neural Networks

C GNN (ours) RNN (Chen et al. (2020a))

< 1/d Õ
(

rd√
mγ

)
Õ
(

r√
mγ

)
= 1/d Õ

(
rdL√
mγ

)
Õ
(

rL√
mγ

)
> 1/d Õ

(
rd
√
rL√
mγ

)
Õ

(
r
√
rL√
mγ

)

Table 1: Our generalization bounds for GNNs are compa-
rable to those for RNNs.

RNNs with sequence of lengthL (Chen et al., 2020a), when
the spectral norm of recurrent weights in RNN plays the
role of C. The additional dependence on the branching fac-
tor d is due to processing trees in contrast to sequences in
RNNs. Comparison with VC-bounds for GNNs. Scarselli
et al. (2018) established generalization bounds based on
VC-dimension. These bounds, for tanh and logistic sig-
moid activations, depend with fourth-order on the number
of hidden units H , and quadratically on r and the maxi-
mum number of nodes N in any input graph. Note that N
is at least d, and possibly much larger than d. Since H = r
in our setting, this amounts to having the VC-dimension
scale as O(r6N2), and consequently, generalization error
as Õ(r3N/

√
m). Thus, our generalization bounds are sig-

nificantly tighter even if L = O(r).

Local permutation invariance. Previous works fo-
cused on permutation-invariance at a global level (San-
nai and Imaizumi (2019); Sokolic et al. (2017)). In con-
trast, GNNs are a composition of permutation-invariant
transformations, applied to the neighborhoods of single
nodes. We exploit local permutation-invariance via sum-
decomposability. In the absence of local permutation-
invariance, we would need to address the ordering of mes-
sages at each node and the complexity would depend on the
worst case ordering.

Extension to other GNN variants. Note that we define
Cg and Cρ with respect to the aggregation function (e.g.,
unweighted sum or mean) that acts prior to transformation
by W2. This allows us to disentangle the role of shared
weights from aggregation. Our analysis easily extends to
the setting where messages are weighted (e.g., based on the
edge embeddings) prior to aggregation. While we consid-
ered message passing with mean field updates (Dai et al.,
2016), other updates, such as embedded loopy belief prop-
agation, may be analyzed similarly in our framework.

Analysis. Our proof proceeds in multiple steps. We first
quantify how changing shared weights affects the embed-
ding of the root node of a fixed tree. To do so, we recur-
sively bound the effect on each subtree of the root by the
maximum effect across these subtrees. Since both the non-

linear activation function and the permutation-invariant ag-
gregation function are Lipschitz-continuous, and the fea-
ture vector at the root and the shared weights have bounded
norm, the embedding at the root of the tree adapts (i.e.,
changes gradually in a controlled way) to the embeddings
from the subtrees. We then quantify the effect of changing
not only the shared weights but also changing the classi-
fier parameters. Since the classifier parameters are cho-
sen from a bounded norm family, we can bound the change
in prediction probability. This allows us to use a covering
number argument to approximate the predictions, and thus
bound the empirical Rademacher complexity via Dudley’s
entropy integral.

Fix the feature vectors for the computation tree of depth L
with degree of each internal node equal to d. Let the feature
vector associated with the root (assumed to be at level L) of
the tree be given by xL. We denote the feature vector asso-
ciated with node j at level ` ∈ [L− 1] , {1, 2, . . . , L− 1}
by x`,j . Denote the embedding produced by the subtree
rooted at node j on level ` ∈ [L − 1] by T`,j(Wa,Wb)
when Wa and Wb are the parameters of the model. Con-
sider two sets of parameters {W1,W2} and {W ′1,W ′2}. We
will denote the embedding vector produced by the GNN
after processing the entire tree by TL(W1,W2) as a short-
hand for TL,1(W1,W2). Denote the set of subtrees of node
with feature vector x by C(x).

We first quantify the changes in the root embedding when
changing the shared weight parameters.
Lemma 2. The l2-distance between embedding vectors
produced by (W1,W2) and (W ′1,W

′
2) after they process

the tree from the leaf level to the root can be bounded re-
cursively as

∆L , ||TL(W1,W2)− TL(W ′1,W
′
2) ||2

≤ CφBx ||(W1 −W ′1)||2 + Cd max
j∈C(xL)

∆L−1,j

+ Cφ||(W2 −W ′2)R(W1,W2, xL)||2 ,

where

R(W1,W2, xL) = ρ
(∑
j∈C(xL)

g(TL−1,j(W1,W2))
)

is the permutation-invariant aggregation of the embeddings
of the subtrees rooted at level L− 1 under (W1,W2).

We therefore proceed to bounding ||R(W1,W2, xL)||2.
Lemma 3.

||R(W1,W2, xL)||2

≤ CρCgdmin

{
b
√
r, CφB1Bx

(Cd)L − 1

Cd− 1

}
Next, we quantify how changing the shared weights and
classifier parameters affects the probability of outputting
tree label 1.

Generalization and Representational Limits of Graph Neural Networks

Lemma 4. The change in probability ΛL due to change in
parameters from (W1,W2, β) to (W ′1,W

′
2, β
′) is

ΛL = |ψ(β>TL(W1,W2))− ψ(β′
>
TL(W ′1,W

′
2))|

≤ ||β − β′||2Z +Bβ∆L ,

where Z is an upper bound on ||TL(W1,W2)||2. Moreover,
we can bound ∆L non-recursively:

∆L ≤ MBx ||W1 −W ′1||2
+ M ||R(W1,W2, xL)||2||W2 −W ′2||2 .

Lemma 4 allows us to ensure that ΛL is small via a suffi-
ciently large covering. Specifically, the change in proba-
bility ΛL can be bounded by ε, using a covering of size P ,
where P depends on ε. Here, logP grows as O (log (1/ε))
for sufficiently small values of ε. The stability of prediction
translates into good generalization guarantees.
Lemma 5. The change in probability ΛL can be bounded
by ε using a covering of size P , where logP is at most

3r2 log

(
1 +

6Bβ max{Z,M
√
rmax{BxB1, RB2}}
ε

)
.

Moreover, if the cover parameter (radius)

ε < 6Bβ max{Z,M
√
rmax{BxB1, RB2}},

then a covering of size P such that logP is at most

3r2 log

(
12Bβ max{Z,M

√
rmax{BxB1, RB2}}
ε

)
suffices to ensure ΛL ≤ ε. Here, R , ||R(W1,W2, xL)||2,
and Z, M are as defined in the statement of Proposition 7.

The remaining steps for Proposition 7 are straightforward
and deferred to the Supplementary. We now outline some
steps for understanding generalization of CPNGNNs.

5.3. Toward a generalization analysis for CPNGNNs

Two parts were integral to our analysis: (a) bounding com-
plexity via local computation trees, and (b) the sum decom-
position property of permutation-invariant functions. We
now provide their counterparts for CPNGNNs.

Like before, we start with a vertex v, and unroll the L
neighborhood aggregations to obtain a computation tree of
depth L, rooted at v. However, now we additionally label
each edge in the computation tree with the respective ports
of the nodes incident on the edge (enabled by consistent
ordering). Thus, we may analyze a input port-numbered
graph using its node-wise port-numbered trees.

Since permutation-invariance applies only to multisets of
messages, but not port-numbered messages, we cannot ex-
press the aggregation in CPNGNNs as in Equation (2). In-
stead, we provide an injective function for aggregating a

collection of port-numbered messages. The function takes
a general sum-form that decouples the dependence on each
message and its corresponding port number.

Proposition 8. Assume X is countable. There ex-
ists a function f : X × P 7→ Rn such that
h((x1, p1), . . . , (x|P |, p|P |)) =

∑
i∈[|P |] g(pi)f(xi) for

each port-numbered sequence of (xi, pi) pairs, where P ⊂
N, X = {x1, x2, . . . , x|P |} ⊂ X is a multiset of bounded
size, and pi are all distinct numbers from [|P |].

The result in Proposition 8 holds particular significance,
since it is known (Hella et al., 2015) that port-numbered
messages provide a strictly richer class than sets and multi-
sets. The generalization bound for CPNGNN will be likely
worse than the result in Proposition 7, since each port ap-
pears as an exponent in our generalized decomposition so
the complexity of aggregation grows rapidly in the neigh-
borhood size. We leave a detailed analysis for future work.

Discussion
We discuss some limitations and implications of this work.

Tradeoffs between expressivity and generalization. We
introduced H-DCPN primarily to illustrate some ideas that
could be used to improve the existing models. In partic-
ular, we suggested incorporating geometric information to
circumvent some issues with DimeNet. While reasonable
for settings where graphs represent actual spatial structures,
such models are clearly inapplicable for graphs without any
underlying geometric interpretation. Incorporating higher
order information via a hypergraph or factor graph might be
more natural in some scenarios. Beyond the nature of the
graph, a good tradeoff can often be guided by application-
specific considerations such as size of the training data,
computation budget, and constraints (e.g., on training and
inference time). Often, additional expressivity from a com-
plex model might be offset by factors such as computa-
tional intractability and lack of generalization.

Theory and practice. Our results shed some light on
the observed empirical success and limitations of mes-
sage passing GNNs. For example, LU-GNNs have been
observed to perform suboptimally on molecular graphs,
where models that exploit the spatial structure (e.g.,
DimeNet) perform significantly better (Klicpera et al.,
2020). Additional features can avoid some pitfalls of LU-
GNNs and have improved performance elsewhere, e.g.,
Position-aware GNNs (You et al., 2019) and Structured
Transformers (Ingraham et al., 2019). Likewise, Proposi-
tion 2 elucidates that choosing a good port-numbering can
have a crucial impact on the performance of CPNGNNs.
Despite addressing complex graphs instead of sequences,
generalization bounds for GNNs and RNNs are compara-
ble, so the empirical success of GNNs is not surprising.

Generalization and Representational Limits of Graph Neural Networks

Acknowledgments
SJ acknowledges support from NSF awards CAREER
1553284 and 1900933 and from ONR. TJ and VG acknowl-
edge support from ONR and the MIT-IBM collaboration.

References
Z. Allen-Zhu and Y. Li. Can sgd learn recurrent neural

networks with provable generalization? In Neural Infor-
mation Processing Systems (NeurIPS), 2019.

V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky. On
weisfeiler-leman invariance: Subgraph counts and re-
lated graph properties. Journal of Computer and System
Sciences, 113:42 – 59, 2020.

P. Barceló, E. V. Kostylev, M. Monet, J Pérez, J. Reutter,
and J.-P. Silva. The logical expressiveness of graph neu-
ral networks. In International Conference on Learning
Representations (ICLR), 2020.

P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-
normalized margin bounds for neural networks. In
Advances in Neural Information Processing Systems
(NIPS), pages 6240–6249, 2017.

P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. Kavukcuoglu. Interaction networks for learning about
objects, relations and physics. In Neural Information
Processing Systems (NIPS), pages 4502–4510, 2016.

M. Chen, X. Li, and T. Zhao. On generalization bounds of
a family of recurrent neural networks. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2020a.

Z. Chen, L. Li, and J. Bruna. Supervised community de-
tection with line graph neural networks. In International
Conference on Learning Representations (ICLR), 2019.

Z. Chen, L. Chen, S. Villar, and J. Bruna. Can graph neural
networks count substructures?, 2020b.

H. Dai, B. Dai, and L. Song. Discriminative embeddings
of latent variable models for structured data. In Interna-
tional Conference on Machine Learning (ICML), page
2702–2711, 2016.

M. Defferrard, X. Bresson, and P. Vandergheynst. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Neural Information Processing Sys-
tems (NIPS), pages 3844–3852, 2016.

N. Dehmamy, A.-L. Barabasi, and R. Yu. Understand-
ing the representation power of graph neural networks
in learning graph topology. In Neural Information Pro-
cessing Systems (NeurIPS), pages 15387–15397, 2019.

S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang,
and K. Xu. Graph neural tangent kernel: Fusing graph
neural networks with graph kernels. In Neural Informa-
tion Processing Systems (NeurIPS), 2019.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-
barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams.
Convolutional networks on graphs for learning molec-
ular fingerprints. In Neural Information Processing Sys-
tems (NIPS), pages 2224–2232, 2015.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning
(ICML), pages 1263–1272, 2017.

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent
sample complexity of neural networks. In Conference
On Learning Theory (COLT), pages 297–299, 2018.

M. Gori, G. Monfardini, and F. Scarselli. A new model for
learning in graph domains. In IEEE International Joint
Conference on Neural Networks (IJCNN), pages 729–
734, 2005.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive represen-
tation learning on large graphs. In Neural Information
Processing Systems (NIPS), pages 1024–1034, 2017.

B. Hammer. Generalization ability of folding networks.
IEEE Transactions on Knowledge and Data Engineering
(TKDE), 13:196–206, 2001.

L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju,
T. Lempiäinen, K. Luosto, J. Suomela, and J. Virtema.
Weak models of distributed computing, with connections
to modal logic. Distributed Computing, 28(1):31–53,
2015.

J. Ingraham, V. K. Garg, R. Barzilay, and T. Jaakkola. Gen-
erative models for graph-based protein design. In Neural
Information Processing Systems (NeurIPS), 2019.

W. Jin, R. Barzilay, and T. S. Jaakkola. Junction tree vari-
ational autoencoder for molecular graph generation. In
International Conference on Machine Learning (ICML),
volume 80, pages 2328–2337, 2018.

W. Jin, K. Yang, R. Barzilay, and T. Jaakkola. Learn-
ing multimodal graph-to-graph translation for molecule
optimization. In International Conference on Learning
Representations (ICLR), 2019.

N. Keriven and G. Peyré. Universal invariant and equivari-
ant graph neural networks. In Neural Information Pro-
cessing Systems (NeurIPS), pages 7090–7099, 2019.

Generalization and Representational Limits of Graph Neural Networks

T. N. Kipf and M. Welling. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

J. Klicpera, J. Groß, and S. Günnemann. Directional mes-
sage passing for molecular graphs. In International Con-
ference on Learning Representations (ICLR), 2020.

N. M. Kriege, C. Morris, A. Rey, and C. Sohler. A prop-
erty testing framework for the theoretical expressivity of
graph kernels. In International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 2348–2354, 2018.

N. M. Kriege, F. D. Johansson, and C. Morris. A survey on
graph kernels. Applied Network Science, 5(1):6, 2020.

T. Lei, W. Jin, R. Barzilay, and T. Jaakkola. Deriving neu-
ral architectures from sequence and graph kernels. In
International Conference on Machine Learning (ICML),
pages 2024–2033, 2017.

A. Loukas. What graph neural networks cannot learn:
depth vs width. International Conference on Learning
Representations (ICLR), 2020.

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman.
Provably powerful graph networks. In Neural Informa-
tion Processing Systems (NeurIPS), pages 2153–2164,
2019a.

H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman. In-
variant and equivariant graph networks. In International
Conference on Learning Representations (ICLR), 2019b.

H. Maron, E. Fetaya, N. Segol, and Y. Lipman. On the
universality of invariant networks. In International Con-
ference on Machine Learning (ICML), 2019c.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Founda-
tions of Machine Learning. The MIT Press, 2012. ISBN
026201825X, 9780262018258.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E.
Lenssen, G. Rattan, and M. Grohe. Weisfeiler and le-
man go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence (AAAI),
pages 4602–4609, 2019.

R. L. Murphy, B. Srinivasan, V. A. Rao, and B. Ribeiro.
Janossy pooling: Learning deep permutation-invariant
functions for variable-size inputs. In International Con-
ference on Learning Representations (ICLR), 2019.

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A
pac-bayesian approach to spectrally-normalized margin
bounds for neural networks. In International Conference
on Learning Representations (ICLR), 2018.

A. Sannai and M. Imaizumi. Improved generalization
bound of permutation invariant deep neural networks.
arXiv : 1910.06552, 2019.

A. Santoro, F. Hill, D. Barrett, A. Morcos, and T. Lillicrap.
Measuring abstract reasoning in neural networks. In In-
ternational Conference on Machine Learning (ICML),
pages 4477–4486, 2018.

R. Sato. A survey on the expressive power of graph neural
networks, 2020.

R. Sato, M. Yamada, and H. Kashima. Approxima-
tion ratios of graph neural networks for combinatorial
problems. In Neural Information Processing Systems
(NeurIPS), 2019.

R. Sato, M. Yamada, and H. Kashima. Random features
strengthen graph neural networks, 2020.

F. Scarselli and A. C. Tsoi. Universal approximation using
feedforward neural networks: A survey of some existing
methods, and some new results. Neural Networks, 11(1):
15–37, 1998.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini. Computational capabilities of graph neu-
ral networks. IEEE Transactions on Neural Networks, 20
(1):81–102, 2009.

F. Scarselli, A. C. Tsoi, and M. Hagenbuchner. The
Vapnik-Chervonenkis dimension of graph and recursive
neural networks. Neural Networks, 108:248–259, 2018.

J. Sokolic, R. Giryes, G. Sapiro, and M. Rodrigues. Gener-
alization Error of Invariant Classifiers. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 1094–1103, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio. Graph attention networks. In
International Conference on Learning Representations
(ICLR), 2018.

S. Verma and Z.-L. Zhang. Stability and generalization of
graph convolutional neural networks. In International
Conference on Knowledge Discovery & Data Mining
(KDD), page 1539–1548, 2019.

K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi,
and S. Jegelka. Representation learning on graphs with
jumping knowledge networks. In International Confer-
ence on Machine Learning (ICML), pages 5453–5462,
2018.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful
are graph neural networks? International Conference on
Learning Representations (ICLR), 2019.

Generalization and Representational Limits of Graph Neural Networks

K. Xu, J. Li, M. Zhang, S. S. Du, K. Kawarabayashi, and
S. Jegelka. What can neural networks reason about? In
International Conference on Learning Representations
(ICLR), 2020.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and
J. Leskovec. Hierarchical graph representation learning
with differentiable pooling. In Neural Information Pro-
cessing Systems (NeurIPS), 2018.

J. You, R. Ying, and J. Leskovec. Position-aware graph
neural networks. In International Conference on Ma-
chine Learning (ICML), pages 7134–7143, 2019.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. Kim. Graph
transformer networks. In Neural Information Processing
Systems (NeurIPS), pages 11960–11970, 2019.

J. Zhang, Q. Lei, and I. S. Dhillon. Stabilizing gradients
for deep neural networks via efficient SVD parameteri-
zation. In International Conference on Machine Learn-
ing (ICML), pages 5801–5809, 2018a.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-
end deep learning architecture for graph classification.
In AAAI Conference on Artificial Intelligence (AAAI),
pages 4438–4445, 2018b.

Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi,
and L. Song. Efficient probabilistic logic reasoning with
graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

Generalization and Representational Limits of Graph Neural Networks

A. Supplementary material
We now provide detailed proofs for all our propositions
and lemmas.

Proof of Proposition 1

Proof. We show that CPNGNN, using some consistent port
ordering, can distinguish some non-isomorphic graphs that
LU-GNNs cannot.

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
2

2
2

1 1

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

2
2 1

1

1

G

We construct a pair of graphs G and G such that G
consists of two triangles that differ in port-ordering but
are otherwise identical, while G (indicated by underlined
symbols) consists of a single even-length cycle. The
construction ensures that each node labeled with X ∈
{B1, C1, D1, B2, C2} in G has the same identical view
(i.e., indistinguishable node features, and neighborhood) as
the corresponding node labeled X in G. However, D2

and D2 have distinguishable neighborhoods due to differ-
ent port-numbers: e.g., D2 is connected to B2 at port 2,
whereas D2 is connected to B1 at port 1. Likewise, D2

is connected to C2 at port 1, in contrast to D2 that is con-
nected to C2 at port 2. However, LU-GNN does not in-
corporate any spatial information such as ports, and fails to
tell one graph from the other.

Note that since ∠B1C1D1 differs from ∠B1C1D1,
DimeNet can also distinguish between the two graphs.

Proof of Proposition 2

Proof. We now illustrate the importance of choosing a
good consistent port numbering. Specifically, we construct
a pair of graphs, and two different consistent port number-
ings p and q such that CPNGNN can distinguish the graphs
with p but not q.

B1

D1 C1

B2

D2 C2

1
1

2
1

2 2

1
1

2
1

2 2

B1 C1 D1 B2

C2D2

G

2 1 2 2 1 1

2

1
2 2

1

1

G

We modify the consistent port numbering from the con-
struction of Proposition 1. We consider the same pair of

graphs as in the proof of Proposition 1. However, in-
stead of having different numberings for the two compo-
nents (i.e., triangles) of G, we now carry over the ordering
from one component to the other. The two components
become identical with this modification. For any node
labeled X1 or X2, and any neighbor labeled Y 1 or Y 2,
X,Y ∈ {B,C,D}, we can now simply assign the same
respective local ports as the nodes labeled X1 and Y1 (or,
equivalently, X2 and Y2). It is easy to verify that the two
graphs become port-locally isomorphic under the new or-
dering, and thus cannot be separated with any permutation-
invariant readout (using Proposition 3).

Proof of Proposition 3

Proof. We begin with the following definition.

Definition 3. Two nodes in a graph are locally indistin-
guishable if they have identical feature vectors and identi-
cal port-ordered neighborhoods.

In other words, for locally indistinguishable nodes u and v,
not only are their neighbors identical but also the respective
ports that connect u and v to their identical neighbors are
identical.

If the surjection f : V1 → V2 in Definition 2 is also injec-
tive, then we can simply take h = f . Therefore, we focus
on the case when f is not injective. We will show that f
can be used to inform h. Since f is not injective, there ex-
ist v1, v

′
1 ∈ V1 such that v1 6= v′1 but f(v1) = f(v′1) = v2

for some v2 ∈ V2. Then, by condition (a) in Definition 2,
we immediately get that the feature vector

xv1 = xf(v1) = xf(v′1) = xv′1 . (6)

Moreover, by other conditions, there is a consistent port bi-
jection from neighborhood of v1 to that of v2, and likewise
another bijection from neighborhood of v′1 to that of v2.
Therefore, there is a consistent port bijection from neigh-
borhood of v1 to that of v′1. Together with (6) and our as-
sumption that f(v1) = f(v′1) = v2, this implies that v1

and v′1 are locally indistinguishable. Note that there could
be more such nodes that are indistinguishable from v1 (or
v′1), e.g., when all such nodes map to v2 as well.

Without loss of generality, let E1(v1) ⊆ V1 denote the
equivalence class of all nodes, including v1, that are
indistinguishable from v1 in graph G1. Similarly, let
E2(v2) ⊆ V2 be the class of nodes indistinguishable from
v2 in G2. Consider `1 = |E1(v1)| and `2 = |E2(v2)|. We
claim that `1 = `2. Suppose not. Then if `1 < `2, we
can have h map each node in E1(v1) to a separate node
in E2(v2), and use the same mapping as f on the other
nodes in V1. Doing so does not decrease the co-domain of

Generalization and Representational Limits of Graph Neural Networks

V2, and h remains surjective. We are therefore left with
`2 − `1 > 0 nodes from E2(v2). Therefore, these nodes
must have at least one preimage in the set V1 − E1(v1)
since f (and thus h) is a surjection by assumption (a)
in Definition 1. This is clearly a contradiction since any
such preimage must have either a different feature vector,
or a non-isomorphic port-consistent neighborhood. By a
symmetric argument, using the surjection of map from
V2 to V1, we conclude that `1 = `2. Note that h did not
tinker with the nodes that were outside the class E1(v1).
Recycling the procedure for other nodes in V1 − E1(v1)
that might map under f to a common image in V2, we note
that h ends up being injective. Since h remains surjective
throughout the procedure, we conclude that h is a bijection.

We now prove by induction that the corresponding nodes
in port-locally isomorphic graphs have identical embed-
dings for any CPNGNN. Consider any such GNN with
L + 1 layers parameterized by the sequence θ1:L+1 ,
(θ1, . . . , θL, θL+1). Since there exists a bijection h such
that any node v1 ∈ G1 has an identical local view (i.e.,
node features, and port-numbered neighbors) as v2 =
h(v1) ∈ G1, the updated embeddings for v1 and v2 are
identical after the first layer. Assume that these embed-
dings remain identical after update from each layer ` ∈
{2, 3, . . . , L}. Since v1 and v2 have identical local views
and have identical embedding from the Lth layer, the up-
dates for these nodes by the (L + 1)th layer are identical.
Therefore, v1 and v2 have identical embeddings. Since h
is a bijection, for every v ∈ V1 there is a corresponding
h(v) ∈ V2 with the same embedding, and thus both G1 and
G2 produce the same output with any permutation readout
function. Our choice of θ1:L+1 was arbitrary, so the result
follows.

Proof of Proposition 4

Proof. We now show that there exist consistent port order-
ings such that CPNGNNs with permutation-invariant read-
out cannot decide several important graph properties: girth,
circumference, diameter, radius, conjoint cycle, total num-
ber of cycles, and k-clique. The same result also holds for
LU-GNNs where nodes do not have access to any consis-
tent port numbering.

We first construct a pair of graphs that have cycles of differ-
ent length but produce the same output embedding via the
readout function. Specifically, we show that CPNGNNs
cannot decide a graph having cycles of length n from a cy-
cle of length 2n. We construct a counterexample for n = 4.
Our first graph consists of two cycles of length 4 (each de-
noted by S4), while the other graph is a cycle of length
8 (denoted by S8). We associate identical feature vectors

with nodes that have the same color, or equivalently, that
are marked with the same symbol ignoring the subscripts
and the underline. For example, A1, A2, A1, and A2 are
all assigned the same feature vector. Moreover, we assign
identical edge feature vectors to edges that have the same
pair of symbols at the nodes.

A1 B1

C1D1

A2 B2

C2D2

A1 B1 C1 D1

D2 C2 B2 A2

1 1

2
2

11
2
2

1 1

2
2

11
2
2

1 1 2 2 1 1

1 1 2 2 1 1
2
2

2
2S4 S4 S8

Thus, we note that a bijection exists between the two graphs
with node X in the first graph corresponding to X in
the second graph such that both the nodes have identical
features and indistinguishable port-ordered neighborhoods.
Since, the two graphs have different girth, circumference,
diameter, radius, and total number of cycles, it follows from
Proposition 3 that CPNGNN cannot decide these proper-
ties. Note that the graph with two S4 cycles is discon-
nected, and hence its radius (and diameter) is∞.

A1

B1

C1

D1

A2

B2

C2

D2

1
1

1
1

2
2

2
21

1
1

1

2
2

2
2

3 3 3 3

A1

B1C1D1

1
1

11 22
2

2

G1 G1

A2

D2C2B2

1
1

11 22
2

2
3

3

3

3G2

We craft a separate construction for the remaining proper-
ties, namely, k-clique and conjoint cycle. The main idea
is to replicate the effect of the common edge in the con-
joint cycle via two identical components of another graph
(that does not have any conjoint cycle) such that the com-
ponents are cleverly aligned to reproduce the local port-
ordered neighborhoods and thus present the same view to
each node (see the adjoining figure). Specifically, each con-
joint cycle is denoted by G1, and the other graph that does
not have any conjoint cycles byG2. The graphs, being port-
locally isomorphic, are indistinguishable by CPNGNN.

For the k-clique, we simply connectA1 toC1,A2 toC2,A1

toC1, andA2 toC2 via a new port 3 at each of these nodes.
Doing so ensures that the new graphs are port-locally iso-
morphic as well. Adding these edges, we note that, unlike
G2, each conjoint cycle G1 yields a 4-clique.

Proof of Proposition 5

Proof. We now demonstrate the representational limits of
DimeNets. Specifically, we show two graphs that differ
in several graph properties such as girth, circumference,
diameter, radius, or total number of cycles. However, these
graphs cannot be distinguished by DimeNets.

Generalization and Representational Limits of Graph Neural Networks

Note that DimeNet will be able to discriminate S8 from
the graph with cycles S4 (recall our construction in Propo-
sition 4), since, e.g., ∠B1C1D1 in S4 is different from
∠B1C1D1 in S8. In order to design a failure case for
DimeNet, we need to construct a pair of non-isomorphic
graphs that have not only identical local pairwise distances
but also angles, so that their output embedding is same.

D1

A1

C1

B1

D2

A2

C2

B2

D2

A1

C2

B1

A2B2

D1C1

G3 G3 G4

Our idea is to overlay the cycles S4 and S8 on a cube (see
G3 and G4 - the graphs consist of only edges in bold). Do-
ing so does not have any bearing on the graph properties.
Since we orient the edges of these cycles along the sides
of the cube, the local distances are identical. Moreover,
by having A1B1C1D1 and A2B2C2D2 as opposite faces
of the cube, we ensure that each angle in G4 is a right an-
gle, exactly as in G3. Thus, for each X ∈ {A,B,C,D},
nodes X1, X2, X1, and X2 have identical feature vec-
tors and identical local spatial information. Thus, the em-
beddings for X1, X2, X1, and X2 are identical, and any
permutation-invariant readout results in identical output
embeddings for the two graphs.

Proof of Proposition 6

Proof. We now show that the complexity of the GNN may
be bounded by the complexity of the computation trees.
In other words, the worst case generalization bound over a
set of graphs corresponds to having each graph be a single
computation tree. Formally,

R̂G , Eσ sup
Θ

m∑
j=1

σjf(Gj ; Θ)

= Eσ sup
Θ

m∑
j=1

σjET∼w′(Gj)fc(T ; Θ)

≤ EσEt1,..tm sup
Θ

m∑
j=1

σjfc(tj ; Θ)

= Et1,..tm Eσ sup
Θ

m∑
j=1

σjfc(tj ; Θ)︸ ︷︷ ︸
R̂T

,

where we invoked Jensen’s inequality to swap the expec-
tation with supremum for our inequality (the operation is
permissible since sup is a convex function).

Proof of Lemma 2

Proof. Our objective here is to bound the effect of change
in weights from (W1,W2) to (W ′1,W

′
2) on the embedding

of the root node of our fixed tree (that has depth L).
Since non-linear activation and permutation-invariant
aggregation are both Lipschitz-continuous functions, and
the feature vector at the root xL and the weights have
bounded norm, the embedding at the root of the tree adapts
to the embeddings from the subtrees.

Specifically, we note that the l2-norm of difference of em-
bedding vectors produced by (W1,W2) and (W ′1,W

′
2) is

∆L , ||TL(W1,W2)− TL(W ′1,W
′
2)||2

=

∣∣∣∣∣∣∣∣φ(W1xL +W2 ρ
(∑
j∈C(xL)

g(TL−1,j(W1,W2)
)

︸ ︷︷ ︸
, R(W1,W2,xL)

))

− φ
(
W ′1xL +W ′2ρ

(∑
j∈C(xL)

g(TL−1,j(W
′
1,W

′
2)
)))∣∣∣∣∣∣∣∣

2

≤ Cφ
∣∣∣∣(W1 −W ′1)xL

∣∣∣∣
2

(7)

+ Cφ||W2R(W1,W2, xL)−W ′2R(W ′1,W
′
2, xL)||2 .

Therefore, in order to find an upper bound for ∆L,
we will bound the two terms in the last inequality sep-
arately. We first bound the second term using the
sum of ||W2R(W1,W2, xL) − W ′2R(W1,W2, xL)||2 and
||W ′2R(W1,W2, xL)−W ′2R(W ′1,W

′
2, xL)||2. Note that

||W ′2R(W1,W2, xL)−W ′2R(W ′1,W
′
2, xL)||2

≤ ||W ′2||2 ||R(W1,W2, xL)−R(W ′1,W
′
2, xL)||2 .

(8)

Since g is Cg-Lipschitz, the branching factor of tree is d,
and ρ is Cρ-Lipschitz, therefore, R is dCgCρ-Lipschitz.
We will use this fact to bound (8). Specifically,

||R(W1,W2, xL)−R(W ′1,W
′
2, xL)||2

≤ Cρ

∣∣∣∣∣∣∣∣ ∑
j∈C(xL)

(
g(TL−1,j(W1,W2))

−g(TL−1,j(W
′
1,W

′
2))

)∣∣∣∣∣∣∣∣
2

≤ Cρ
∑

j∈C(xL)

∣∣∣∣∣∣∣∣(g(TL−1,j(W1,W2))

−g(TL−1,j(W
′
1,W

′
2))

)∣∣∣∣∣∣∣∣
2

≤ CρCg
∑

j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)− TL−1,j(W
′
1,W

′
2)

∣∣∣∣∣∣∣∣
2

= CρCg
∑

j∈C(xL)

∆L−1,j .

Generalization and Representational Limits of Graph Neural Networks

Using this with ||W ′2||2 ≤ B2 in (8), we immediately get

||W ′2R(W1,W2, xL) − W ′2R(W ′1,W
′
2, xL)||2

≤ B2CρCg
∑

j∈C(xL)

∆L−1,j

≤ B2CρCgd max
j∈C(xL)

∆L−1,j .

In other words, we bound the effect on each subtree of the
root by the maximum effect across these subtrees. Com-
bining this with ||xL||2 ≤ Bx, we note from (7) that

∆L ≤ CφBx ||(W1 −W ′1)||2
+ CφB2CρCgd max

j∈C(xL)
∆L−1,j (9)

+ Cφ||(W2 −W ′2)R(W1,W2, xL)||2 .

Proof of Lemma 3

Proof. Note from (9) that in order for the change in em-
bedding of the root (due to a small change in weights) to be
small, we require that the last term in (9) is small. Toward
that goal we bound the norm of permutation-invariant
aggregation at the root node. Specifically, we note that

||R(W1,W2, xL)||2

=

∣∣∣∣∣∣∣∣ρ(∑
j∈C(xL)

g(TL−1,j(W1,W2)
))∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣ρ(∑
j∈C(xL)

g(TL−1,j(W1,W2)
))
− ρ(0)

∣∣∣∣∣∣∣∣
2

≤ Cρ

∣∣∣∣∣∣∣∣ ∑
j∈C(xL)

g(TL−1,j(W1,W2))

∣∣∣∣∣∣∣∣
2

≤ Cρ
∑

j∈C(xL)

∣∣∣∣∣∣∣∣g(TL−1,j(W1,W2))− g(0)

∣∣∣∣∣∣∣∣
2

≤ CρCg
∑

j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

.

≤ CρCgd max
j∈C(xL)

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

, (10)

where the norm of the embedding produced by children j
of the root using weights W1 and W2 is given by

∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣φ(W1xL−1,j +W2R(W1,W2, xL−1,j))

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣φ(W1xL−1,j +W2R(W1,W2, xL−1,j))− φ(0)

∣∣∣∣∣∣∣∣
2

≤ Cφ

∣∣∣∣∣∣∣∣W1xL−1,j +W2R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ Cφ

∣∣∣∣∣∣∣∣W1xL−1,j

∣∣∣∣∣∣∣∣
2

+ Cφ

∣∣∣∣∣∣∣∣W2R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ CφB1Bx + CφB2

∣∣∣∣∣∣∣∣R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

. (11)

Also, since ||φ(x)||∞ ≤ b for all x ∈ Rr (by our assump-
tion), and ||φ(x)||2 ≤

√
r||φ(x)||∞, we obtain∣∣∣∣∣∣∣∣TL−1,j(W1,W2)

∣∣∣∣∣∣∣∣
2

≤ b
√
r . (12)

Combining (10) and (11), we get the recursive relationship

||R(W1,W2, xL)||2
≤ CρCgCφB1Bxd

+ CρCgCφB2d max
j∈C(xL)

∣∣∣∣∣∣∣∣R(W1,W2, xL−1,j)

∣∣∣∣∣∣∣∣
2

≤ CρCgCφB1Bxd

L−1∑
`=0

(CρCgCφB2d)`

= CρCgCφB1Bxd
(Cd)L − 1

Cd− 1
. (13)

On the other hand, combining (10) and (11), we get

||R(W1,W2, xL)||2 ≤ bdCρCg
√
r . (14)

Taken together, (13) and (14) yield ||R(W1,W2, xL)||2

≤ CρCgdmin

{
b
√
r, CφB1Bx

(Cd)L − 1

Cd− 1

}
. (15)

Proof of Lemma 4

Proof. Using the results from Lemma 2 and 3, we will
simplify the bound on ∆L, i.e., the change in embedding
due to a change in weights. We will then bound the change
in probability (that the tree label is 1) ΛL in terms of ∆L,
when we change not only the weights from (W1,W2) to
W ′1,W

′
2 but also the local classifier parameters from β

to β′ (where β and β′ are chosen from a bounded norm
family). We show these steps below.

Generalization and Representational Limits of Graph Neural Networks

Plugging the bound on R , ||R(W1,W2, xL)||2 from
Lemma 3 in Lemma 2, we get

∆L ≤ CφBx ||W1 −W ′1||2
+ Cd max

j∈C(xL)
∆L−1,j

+ Cφ||W2 −W ′2||2R .

Expanding the recursion, we note that

∆L ≤MBx ||W1 −W ′1||2 +MR||W2 −W ′2||2 , (16)

where

M = Cφ
(Cd)

L − 1

Cd− 1
. (17)

Since ||A||2 ≤ ||A||F for every matrix A, we have

∆L ≤MBx ||W1 −W ′1||F +MR||W2 −W ′2||F . (18)

Now since sigmoid is 1-Lipschitz, we have

ΛL = |ψ(β>TL(W1,W2))− ψ(β′
>
TL(W ′1,W

′
2))|

≤ |β>TL(W1,W2)− β′>TL(W1,W2)|
+ |β′>TL(W1,W2)− β′>TL(W ′1,W

′
2)|

≤ ||β − β′||2 ||TL(W1,W2)||2 +Bβ∆L

≤ ||β − β′||2 (CφB1Bx + CφB2R)︸ ︷︷ ︸
Z

+Bβ∆L

(19)

using (11) and (15).

Proof of Lemma 5

Proof. Building on results from Lemmas 2-4, we will now
show that the change in probability ΛL can be bounded by
ε, using a covering of size P , where P depends on ε. More-

over, we show that logP grows as O
(

log

(
1

ε

))
for suf-

ficiently small values of ε. That is, we can ensure ΛL is
small by using a small covering.

We begin by noting that we can find a covering

C
(
β,

ε

3Z`
, || · ||2

)
of size

N
(
β,

ε

3Z`
, || · ||2

)
≤
(

1 +
6ZBβ
ε

)r
.

Thus, for any specified ε, we can ensure that ΛL is at most

ε by finding matrix coverings C
(
W1,

ε

3MBxBβ
, || · ||F

)
and C

(
W2,

ε

3MRBβ
, || · ||F

)
. Using Lemma 8 from

(Chen et al., 2020a), we obtain the corresponding bounds
on their covering number. Specifically,

N
(
W1,

ε

3MBxBβ
, || · ||F

)
≤
(

1 +
6MBxBβB1

√
r

ε

)r2
,

N
(
W2,

ε

3MRBβ
, || · ||F

)
≤
(

1 +
6MRBβB2

√
r

ε

)r2
.

The product of all the covering numbers is bounded by

P =

(
1 +

6Bβ max{Z,M
√
rmax{BxB1, RB2}}
ε

)2r2+r

.

Therefore, the class B(L, d, r, β,B1, B2, Bx) that maps a
tree-structured input to the probability that the correspond-
ing tree label is 1 can be approximated to within ε by a
covering of size P . Moreover, when

ε < 6Bβ max{Z,M
√
rmax{BxB1, RB2}},

we obtain that logP is at most

3r2 log

(
12Bβ max{Z,M

√
rmax{BxB1, RB2}}
ε

)
.

Proof of Proposition 7

Proof. We are now ready to prove our generalization
bound. Specifically, we invoke a specific form of Dudley’s
entropy integral to bound the empirical Rademacher com-
plexity R̂T (Jγ) via our result on covering from Lemma
5, where recall that Jγ maps each tree-label pair (t, y) to
margin loss lossγ(−τ(fc(t; Θ), y)).

It is straightforward to show that p is 2-Lipschitz in its first

argument, and lossγ is
1

γ
-Lipschitz. Therefore, we can ap-

proximate the class I that maps (t, y) to τ(fc(t; Θ), y) by
finding an

ε

2
-cover of B. Now, note that I takes values in

the interval [−e, e], where

e = ||u||2 ||TL(W1,W2)||2 ≤ BβZ .

Using Lemma A.5. in (Bartlett et al., 2017), we obtain that

R̂T (I) ≤ inf
α>0

(
4α√
m

+
12

m

∫ 2e
√
m

α

√
logN (I, ε, || · ||)dε

)
where, using Lemma 5, we have∫ 2e

√
m

α

√
logN (I, ε, || · ||)dε

≤
∫ 2e

√
m

α

√
logN (B, ε

2
, dist(·, ·))dε

≤
∫ 2e

√
m

α

√
logU ≤ 2e

√
m
√

logU = 2BβZ
√
m logU

Generalization and Representational Limits of Graph Neural Networks

with dist being the combination of || · ||2 and || · ||F norms
used to obtain covering of size P in Lemma 5, and logU is

3r2 log

(
24Bβ max{Z,M

√
rmax{BxB1, RB2}}
α

)
.

Setting α =

√
1

m
, we immediately get

R̂T (I) ≤ 4

m
+

24BβZ√
m

√
3r2 logQ ,

where

Q = 24Bβ
√
mmax{Z,M

√
rmax{BxB1, RB2}} .

We finally bound the complexity of class R̂T (Jγ) by not-

ing that lossγ is
1

γ
-Lipschitz, and invoking Talagrand’s

lemma (Mohri et al., 2012):

R̂T (Jγ) ≤ R̂T (I)

γ
≤ 4

γm
+

24rBβZ

γ
√
m

√
3 logQ .

Proof of Proposition 8

Proof. We first convey some intuition. Suppose |X| < 8,
and we assign a distinct index z(x) ∈ {1, 2, . . . , 8} to each
message x ∈ X . Then, we can map each x to 10−z(x),
i.e., obtain a decimal expansion which may be viewed as
a one-hot vector representation of at most 10 digits. We
would reserve a separate block of 10 digits for each port.
This would allow us to disentangle the coupling between
messages and their corresponding ports. Specifically,
since the ports are all distinct, we can shift the digits in
expansion of x to the right by dividing by 10p, where p
is the port number of x. This allows us to represent each
(x, p) pair uniquely.

Formally, since X is countable, there exists a mapping
Z : X 7→ N from x ∈ X to natural numbers. Since X
has bounded cardinality, we know the existence of some
N ∈ N such that |X| < N for all X . Define k =
10dlog10Ne. We define function f in the proposition as
f(x) = k−Z(x). We also take function g in proposition
to be g(p) = 10−kN(p−1). That is, we express the function
h as h((x1, p1), . . . , (x|P |, p|P |)) =

∑|P |
i=1 g(pi)f(xi).

	Introduction
	Related Work
	Preliminaries
	Representational limits of GNNs
	Generalization bounds for GNNs
	From Graphs to Trees
	Generalization Bound for GNNs
	Toward a generalization analysis for CPNGNNs

	Supplementary material

